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Abstract: Carbon nanotubes (CNTs) are one of the major types of nanomaterials that have various
industrial and biomedical applications. However, there is a risk of accidental exposure to CNTs in
individuals involved in their large-scale production and in individuals who use products containing
CNTs. This study aimed to evaluate the skin sensitization induced by CNTs using two alternative
tests. We selected single-wall carbon nanotubes and multi-walled carbon nanotubes for this study.
First, the physiochemical properties of the CNTs were measured, including the morphology, size,
and zeta potential, under various conditions. Thereafter, we assessed the sensitization potential of
the CNTs using the ARE-Nrf2 Luciferase KeratinoSens™ assay, an in vitro alternative test method.
In addition, the CNTs were evaluated for their skin sensitization potential using the LLNA: BrdU-FCM
in vivo alternative test method. In this study, we report for the first time the sensitization results of
CNTs using the KeratinoSens™ and LLNA: BrdU-FCM test methods in this study. This study found
that both CNTs do not induce skin sensitization. These results suggest that the KeratinoSens™ and
LLNA: BrdU-FCM assay may be useful as alternative assays for evaluating the potential of some
nanomaterials that can induce skin sensitization.

Keywords: skin sensitization; alternative to animal testing; KeratinoSens™; LLNA; nanomaterial;
CNT

1. Introduction

Carbon nanotubes (CNTs) are a major type of nanomaterial that is used for various industrial and
biomedical applications [1,2]. In recent years, with the growing number and production volume of
CNTs, concerns about their toxicity have also increased exponentially. Generally, nanomaterials are
defined as particles less than 100 nm in at least one dimension [3], which exhibit various physicochemical
properties associated with a nanostructure [4].

The various physicochemical characteristics of a nanomaterial are the major determinants of its
toxic potential [5,6]. In normal environmental conditions, nanomaterials are mostly poorly soluble;
however, some nanomaterials have shown to be soluble in lysosomal fluid or gastric fluid [7,8].
Dissolution of nanomaterials can cause toxicity due to the release of ions [9].

The major exposure pathways of nanomaterials are inhalation, ingestion, and absorption into the
skin. Absorption pathways within the skin can cause lesions, such as local inflammation, contact allergy,
and skin sensitization [10,11]. Recently, with an exponential increase in the cosmetic commercialization
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of nanomaterials and the safety concerns associated with them, the safety evaluation of nanomaterials
has gained importance [12]. In addition, in recent cosmetic tests, the importance of alternative test
methods is increasing due to concern about animal welfare and the 3R principles [13,14]. However,
as these guidelines are based on chemical substances, it is necessary to develop alternative test methods
that reflect the properties of nanomaterials.

The current knowledge on the chemical and biological mechanisms associated with skin
sensitization has been summarized in the form of an adverse outcome pathway, starting with
the molecular initiating event through intermediate events to the adverse effect, namely allergic contact
dermatitis [15]. The skin sensitization test, adverse outcome pathway (AOP), is largely classified into an
animal test and nonanimal test method. Nonanimal test methods include the direct peptide reactivity
assay (DPRA, key event 1) to confirm peptide reactivity, the ARE-Nrf2 Luciferase Test (KeratinoSens™,
key event 2), and the human Cell Line Activation Test (h-CLAT, key event 3) assay to evaluate the
sensitization of test substances using cell lines. Key event 4 (LLNA: DA, BrdU-ELISA, and FCM) is an
animal test method to evaluate the activation of mice lymph nodes to sensitizers [16–19].

According to a recent report, sensitization evaluation using several nanomaterials was performed,
and the applicability of these assays for testing the nanomaterials was evaluated [20,21]. However,
there is still a lack of information on the skin sensitization results of nanomaterials. Therefore, this
study was performed to evaluate the skin sensitization potential of two types of CNTs using the
ARE-Nrf2 Luciferase KeratinoSens™ and LLNA: BrdU-FCM assays.

2. Materials and Methods

2.1. Carbon Nanotubes

Single-wall carbon nanotubes (SWCNTs, product No. 704121) and multi-walled carbon nanotubes
(MWCNTs, product No. 698849) were purchased from Sigma-Aldrich (St Louis, MO, USA).
Their morphology was observed by transmission electron microscopy (TEM) (JEM-1200EX II, JEOL,
Tokyo, Japan) and the average diameter was calculated by measuring both CNTs using the ImageJ
software program ver.1.48. The zeta potential of the CNTs was measured using a Zetasizer-Nano ZS
instrument (Malvern Instruments, Malvern, UK) in different working solutions: Dulbecco’s modified
Eagle’s medium (DMEM; GIBCO, Grand Island, NY, USA) containing 1% heat-inactivated fetal bovine
serum (FBS; GIBCO) and N,N-dimethylformamide (DMF; Sigma-Aldrich, CASRN. 68-12-2) solution
containing 3% heat-inactivated mouse serum. The levels of endotoxin were evaluated using an
Endpoint Chromogenic Limulus Amoebocyte Lysate assay (Cambrex, Walkersville, MD, USA).

2.2. Preparation of CNT Suspensions

The suspensions of CNTs in media were prepared by slightly modifying a previously described
method [22,23]. Briefly, the CNT stock solutions were dispersed in distilled water (DW) and sonicated
at 40 kHz with a 100 W output power for 30 min in a bath-type sonicator (Saehan-Sonic, Seoul,
Korea). Thereafter, DMEM supplemented with 1% FBS was added to different working concentrations.
As CNTs cannot be converted into molar concentration, as determined in the test guideline 442D,
the test concentration was set based on the mass dose (µg/mL). In addition, the test concentration was
set through two preliminary tests to confirm the EC50 concentration of CNTs. In LLNA: BrdU-FCM
assay, CNT stock solution was dispersed in DW and sonicated at 40 kHz with a 100 W output power
for 30 min in a bath-type sonicator (Saehan-Sonic). Thereafter, a 3% serum equivalent of the final
volume was added to the initial dispersion and further dispersed for 30 min. Finally, DMF solution
was added to prepare a working solution (25, 50, and 100%).

2.3. Cell Culture

A transgenic keratinocyte cell line, with a stable insertion of the Luciferase reporter gene under
control of the ARE-element KeratinoSens™ cells, was provided from Givaudan Suisse SA (Vernier,



Toxics 2020, 8, 122 3 of 10

Switzerland). KeratinoSens™ cells were cultured in DMEM media supplemented with 10% FBS and
0.5 mg/mL Geneticin (G418; Sigma-Aldrich, St. Louis, MO, USA). The cells were sub-cultured every
3–4 days at 80–90% confluence for a maximum of 25 passages. For the assay, KeratinoSens™ cells
were seeded into a 96-well culture plate at a density of 1 × 104 cells/well. Then, the culture media
were replaced with fresh medium (DMEM supplemented with 1% FBS) and incubated in a humidified
atmosphere condition of 5% CO2 at 37 ◦C.

2.4. CNT Treatments and KeratinoSens™ Assay Methods

KeratinoSens™ cells were seeded into 96-well plates at a density of 1 × 104 cells/well and
incubated overnight to reach approximately 80% confluency. The cells were washed once with
pre-warmed DPBS (Gibco), followed by the addition of fresh medium containing single-wall carbon
nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) (0.05–1000 µg/mL), and the
plates were then incubated for 48 h. Positive control (cinnamic aldehyde, 4–64 µM) was tested
in parallel. The viability of the treated cells was measured using the thiazolyl blue tetrazolium
bromide (3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyl-tetrazolium bromide) assay reduction test (Promega,
Madison, WI, USA). To exclude colorimetric interference from CNTs present in the cells, the supernatant
was transferred into clear 96-well plates and the absorbance was measured at 570 nm with a microplate
reader (Tecan, Männedorf, Switzerland). The cell viability (%) was calculated based on the optical
density of the vehicle control and blank. Luciferase activity was measured using the One-Glo™
Luciferase assay kit (Promega). The luminescence intensity of each sample was measured using
a luminometer (Promega) and multi-microplate reader (Synergy 2, BioTek, Winooski, VT, USA).
Luciferase induction was calculated based on the luminescence values of the vehicle control and blank.

2.5. Animals

Female BALB/C mice (7 weeks old, Specific Pathogen Free) were purchased from ORIENT BIO
Inc. (Seongnam, Korea). Animals were kept at an animal facility in the Korea Ministry of Food and
Drug Safety (MFDS) and acclimated for at least six days before experiments. Mice were housed in a
relative humidity of 3-C70% at 22 ± 3 ◦C. This experiment was approved by the Institutional Animal
Care and Use Committee (IACUC) of MFDS (Approval number: MFDS-20-013c2; date: 23 April 2020).

2.6. CNTs Treatments and LLNA: BrdU-FCM Assay Methods

On days 1, 2, and 3, dispersed CNT suspension, vehicle, and positive control (25% hexyl cinnamic
aldehyde in AOO) were applied to the dorsal skin of each ear of the mouse at the same time-point.
The CNT suspensions were prepared fresh daily before application. On day 5, the mice were
intraperitoneally injected with 100 µL of BrdU solution (20 mg/mL). On day 6, the mice were sacrificed,
and their auricular lymph nodes were excised. Then, excised lymph nodes were mashed with a spatula
to prepare lymph node cells (LNCs). Isolated LNCs were counted using a hemocytometer after staining
with trypan-blue solution. The counted LNCs (1.5 × 106 cells/mL) were prepared, according to the
protocol provided in the manufacturer’s kit. The viable LNCs were counted and a total of 10,000
gated cells were analyzed using BD FACS CaliburTM flow cytometry (BD Biosciences, San Jose, CA,
USA), as previously described [24,25]. Stimulation index (SI) values were calculated using the formula,
as described in the OECD TG 442B guideline. If the SI value was 2.7 or above, the test materials were
classified as sensitizers.

3. Results

3.1. Physicochemical Characteristic of CNTs

Figure 1 shows the TEM images of SWCNTs and MWCNTs used in this study. The results
confirmed that both SWCNTs and MWCNTs had a size of less than 100 nm in one dimension.
The characteristics of CNTs are summarized in Table 1. Measurement of the zeta potential showed
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that all CNTs were negatively charged, with charge in distilled water (DW) and working solution.
The results of the Limulus Amoebocyte Lysate test showed that both SWCNTs and MWCNTs had
endotoxin levels that were lower than the limit of detection (0.1 U/mL).

Figure 1. Transmission electron microscopy images of the (A) single-wall carbon nanotubes (SWCNTs)
(bar = 20 nm) and (B) multi-walled carbon nanotubes (MWCNTs) (bar = 50 nm) in distilled water.

Table 1. Characteristics of SWCNTs and MWCNTs.

Characteristic
KeratinoSens™ LLNA: BrdU-FCM

SWCNT MWCNT SWCNT MWCNT

Average diameter (nm) 5.97 ± 1.48 12.30 ± 2.18 5.97 ± 1.48 12.30 ± 2.18
Average length (µm) 1 10 1 10
Surface area (m2/g) ≥700 216 ≥700 216

Zeta potential (mV)
in DW −27.40 ± 1.59 −34.99 ± 0.80 −27.40 ± 1.59 −33.99 ± 0.80

in working solution * −29.23 ± 1.79 −26.99 ± 3.07 −18.80 ± 0.93 −38.38 ± 1.41

CNT purity (%) ≥77 99 ≥77 99
Carbon purity (%) ≥90 ≥98 ≥90 ≥98

Endotoxin (EU/mL) <0.1

* The working solution was prepared with DW stock (1%) + DMEM, containing 1% FBS in KeratinoSens™ assay.
The working solution in LLNA: BrdU-FCM assay was prepared using DW stock (10%) + DMF, containing 3% mouse
serum. Data are expressed as mean ± SD, n = 6. SWCNTs = single-wall carbon nanotubes, MWCNTs = multi-walled
carbon nanotubes, DW = distilled water, EU = endotoxin, DMEM = Dulbecco’s modified Eagle’s medium, FBS = fetal
bovine serum, DMF = N,N-dimethylformamide.

3.2. Evaluation of CNTs in the KeratinoSens™ Assay

SWCNTs and MWCNTs were assessed for their skin sensitization potential using the
KeratinoSensTM assay (Table 2 and Figure 2). All CNTs did not induce the activity of the luciferase
reporter in contrast to the positive control (Figures 2 and 3). The EC1.5 value for both CNTs was
>1000 µg/mL, thus classifying it as a nonsensitizer. Cytotoxicity, IC50 values were found to be
234.98 µg/mL for MWCNTs and 185.90 µg/mL for SWCNTs.

Table 2. SWCNTs and MWCNTs evaluated in KeratinoSens™ assay.

Nanomaterials CAS RN Physical
Form

KeratinoSens™ Assay Results

Imax EC1.5
(µg/mL)

Cell Viability
(%) a

IC50
(µg/mL) Classification

SWCNT 308068-56-6 Solid 1.07 >1000 >70 185.90 Negative
MWCNT 308068-56-6 Solid 1.39 >1000 >70 234.98 Negative

a Cell viability (%) at EC1.5.
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Figure 2. The induction of luciferase activity (green line) and cell viability (black line) in the
KeratinoSensTM assay. KeratinoSensTM cells were treated with the (A) SWCNTs and (B) MWCNTs.
Data are expressed as mean ± standard deviation values (n = 6).

Figure 3. Luciferase activity (green line) and cell viability (black line) of positive control (cinnamic
aldehyde, CASRN. 14371-10-9) in KeratinoSens™ assay. Data are expressed as mean ± standard
deviation values (n = 6). Positive control (4–64 µM) was tested in parallel.

3.3. Evaluation of CNTs in the LLNA: BrdU-FCM Assay

SWCNTs and MWCNTs were assessed for their skin sensitization potential using the LLNA:
BrdU-FCM assay (Figures 4 and 5). Except for the positive control, no significant results were found at
any concentration in the CNTs. The SI values of SWCNTs and MWCNTs were less than 2.7, as calculated
by flow cytometry.
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Figure 4. SWCNT skin sensitization test results in LLNA: BrdU-FCM assay. The evaluation parameters
were as follows: (A) Body weight (g), (B) ear thickness (mm), (C) ear thickness (% of gain), (D) ear
weight (mg), (E) lymph node weight (mg), (F) lymph node cell (LNC) count (×107 cells), (G) BrdU
incorporation (%/10,000 cells), (H) total number of BrdU corporation (×107 cells), (I) stimulation index
(SI). Data are expressed as mean ± standard deviation values (n = 4).

Figure 5. MWCNT skin sensitization test results in LLNA: BrdU-FCM assay. The evaluation parameters
were as follows: (A) Body weight (g), (B) ear thickness (mm), (C) ear thickness (% of gain), (D) ear weight
(mg), (E) lymph node weight (mg), (F) LNC count (×107 cells), (G) BrdU incorporation (%/10,000 cells),
(H) total number of BrdU corporation (×107 cells), (I) stimulation index (SI). Data are expressed as
mean ± standard deviation values (n = 4).

4. Discussion

With the growing emphasis of the 3R principles of reduction, replacement, and refinement of
test animals, the use of test animals in toxicity studies in the recent international community has
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always been a major issue [13]. Animal alternative testing methods have been suggested by various
countries and institutions, including the European Union Reference Laboratory for Alternatives to
Animal Testing, Interagency Coordinating Committee on the Validation of Alternative Methods,
and Japanese Center for the Validation of Alternative Methods. Various studies are being carried out
on this subject, and the OECD has approved, enacted, and distributed guidelines for alternative test
methods. The OECD TG 442 guidelines can be classified into four key events as follows: Key events 1:
Molecular initiation event; key events 2, 3: Cellular response; and key events 4: Organ response based
on AOP inducing skin sensitization (Figure 6).

Figure 6. Overview of skin sensitization adverse outcome pathway (AOP).

The most basic step to induce skin sensitization depends on the ‘immunogenicity’ of the substance.
Nanomaterials are of solid form but have a very small size compared to bulk materials. One dimension
has a size of less than 100 nm, and these substances have the potential to induce an immune response
through “Haptenation” by binding to carrier proteins in the physiological environment. The CNT used
in this study is a substance that is mentioned as an adjuvant candidate and has the potential to induce
an immune response by binding to a carrier protein [26]. In addition, it has been reported that when
exposed to the body, it penetrates into tissues and induces persistent inflammatory cytokines, as well
as a tendency to attract inflammatory cells and lymphocytes to the inflammatory site [23]. Therefore,
in order to evaluate the skin sensitization potential of CNTs, we evaluated, by adopting key events 2
and 4, the method of confirming cellular response and organ response in skin sensitization AOP.

The accuracy of the KeratinoSens™ assay for identifying sensitizers was shown to be 77% (155/201),
with a sensitivity of 78% (71/91). In addition, laboratory-to-laboratory reproducibility has been reported
to be approximately 85% [27,28]. Although there are restrictions on testing for insoluble substances,
some research cases have proven that these substances can be evaluated [29,30]. The LLNA: BrdU-FCM
test method uses animals, and previously reported studies have suggested the possibility of evaluating
nanomaterials. Park et al. conducted an LLNA test using titanium nanomaterials and reported that
titanium did not induce sensitization [20].

The two types of CNTs used in our study are insoluble in most solvents and have the characteristic
to easily form aggregates. As the major toxicity indicator of nanomaterials, proper dispersion is very
important in predicting accurate toxicity, and hence, homogeneous dispersion in solvents is important.
We used serum protein to improve the dispersion of CNTs in both tests [31]. In the in vitro test,
dispersion was induced using the FBS component contained in the medium. In particular, the mouse
serum, as a nanomaterial dispersant used in animal tests, not only induces improvement in large
aggregation when inactivated serum obtained from the same species/line was used, but also proved
that there were no side effects caused by the serum [32,33].

We report for the first time the sensitization results of CNTs using the KeratinoSens™ and
LLNA: BrdU-FCM test methods in this study. In summary, the skin sensitization results for both
SWCNTs and MWCNTs, using the two alternative tests, were negative. In our study, IC50 results were
established for the KeratinoSensTM test for the first time, which was established based on the mass dose.



Toxics 2020, 8, 122 8 of 10

Cytotoxicity by CNTs is primarily influenced by physical factors related to size such as aspect ratio
and length. Asbestos-like forms of CNTs can cause incomplete phagocytosis and induce the formation
of granulomas in the mouse pleura through persistent lymphocyte recruitment and cytokine induction
in the chronic inflammatory stage [23]. In our study results, it was observed that SWCNTs induced
a higher cytotoxicity than MWCNTs at the same concentration. SWCNTs with thinner diameters at
smaller lengths appear to induce high cytotoxicity.

In addition, this study is the first alternative test case of SWCNTs evaluated using mice. Ema et al.
performed the traditional skin sensitization test, guinea pig maximization test (GPMT), to evaluate
CNTs, and reported SWCNTs and MWCNTs as the final nonsensitizing substance [34]. In addition,
MWCNTs were evaluated as substances that do not induce sensitization in LLNA tests using mice [35,36].
There are currently a wide variety of types of carbon nanotubes, but in this study, two types of nanotubes
were used only. In order to ensure the safety of commercialized CNTs, it will be necessary to accumulate
data through more studies.

5. Conclusions

In this study, we report for the first time the sensitization results of CNTs using the KeratinoSens™
and LLNA: BrdU-FCM test methods in this study. This study found that both SWCNTs and MWCNTs
do not induce skin sensitization for in vitro and in vivo levels. These results suggest that the ARE-Nrf2
Luciferase KeratinoSens™ and LLNA: BrdU-FCM assay may be useful as alternative assays for
evaluating the potential of some nanomaterials that can induce skin sensitization. Further studies
are needed evaluate the sensitization of nanomaterials more accurately. In addition, it is necessary to
establish skin sensitization guidelines for specific nanomaterials based on various studies.
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LLNA Local lymph node assay
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