
toxics

Article

Chloroanisoles and Other Chlorinated Compounds in
Cork from Different Geographical Areas

Pau Salvatella 1,2, Chantal Prat 1, Jordi Roselló 1 and Enriqueta Anticó 2,*
1 Francisco Oller S.A., 17244 Cassà de la Selva, Spain; pausalvatellasureda@gmail.com (P.S.);

cprat@ollerfco.com (C.P.); jrosello@ollerfco.com (J.R.)
2 Department of Chemistry, University of Girona, 17003 Girona, Spain
* Correspondence: Enriqueta.antico@udg.edu; Tel.: +34-972-418-276

Received: 9 August 2019; Accepted: 17 September 2019; Published: 20 September 2019
����������
�������

Abstract: Cork quality is crucial for the fabrication of corks intended to be used to seal wine bottles.
This work has focused on the determination of chloroanisoles (CAs)—exogenous compounds with
a low perception threshold—in cork. The identification and quantification of these compounds
was carried out with Bond Elut-ENV solid phase extraction and gas chromatography with mass
spectrometry detection. Cork samples were obtained from oaks from Catalonia, Extremadura and
Italy, and the presence of CAs was evaluated. Moreover, cork affected by the presence of yellow stains
(a defect present in cork, mainly originated from the growth of the fungus Armillaria mellea) was
analysed separately. The results obtained from cork macerates revealed the presence of trichloroanisole
(TCA) in Catalan and Italian cork. Furthermore, TCA concentration was not statistically different
when comparing cork affected and non-affected by the growth of A. mellea. Other chlorinated
compounds were identified by comparison of their mass spectra with the data from the NIST library.
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1. Introduction

Cork is a natural material obtained from the outer bark of Quercus suber. It is mainly used for
the fabrication of cork stoppers employed in the wine industry for bottling. The main chemical
compounds of cork include lignin (~25%, w/w), suberin (~40%, w/w) and polysaccharides (~20%,
w/w) [1]. These compounds, forming a polymeric structure, accumulate in the cell wall of phellem
cells of cork forming a barrier that prevents the permeation of water and gases among others. Apart
from these more abundant components, cork contains small molecules (usually termed as extractives)
and minerals that can migrate to water solution or wine. Extractives include aliphatic, triterpenic
and phenolic molecules that contribute to the colour, flavour, astringency and bitterness of wines [2].
A special mention is devoted to the presence of chloroanisoles (CAs), bearing a very low perception
threshold. Trichloroanisole (TCA) gives cork and wine a pronounced musty/mouldy odour, this defect
being the origin of huge economical loses in the wine industry [3].

The use of chlorinated biocides in the forest or the washing procedures employing chlorine formerly
applied in the cork industry have been described as the most probable sources of chloroanisoles and
their precursors, chlorophenols. Álvarez-Rodríguez et al. reported the role of filamentous fungi in the
O-methylation of chlorophenols [4]. Moreover, cork can be attacked by fungi such as Armillaria mellea,
growing up into the bark of the tree, producing yellow stains and causing its death. A. mellea causes
chemical and physical changes in cork, being responsible for the production of off-flavours [5].

Furthermore, it has been shown that the geographical origin of cork has an important role in
its chemical properties. Conde et al. described the variability of the polyphenolic composition of
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Spanish cork from different provenances [6]. Jové et al. found significant differences for suberin and
holocellulose with respect to the bark layer when cork from different production areas was studied [7].

The control of the chlorinated compounds, in particular CAs, is performed with gas
chromatography (GC) using a selective detector such as the electron capture detector (ECD) or
mass spectrometry (MS) [8]. The separation of the molecules from the matrix is a very important issue
and several approaches have been developed. The soaking of the cork sample in a wine simulant,
white wine, or water is used for the determination of the releasable fraction. Once the chlorinated
compounds have been released in the aqueous matrix a preconcentration step is usually performed by
solid phase extraction (SPE) or solid-phase microextraction (SPME) [3,9]. On the contrary, if the total
concentration is sought, then an exhaustive solid–liquid extraction of cork is necessary, using apolar
solvents like hexane. These methods were recently revised by Tarasov et al. [10].

In the present study, we developed a SPE–GC–MS method for the determination of CAs in cork
samples. C18 cartridges were used and different experimental conditions (volume of sample, flow
rate, elution solvent) were tested to achieve the detection limit for the quantification of the compounds
in samples from different regions (Catalonia and Extremadura in Spain, and Italy). Moreover, cork
affected by A. mellea and cork obtained from the outer part of the bark were also analysed.

2. Materials and Methods

2.1. Chemicals and Reagents

Separate stock solutions of CAs were purchased from Institut Català del Suro, Palafrugell, Spain.
The concentration of the compounds was 100 µg·L−1, when prepared in methanol, and 100 mg·L−1,
when prepared in hexane. In Table 1, the chemical structures and some properties of the CAs studied
are presented.

Table 1. Structures, molecular weights and perception threshold of chloroanisoles in wines.

Structure Name
Average

Molecular
Weight

Perception Threshold
in Wine and Sensory

Attributes [11]
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n-Hexane (Panreac, Barcelona, Spain), dichloromethane (Romil, Leicestershire, United Kingdom)
and absolute ethanol (Honeywell, Barcelona, Spain) were pesticide residue grade.

Calibration standards were prepared by diluting stock solutions in hexane in the range of 5 to
35 µg·L−1. These solutions were directly injected into the GC–MS and the equations for the calibration
curves were y = 950x + 1675 (R2 = 0.998) for TCA, y = 1350x + 1644 (R2 = 0.999) for tetrachloroanisole
(TeCA) and y = 566x + 1126 (R2 = 0.997) for pentachloroanisole (PCA). The limits of detection (LODcal)
were 1.1, 0.4 and 1.5 µg·L−1 for TCA, TeCA and PCA, respectively, calculated for a signal-to-noise ratio
of three.

2.2. Cork Samples and Extraction

Cork bark samples (Table 2) were kindly supplied by Francisco Oller S.A., an important
manufacturer of cork stoppers in Spain. In each bark, parts with yellow stains were separated.
The outer surface of the bark was removed in some samples to compare its composition with the
inner cork.

Table 2. Origin and classification of each sample depending on whether they had yellow stains or not.
In cork samples labelled as C3NN, E3NN and I3NN, the outer cork part was removed.

Cork Origin Samples Classification Sample Code

Catalonia

Bark 1
Yellow Stains C1Y
No Yellow Stains C1N

Bark 2
Yellow Stains C2Y
No Yellow Stains C2N

Bark 3
Yellow Stains C3Y
No Yellow Stains
No Yellow Stains or Outer Bark

C3N
C3NN

Extremadura

Bark 1
Yellow Stains E1Y
No Yellow Stains E1N

Bark 2
Yellow Stains E2Y
No Yellow Stains E2N

Bark 3
Yellow Stains E3Y
No Yellow Stains
No Yellow Stains or Outer Bark

E3N
E3NN

Italy

Bark 1
Yellow Stains I1Y
No Yellow Stains I1N

Bark 2
Yellow Stains I2Y
No Yellow Stains I2N

Bark 3
Yellow Stains I3Y
No Yellow Stains
No Yellow Stains or Outer Bark

I3N
I3NN

For the preparation of the clean cork macerates, i.e., without CAs, cork discs were used. The absence
of CAs in the discs was previously checked.

Cork barks were milled to a ≤0.75 mm size with a ZM200 grinder (Retsch, Haan, Germany).
The detachable parts of the grinder were cleaned between samples with compressed air.

Forty grams of the sample were carefully weighed and placed in a 1000 mL glass bottle. Then, they
were extracted by adding 700 mL of hydroalcoholic solution ethanol/water (12% v/v ethanol) and left
in an oven at 40 ◦C for 72 h. An ethanol/water mixture was chosen as the extractive solution because of
its similarity to wine. Before the preconcentration and purification by applying SPE, the macerate was
gravity and vacuum filtered in order to eliminate the suspended particles of cork.
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The spiked macerates for the SPE evaluation were prepared by adding the appropriate volume of
methanolic solution of CAs.

2.3. SPE Procedure

Bond Elut-ENV SPE cartridges (polystyrene divinylbenzene polymer, 500 mg, Agilent) were
selected. The conditioning was carried out by applying 3 mL of methanol followed by 3 mL of 12%
(v/v) ethanol/water. Ethanol/water 12% (v/v) solutions containing known amounts of CAs were used
for the evaluation of the SPE procedure. The final SPE conditions were as follows: the sample was
loaded at a flow-rate of 20 mL min−1; afterwards, the sorbent was dried under vacuum for 6 min;
finally, elution of the analytes was carried out with 4 mL of hexane.

The eluate was concentrated with a gentle stream of nitrogen gas to a volume of 0.5 mL prior to
gas chromatography analysis.

Results obtained in the SPE evaluation were compared in terms of recovery, R (%), calculated
according to the following equation:

R(%) =
C f ×V f

Co ×Vo
× 100, (1)

where Co represents the spiked concentration of the hydroalcoholic solution or the cork macerate,
and Cf is the concentration obtained from the peak area and using the calibration curves shown
previously (Section 2.1). Vo and Vf are the volumes for the sample introduced in the SPE cartridges
and the final volume (0.5 mL) before the chromatographic analysis, respectively.

2.4. Gas Chromatographic Conditions

Gas chromatography analysis was performed with a Trace GC Ultra equipped with a Polaris Q ion
trap mass spectrometer (Thermo Scientific, Waltham, MA, USA) operating in the electron ionization
mode at 70 eV. Splitless mode injections (1 µL) using a Triplus AS autosampler (Thermo Scientific,
Waltham, MA, USA) were performed with the split valve opened at 1 minute. A BPX-5 capillary
column (SGE) (30 m × 0.25 mm i.d., film thickness 0.25 µm) was used and helium was the carrier gas at
1 mL·min−1. The operating conditions were: an injector temperature of 270 ◦C; the oven temperature
was programmed at 50 ◦C for 2 min, then increasing by 25 ◦C/min up to 110 ◦C and held for half a
minute, afterwards the temperature was increased again by 2.5 ◦C/min up to 170 ◦C, held for 2 min
and finally, increasing by 30 ◦C/min until 260 ◦C and held for 1 min. The ion source was set at 225 ◦C
and the transfer line was held at 280 ◦C. Electron ionization mass spectra were recorded in the range
m/z 40–300 amu (full scan mode). The chromatographic data were analysed by Xcalibur 1.4 software
(Thermo Scientific, Waltham, MA, USA). NIST MS Search 2.0 library was used for the identification
of compounds.

The following ions were selected for quantitative purposes: m/z = 210(75), 212(74) for TCA,
corresponding to the M and M + 2 isotopes; m/z = 229(81), 231(100), 246(84) for TeCA, where 229 and
231 correspond to loss of the methyl group from M and M + 2 isotopes, and 246 correspond to the M + 2
isotope of TeCA; and m/z = 265(99), 267(65) for PCA, corresponding to loss of the methyl group from
M + 2 and M + 4 isotopes. The theoretical relative intensity of the fragments is given in parenthesis.

3. Results and Discussion

3.1. SPE Method Development

C18 and polymeric sorbents have been successfully used in other investigations for the study of
CAs in wines [3,12]. Usually in SPE, after sorbent conditioning and sample loading, an intermediate
washing step is implemented to eliminate some of the interferences, before the elution of the compounds
of interest. The washing can be a critical stage since only the interfering compounds should be rinsed
through with the washing solutions while leaving the compounds of interest behind. In this study,
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we have assayed the direct elution of the analytes without a washing step that may cause losses of
the compounds of interest. Then, SPE was evaluated by testing different drying times, flow rates,
and sample volumes. As for the elution solvent, the use of hexane and dichloromethane was considered,
since both organic solvents have previously been used for the solubilisation of CAs from cork and
other matrices [13].

The recovery results for the different drying times tested are shown in Table 3. Fortified
hydroalcoholic solution (100 mL) with a concentration of 0.15 µg·L−1 for each compound was used,
and dichloromethane and hexane were both tested for the elution.

Table 3. Recoveries obtained from 100 mL of fortified hydroalcoholic solutions, by eluting them with
dichloromethane after a drying step of 1, 6 or 30 min.

Recovery (%)

1 min 6 min 30 min

Replicate 1 Replicate 2 Replicate 1 Replicate 2 Replicate 1 Replicate 2

TCA 51 48 49 44 40 40
TeCA 52 49 83 58 48 60
PCA 60 56 57 50 51 48

Considering the results obtained for the two replicates, similar recoveries were observed for the
dichloromethane elution at different drying times. In the case of hexane, 1 and 6 min were compared
and we found that for 1 min drying time, the recoveries of the three CAs were much lower (8%, 19%
and 44% for TCA, TeCA and PCA, respectively). The different behaviour observed between the two
solvents was probably due to there being water residues present in the sorbent when 1 min drying
time was applied. Hexane is a non-polar solvent with a lower tendency to mix with the remaining
water, and therefore a longer drying time should be applied. According to these results, a drying time
of 6 min was selected for further experiments.

Next, the influence of flow rate was tested at 10 and 20 mL·min−1. No difference in the recoveries
was found between the flow rates. Therefore, the higher one was selected as the most convenient in
terms of sample throughput.

Using the conditions previously mentioned, the results obtained for hexane and dichloromethane
were compared in Figure 1. Better results were achieved with hexane for TeCA and PCA. However,
recoveries for TCA were similar for both solvents. Taking into account these results, both hexane and
dichloromethane were used in the evaluation of the matrix effect.
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3.2. Matrix Effect and Quality Parameters of the Method

The matrix effect has been studied by comparing the recoveries of the target compounds when
using a spiked cork macerate. These macerates usually contain a higher amount of extractives like
sugars, phenolic compounds, terpenes and terpenoids, among others. These molecules can also interact
with the C18 sorbent of the SPE cartridge, decreasing the available sites for the retention of the CAs.
This would negatively affect the recoveries of the compounds and increase the method detection limits.
For that, we evaluated the matrix effect by comparing 100 and 500 mL of spiked cork macerate using
hexane or dichloromethane as eluents. The spiking level was 0.15 µg·L−1 for the 100 mL sample and
0.03 µg·L−1 for the 500 mL sample. The results are collected in Table 4.

Table 4. Recoveries for dichloromethane and hexane solvents, using fortified macerates of 100 and 500
mL. A flow rate of 20 mL·min−1 and a drying time of 6 min was used in all cases.

Recovery (%)

Dichloromethane Hexane

100 mL 500 mL 100 mL 500 mL

Replicate 1 Replicate 2 Replicate 1 Replicate 1 Replicate 2 Replicate 1 Replicate 2

TCA 60 27 16 69 37 28 30
TeCA 78 51 22 109 75 27 29
PCA 56 31 26 85 89 39 41

As can be seen, recoveries were largely decreased when the sample volume increased. Nevertheless,
in order to obtain the required detection and quantification limits (Table 5), the 500 mL samples were
used in the following studies. It is worth mentioning that the work of Soleas et al. was the only one
using SPE for the quantification of CAs in cork. They claimed that the recoveries were good, however
they used macerates obtained from whole cork stoppers and the contact time was shorter (48 h) [3].
These mild conditions made the matrix simpler than in our case.

Table 5. Limits of detection and quantification for the method described.

LOD (ng·L−1) LOD (ng·g−1) LOQ (ng·L−1) LOQ (ng·g−1)

TCA 4 0.07 10 0.2
TeCA 1 0.02 5 0.08
PCA 4 0.07 12 0.2

Taking into account the results in Table 4, the limit of detection (LOD) of the method was calculated,
by using the following equation:

LOD
(ng

L

)
=

LODcal
(ng

L

)
× 0.5·10−3L

0.5L
×

100
R

, (2)

where LODcal are the values reported in Section 2.1, and R are the recovery values obtained from
Table 4, using hexane for the elution and a 500 mL sample volume.

In Table 5 LODs are shown for the three CAs. The limit of quantification (LO) was calculated in a
similar manner as LODs but for a signal-to-noise ratio equal to 10.

It is worth mentioning that the values above are the same order of magnitude as the values found
in the work of Martínez-Uruñuela et al. [12] for wines. However, they are higher than the LOD reported
for TCA in Soleas et al. [3]. We believe that an appropriate washing step would improve the recovery
values and in turn decrease the LOD of the method.
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3.3. Results for the Samples of Different Geographical Origins

Using the previous method, the macerates obtained from corks of different origin were examined.
In Figure 2, a chromatogram for the sample C1N together with the chromatogram for a standard in
hexane are depicted. The presence of TCA in the cork sample was evidenced from the coincidence of
the retention time, and also from the isotope ratios in both spectra.
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Figure 2. (a) Extracted chromatogram (m/z 210,212,229,231,246,265,267) for a standard solution
(35 µg·L−1) prepared in hexane and directly injected into the GC; (b) extracted chromatogram
(m/z 210,212) for C1N cork macerate after applying the SPE method.

In Table 6, the concentrations of chloroanisoles found in samples without yellow stains are shown.
The calculation of the total concentration in the cork samples was performed using Equation (2) and
substituting the LODcal for the concentration obtained in the chromatographic analysis of the hexane
solution obtained after elution of the cartridge.

As can be observed, TCA was the only chloroanisole found in samples from Catalonia and Italy.
The cork samples from the three regions were free from TeCA and PCA. These results agree with the
sensory data reported from a sensory panel in the cork producer, being that the cork purchased from
Extremadura was the one that presented with a lower incidence of defects. These findings open a
window for new investigations that could be of paramount importance for ensuring the quality of cork
stoppers produced in the cork industry.

A comparison of TCA between cork samples with and without yellow stains is shown in Figure 3.



Toxics 2019, 7, 49 8 of 10

Table 6. Chloroanisoles found in cork samples without yellow stains from Catalonia (two replicates),
Extremadura and Italy in ng·g−1.

TCA TeCA PCA

Catalonia
Bark 1 0.9; 1.2 <LOD <LOD
Bark 2 0.4; 0.7 <LOD <LOD
Bark 3 - - -

Extremadura
Bark 1 <LOD <LOD <LOD
Bark 2 <LOD <LOD <LOD
Bark 3 <LOD <LOD <LOD

Italy
Bark 1 0.6 <LOD <LOD
Bark 2 0.2 <LOD <LOD
Bark 3 0.09 <LOD <LOD
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According to the results shown in Figure 3, no differences in TCA concentration were observed in
cork bark not affected by A. mellea and the corresponding cork presenting yellow stains. These results
indicated that the presence of TCA in cork probably had different origins apart from the microbial
activity of A. mellea. In the study of Rocha et al. [5], the authors conclude that cork affected by A. mellea
presented larger amounts of lignin-related derivatives. The possibility of their eventual chlorination
and transformation into CAs has currently diminished considerably because the use of chlorine is
avoided in the production of cork stoppers.

Finally, we investigated the presence of TCA in samples I3NN, C3NN and S3NN where the outer
part of the bark was removed. We found TCA concentration below the limit of quantification of the
method. Accordingly, it seems that the presence of CAs could be closely related to the presence of
these compound in the environment surrounding the forests, followed by the adsorption in the cork
bark. This hypothesis needs to be further investigated in the future.

3.4. Identification of Other Chlorinated Compounds

Some other chlorinated compounds were identified from the chromatographic data, by comparing
their mass spectra with the NIST library. These are represented in Table 7 together with their probability
of identification.
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Table 7. Chlorinated compounds identified in cork samples, m/z of the three most abundant fragments
with their theoretical relative intensity in brackets and the coincidence probability according to the
NIST library.

Identified Compound Positive
Samples

Coincidence
Probability

Most Abundant
Fragments

1,2,4,5-tetrachloro-3,6-dimetoxybenzene
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