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Abstract: Cadmium (Cd) is an environmental toxicant that accumulates in bone and alters bone
turnover and metabolism. Periodontal disease is characterized by tooth loss and tissue destruction,
specifically, loss of supporting bone around the teeth. We have previously shown that Cd causes loss
of dental alveolar (tooth supporting) bone in a rodent model of long-term Cd poisoning. The overall
goal of this study was to determine the possible association between levels of Cd in alveolar bone
and evidence of periodontal disease in human cadavers. The extent of Cd accumulation in human
mandible samples was analyzed. Levels of Cd in mandibular alveolar bone were compared to those in
basal bone as well as the renal cortex in samples obtained from the cadavers. Alveolar bone contained
significantly higher levels of Cd when compared to basal bone (p < 0.01). Cd levels in mandibular
bone were significantly higher in female compared to male cadavers (p < 0.05). The kidney cortex
had greater than 15-fold higher Cd levels compared to mandible bone. Additional analyses showed
a possible association between levels of Cd in basal bone and the presence of periodontal disease in
cadavers from which the samples were obtained. This study shows that Cd accumulates to relatively
high levels within alveolar bone as compared to basal bone in the mandible and thus may have
a significant and direct effect in the progression of changes in bone associated with periodontal disease.

Keywords: cadmium; bone; mandible; periodontal disease; bioaccumulation; body burden; gender
differences; One Health

1. Introduction

Cadmium (Cd) is a well-known environmental pollutant that causes damage to a variety of organs,
including kidneys, testes, liver, lung, and bone. Cd exposure has long been known to be associated
with the development of osteomalacia and osteoporosis (for a review, see [1]). Exposure to Cd can
occur from foods, environmental and industrial exposure, and with smoking, including second hand
smoke [2–5]. Cd may have indirect adverse effects on bone by causing renal dysfunction that results in
increased levels of urinary calcium and vitamin D [6]. There is also evidence that Cd causes direct
osteotoxicity in humans [7] and in animal models of Cd exposure (for a review, see [8]).

Alveolar (tooth supporting) bone loss is a result of the progression of periodontal disease that
eventually leads to tooth loss [9]. There is some evidence that Cd exposure is associated with
periodontal disease. However, there are conflicting epidemiological studies that show or fail to show
a connection between Cd and periodontal disease (for a review, see [10]). We have recently published
a report showing that Cd causes loss of alveolar bone in a rodent model of long-term Cd poisoning [10].

The purpose of this study was to determine the levels of Cd within mandibular alveolar and basal
bone as well as the kidney cortex from human cadavers and to examine a possible correlation between
Cd content in mandibular bone and periodontal disease scores.
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2. Materials and Methods

2.1. Sample Collection

De-identified human cadavers donated to Midwestern University were used in this study, and so
the study did not require formal institutional review. A total of 12 cadavers were selected, 6 in the
first round of sample collection and 6 in a second round. The samples selected for this study were
only from cadavers that had teeth in the anterior of the mandible. As such, a new group of cadavers
was needed following the first round of selection so that one year separated rounds one and two for
cadaver selection. Periodontal crevice depths were measured using a Williams periodontal probe
(Hu-Friedy). After the assessment of probing depths, each cadaver was assigned a periodontal score
between 1 and 4: (1) No sign of periodontal involvement, (2) probing depth 2–4 mm, (3) probing depth
4–6 mm, (4) probing depth >6 mm [11].

Mandibular bone samples were harvested to include 2 to 3 teeth from the anterior mandible and
including the full height of the mandible (Figure 1). Kidney cortex samples were also harvested from
these cadavers and sent for analysis of Cd content.
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Figure 1. Image showing a representative human mandible jaw section after gross dissection where
alveolar bone (blue outline) and basal bone (red outline) samples were harvested to be analyzed for
cadmium (Cd) content.

Mandibles were processed in our laboratory. Soft tissue was removed from the teeth and bone
with periodontal instruments. Samples of alveolar bone (blue outline in Figure 1) and basal bone
(red outline in Figure 1) were further dissected to be tested separately for Cd content.

In a subsequent round of analysis of mandibular bone, 6 of the 12 mandible samples were selected
that had Cd levels in the middle of the range from the previous basal bone analysis. These were
further dissected to separately harvest basal cortical bone and spongy (trabecular) bone (Figure 2).
These samples were then analyzed for Cd content.



Toxics 2019, 7, 31 3 of 7

Toxics 2019, 7, x FOR PEER REVIEW 3 of 8 

 

 
Figure 2. Image showing a representative human mandible jaw section after gross dissection where 
basal cortical bone samples (BC) and basal spongy bone samples (BS) were harvested to be analyzed 
for Cd content. 

2.2. Cd analysis  

Kidney cortex and bone samples were digested in nitric acid and analyzed for Cd by inductively 
coupled plasma mass spectrometry at Chemical Solutions LTD (Harrisburg, PA, USA). The limit of 
detection was 0.01 μg-Cd/g-bone dry weight. For samples with a reported value of ≤0.01 μg-Cd/g-
(below limit of detection) bone dry weight, the number was divided by 2 and 0.005 was used in 
calculating mean values and performing statistical analyses.  

2.3. Statistics  

Potential significant differences in Cd content between alveolar and basal bone were determined 
using a paired t-test while correlations between Cd content of various tissues or periodontal scores 
were performed using Pearson’s correlation analysis with the Graph Pad Prism (v. 7.04) statistical 
program (La Jolla, CA, USA). For all analyses, p ≤ 0.05 was considered statistically significant. All 
data are expressed as mean ± standard error. 

3. Results 

A total of 12 cadaver subjects were included in the study. The average age was 69.8 ± 4.6 years 
overall with the mean age for males (n = 8) being 72.3 ± 5.4 years and females (n = 4) 65.5 ± 8.8 years. 
There was no medical history or tobacco use data available for the cadavers that were used in this 
study; only gender and age were known.  

Mandibular alveolar bone samples showed significantly higher levels of Cd (0.06 ± 0.02 μg-Cd/g-
bone dry weight) as compared to basal bone samples (0.02 ± 0.01, p = 0.01) (Table 1). There was a large 
range in Cd accumulation between samples (from <0.01 (limit of detection) to 0.26), however, when 
comparing alveolar bone to basal bone Cd levels within each pair of samples from the same cadaver, 
there was a very high correlation (p < 0.001) (Figure 3). Four values were below the limit of detection 
(<0.01 µg/g Cd dry weight)—one subject in both alveolar and basal bone, and two in basal bone only.  
  

Figure 2. Image showing a representative human mandible jaw section after gross dissection where
basal cortical bone samples (BC) and basal spongy bone samples (BS) were harvested to be analyzed
for Cd content.

2.2. Cd analysis

Kidney cortex and bone samples were digested in nitric acid and analyzed for Cd by inductively
coupled plasma mass spectrometry at Chemical Solutions LTD (Harrisburg, PA, USA). The limit of
detection was 0.01µg-Cd/g-bone dry weight. For samples with a reported value of≤0.01µg-Cd/g-(below
limit of detection) bone dry weight, the number was divided by 2 and 0.005 was used in calculating
mean values and performing statistical analyses.

2.3. Statistics

Potential significant differences in Cd content between alveolar and basal bone were determined
using a paired t-test while correlations between Cd content of various tissues or periodontal scores
were performed using Pearson’s correlation analysis with the Graph Pad Prism (v. 7.04) statistical
program (La Jolla, CA, USA). For all analyses, p ≤ 0.05 was considered statistically significant. All data
are expressed as mean ± standard error.

3. Results

A total of 12 cadaver subjects were included in the study. The average age was 69.8 ± 4.6 years
overall with the mean age for males (n = 8) being 72.3 ± 5.4 years and females (n = 4) 65.5 ± 8.8 years.
There was no medical history or tobacco use data available for the cadavers that were used in this
study; only gender and age were known.

Mandibular alveolar bone samples showed significantly higher levels of Cd (0.06 ± 0.02 µg-Cd/g-bone
dry weight) as compared to basal bone samples (0.02 ± 0.01, p = 0.01) (Table 1). There was a large range in
Cd accumulation between samples (from <0.01 (limit of detection) to 0.26), however, when comparing
alveolar bone to basal bone Cd levels within each pair of samples from the same cadaver, there was a very
high correlation (p < 0.001) (Figure 3). Four values were below the limit of detection (<0.01 µg/g Cd dry
weight)—one subject in both alveolar and basal bone, and two in basal bone only.

Periodontal scores showed a correlation with alveolar bone Cd content but not to statistical
significance (p = 0.16). Periodontal scores correlated with basal mandible bone Cd content (p = 0.016)
(Figure 4). Only five subjects were scored from the first round of six cadavers. We could not reach
a consensus on the sixth subject, which scored between 3 and 4. Therefore, only five were included
and then none from the second round of six cadavers. It is important to note that the periodontal
scores from the cadavers were inconsistent because of limited access due to rigor mortis, fixation,
and desiccation of cadavers; so, while a statistically significant correlation was found between Cd
levels in basal bone and periodontal scores, further studies on live subjects are needed to determine if
this correlation is valid.
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Table 1. Cadmium content of human cadaver samples subdivided by bone type and gender.

Cadmium µg/g Dry Weight

Alveolar Bone n = 12 # 0.06 ± 0.02

Male n = 8 0.03 ± 0.01

Female n = 4 * 0.13 ± 0.05

Basal Bone n = 12 0.02 ± 0.01

Male n = 8 0.01 ± 0.01

Female n = 4 * 0.04 ± 0.02

Cortical n = 6 0.04 ± 0.01

Spongy n = 6 0.03 ± 0.01

Kidney Cortex n = 6 1.83 ± 0.45

Male n = 4 1.97 ± 0.50

Female n = 2 1.55 ± 0.03

A number sign (#) indicates significant differences between alveolar bone compared to basal bone (paired, two-tailed
t-test; p < 0.01). An asterisk (*) indicates significant differences (unpaired, two-tailed t-test; p ≤ 0.05) between male
and female. Collective basal and alveolar bone samples had an ‘n’ value of 12; male and female samples were 8 and
4, respectively. Kidney cortex had a total n value of 6 with only 2 samples from females so no statistical analysis was
performed. Data are mean ± SE.
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Figure 3. A significant and positive correlation exists in Cd content between pairs of alveolar and basal
mandible bone samples in human cadavers (n = 12). Four values were below the limit of detection
(<0.01 µg/g Cd dry weight)—one subject in both alveolar and basal bone, and two in basal bone only.
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In comparing cortical bone to spongy bone samples for Cd content, there was no statistical
difference between them (Table 1). There was no correlation between age and Cd levels in bone or
kidney cortex.

There was no apparent difference in kidney cortex Cd levels between male (1.97 ± 0.50; n = 4) and
female subjects (1.55 ± 0.03; n = 2). Only the first round of cadavers (n = 6) were analyzed for Cd in the
kidney cortex, since no apparent relationship was found between kidney cortex Cd levels and any
other measurable value (Table 1). In agreement with other reports [12], we found that the Cd content
of the kidney cortex was greater than 15-fold higher than that of bone samples.

4. Discussion

While the literature shows several studies relating the prevalence of periodontal disease to exposure
to environmental Cd (for a review, see [10]), this is the first study to examine the bioaccumulation
of Cd in the human mandible. Cd bone levels found in human mandible samples were in a similar
range to Cd levels found in transilliac bone biopsies on patients with end-stage renal disease [13].
Tissue Cd content reported here is per gram dry weight while several other authors have reported Cd
per gram tissue wet weight. The following equation is used to determine µg/g gram tissue wet weight
values: ((100 – % tissue water)/100) multiplied by µg/g tissue dry weight. The kidney has a higher
water content at approximately 75% compared to bone at 22%. Thus, the range of Cd in the kidney
cortex is 0.056 to 2.4 µg/g wet weight; this is a fairly low value considering the age of the individuals.
This would imply that individuals experience Cd exposure that is higher than that reported in the
current study, or those with occupational exposure would likely have an even higher risk of developing
periodontal disease [13]. While there was a great range in Cd accumulation between samples in this
study, it is notable that within each pair of samples, Cd levels in alveolar bone were significantly
greater than its paired basal bone sample (Figure 3).

Effects of Cd exposure on bone metabolism have been shown in several studies (for a review,
see [10]). These Cd effects can be direct as with changes in blood calcium regulatory hormones [7],
or osteotoxic effects on osteoblasts [8]. There is also evidence of indirect effects of Cd on bone. Cadmium
exposure in experimental animals has been shown to induce an immune response similar to that found
in diabetes, cardiovascular disease, and periodontal disease [14–20]. In addition, renal dysfunction
following Cd exposure may have secondary effects on bone health. In one epidemiologic study, Cd
exposure at a level not resulting in proximal tubule dysfunction did not change forearm bone mineral
density in post-menopausal women [21]; suggesting that Cd-induced renal dysfunction is required for
bone mineral density loss. On the other hand, the renal levels of Cd in the present study are relatively
low, well below the threshold level that is associated with the onset of kidney injury [12]. This issue
is confounded by the fact that no data was available regarding the history of kidney disease and Cd
exposure in the subjects. Further studies are needed to resolve these issues.

Initially, in this study, we set out to correlate the periodontal status of the cadaver subjects to Cd
accumulation. We did see a trend that showed higher Cd content in mandible samples correlated with
poorer periodontal scores (Figure 4), however, we found that data collection for periodontal scores
in this model were incomplete, inconsistent, and did not reflect live patients due to rigor mortis and
desiccation of gingival tissue. Although not ideal, the use of embalmed and non-embalmed human
cadavers to investigate periodontal disease and oral health has been reported [22,23].

Our results show significant gender differences in Cd levels in alveolar as well as basal mandibular
bone. This finding is remarkable considering the low ‘n’ values of the current data set. Others have
reported gender-specific differences on the potentially direct osteotoxic effects of Cd [7] as well as
mediators of bone metabolism [24]. In this study, it should be noted that all female cadavers were
assumed to be post-menopausal with an age range of 52 to 91 years. One explanation for this gender
difference is that women are more likely than men to be iron-deficient and this condition may result in
a greater Cd body burden over a lifetime [25,26]. However, no obvious gender difference was observed
in Cd levels in the kidney cortex in this study. This would suggest that while the body burden of Cd in
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the renal cortex is by far the greatest, Cd levels in the mandible bone are more reflective of factors,
such as iron status and other gender differences.

Considering that each of the paired samples showed greater Cd levels in alveolar bone than
basal bone, this would lead one to understand that Cd exposure affects alveolar bone differently than
basal bone, even in subjects with minimal Cd levels. Previous studies examining bone turnover in the
mandible have shown that alveolar bone is very dynamic because of the function of tooth support
and the periodontal ligament [27,28]. A study comparing proteoglycans content of alveolar bone
vs. basal bone in experimental rabbits showed significantly higher levels in alveolar bone, suggesting a
higher turnover of alveolar bone compared to basal bone, and alveolar bone being more metabolically
active [29]. Our finding of a greater accumulation of Cd in alveolar bone suggests that Cd may have
more direct osteotoxic effects in this bone as compared to other types of bone.

Further research is needed in the clinical setting to verify the results shown here that Cd exposure
is associated with periodontal disease and that these Cd effects on periodontal disease are due to direct
osteotoxic effects on the alveolar jawbone.
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