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Abstract: Interspecies correlation estimation (ICE) models are linear regressions that predict toxicity
to a species with few data using a known toxicity value in a surrogate species. ICE models are
well established for estimating toxicity to fish and aquatic invertebrates but have not been gener-
ally developed or applied to soil organisms. To facilitate the development of ICE models for soil
invertebrates, a database of single chemical toxicity values was compiled from knowledgebases and
reports that included 853 records encompassing 192 chemicals and 12 species. Most toxicity data
for single chemicals tested in soil media were for species of earthworms, with only limited data
for other species and taxa. ICE models were developed for eleven separate species pairs as least
squares log-linear regressions of acute toxicity values of the same chemicals tested in both the surro-
gate and predicted species of soil organisms. Model uncertainty was assessed using leave one out
cross-validation as the fold difference between a predicted and measured toxicity value. ICE models
showed high accuracy within order (e.g., earthworm to earthworm), but less prediction accuracy
in the two across-taxa models (Arthropoda to Annelida and the inverse). This study provides a
proof-of-concept demonstration that ICE models can be developed for soil invertebrates.
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1. Introduction

Interspecies correlation estimation (ICE) models predict toxicity to a species with
limited data using a known toxicity value in a surrogate species [1]. The need to evaluate
a rapidly growing number of chemicals and efforts to reduce or replace animal testing
have increased the need and use of computational toxicity estimation methods, such as ICE
models [2]. Most ICE models have been developed as simple linear regressions of acute
toxicity values of the same chemicals tested in both the surrogate and predicted species [3].
An extensive technical basis exists for aquatic ICE models including database curation,
model validation, comparison to water quality standards, and use in supplementing the
taxa diversity of species sensitivity distributions (e.g., Dyer et al. [4]; Awkerman et al. [5]).
Suites of ICE models are currently available for fish and aquatic invertebrates, algae, and
terrestrial wildlife on the internet platform Web-ICE (www3.epa.gov/webice/), as well
as in the literature. Aquatic ICE models are increasingly being used or considered for
ecological risk assessment and regulatory applications [2,6,7].

ICE models for soil invertebrates and plants have not been previously available, de-
spite the ecological significance of soil dwelling organisms, and the increasing knowl-
edge base on the toxicity of chemicals to soil organisms. Common soil invertebrate
test species include earthworms (e.g., Eisenia andrei) and springtails (Collembola; e.g.,
Folsomia candida) [8]. The availability of standardized test methods for some soil inver-
tebrates, such as earthworms (e.g., OECD [9]), could allow many toxicity studies to be
performed in a consistent manner. However, the variety of options for acute testing condi-
tions that are recommended within and across species has resulted in inconsistent testing
that makes combining data from multiple studies challenging. For example, acute toxicity
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tests with earthworms can be performed using a 2-day contact toxicity test or a 7–14 day
soil exposure.

The objective of the current study was to assess the feasibility of developing ICE
models for soil invertebrates to allow for extrapolation between different species and taxa
of soil dwelling organisms. Single chemical toxicity data were compiled from the US EPA
and simple least squares log-linear regression ICE models were developed as a proof of
concept demonstration that ICE models can be developed for soil invertebrates.

2. Materials and Methods
2.1. Data Compilation

Acute toxicity data for soil invertebrates were obtained from the ECOTOX
knowledgebase (https://cfpub.epa.gov/ecotox/; downloaded May 2021), Standartox
(http://standartox.uni-landau.de/; downloaded May 2021) [10], and compilations of
screening values [11]. The search parameters used to obtain data from ECOTOX and
Standartox are included in the Supplementary Materials (Table S1). The ECOTOX knowl-
edgebase, in particular, is a comprehensive database of toxicity values taken primarily
from peer-reviewed literature that is reviewed and systematically updated quarterly. Both
lethal concentration 50% (LC50) values and lowest observed effect concentrations (LOECs)
for mortality were compiled and analyzed separately. Toxicity values were filtered to
include only data from experiments that used standard acute soil toxicity test durations
(1 day for C. elegans, 14 days for earthworms and springtails), endpoints expressed in or
convertible to mg/kg soil, and species that had data for at least 3 chemicals. Due to limited
data availability, toxicity values for species at any life stage were used and data were not
standardized for soil type or environmental conditions (e.g., pH, moisture). All compounds
were analyzed as the chemical form originally reported (e.g., metal salts were not converted
to toxicity of the elemental form). The resulting toxicity database included 853 records
encompassing 197 chemicals and 12 species (Table 1). Prior to model development, species
mean acute values (SMAVs) were calculated as the geometric mean of toxicity values (LC50
or LOEC) for each endpoint, species, and chemical. SMAVs were then used in ICE models.

Table 1. Summary of compiled soil invertebrate toxicity values from single chemicals tested in soil medium.

Endpoint Common Name Taxa Species Number of
Chemicals

LC50

Earthworm Annelid Eisenia andrei 35

Earthworm Annelid Eisenia fetida 162

Earthworm Annelid Lumbricus rubellus 15

Earthworm Annelid Lumbricus terrestris 26

Nematode Nematode Caenorhabditis elegans 10

Pot worm Annelid Enchytraeus albidus 3

Springtail Arthropod Heteromurus nitidus 5

Woodlouse Arthropod Porcellionides pruinosus 3

LOEC

Earthworm Annelid Allolobophora tuberculata 9

Earthworm Annelid Eisenia andrei 24

Earthworm Annelid Eisenia fetida 26

African
Earthworm Annelid Eudrilus eugeniae 9

Earthworm Annelid Lumbricus rubellus 14

India Blue
Earthworm Annelid Perionyx excavatus 9

Springtail Arthropod Folsomia candida 9

Springtail Arthropod Heteromurus nitidus 4

https://cfpub.epa.gov/ecotox/
http://standartox.uni-landau.de/
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2.2. Model Development

ICE models were developed using least squares log-linear regression, as described by
Raimondo et al. [3], by pairing toxicity values by chemical between the surrogate species and
predicted species [3]. ICE models describe the relationship of chemical sensitivity between
two species by the equation Log10(Predicted Toxicity) = a × Log10(Surrogate Toxicity) + b [3].
For the soil invertebrate ICE models, Predicted toxicity was the SMAV of the species with
unknown chemical toxicity, Surrogate Toxicity was the SMAV of the surrogate species, a was
the slope of the regression line, and b was the intercept of the regression.

Models were developed separately for SMAVs derived from LOEC and LC50 data.
A separate model was developed for each potential pair of species that had data for the
same endpoint for at least three common chemicals. The R2 and mean square error (MSE)
of each model were calculated as a measure of model fit and model error, respectively. All
models were developed using the stats package in R.

2.3. Model Prediction Accuracy

Significant models (p < 0.05) that had at least four data points were evaluated using
leave-one-out cross validation (LOOCV), which has previously been employed for evaluat-
ing model accuracy [3,12]. In LOOCV, one data point is removed from the dataset. Then,
a new model is built with the remaining values and used to predict the removed value.
This was systematically reiterated for each Predicted toxicity value in each model. LOOCV
analysis was conducted using the caret package in R [13]. The fold differences of removed
values were calculated by dividing the non-transformed estimated value by the actual
value or vice versa, if the latter was larger. The percentage of estimates that fell within
5-fold of the actual value was calculated for each model and used as a prediction success
rate. As mentioned in Willming et al. [12], values within 5-fold of each other are within the
range of interlaboratory variation.

3. Results
3.1. Within-Taxa Models

Available data allowed for the development of within-taxa models between earthworm
species (same Order: Opisthopora). Using least-squares log-linear regression, a total of
3 significant (p < 0.05) model pairs were developed using LC50 data (out of 7 pairs total)
(Table 2) and 6 significant (p < 0.05) models were developed using LOEC data (out of 14
total) (Table 3). LOOCV analysis determined that within-species models predicted removed
values within 5-fold of the actual toxicity value 99% of the time and 97% of the time when
using LC50 values and LOEC values, respectively.

3.2. Across-Taxa Models

Only two across-taxa models (different Phylums) were significant (p < 0.05). Models
were between Folsomia candida (Phylum: Arthropoda, Class: Collemobola) and Eisenia
fetida (Phylum: Annelida, Class: Clitellata) (Table 4). LOOCV analysis determined that
across-taxa models predicted removed LOEC values within 5-fold of the actual toxicity
value 62.5% of the time, on average.
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Table 2. Significant within-taxa models (same Order: Opisthopora) using single chemical median lethal concentration
(LC50) data for soil invertebrates. Model parameters included intercept, slope, and R2, the model p-value, mean square
error (MSE), and the total number of data points (n). The cross-validation within 5-fold describes the prediction success rate,
or percentage of estimated toxicity values from leave one out cross validation that were within 5-fold of the measured LC50
value. Numbers in the left-most column indicate model pairs which use the same two species, alternating which is used as
the surrogate.

Model
Pair

Predicted
Species
(y-axis)

Surrogate
Species
(x-axis)

Intercept Slope R2 p-Value MSE n
Cross-

Validation
within 5-Fold

1
Eisenia andrei Eisenia fetida 0.37 0.72 0.63 4.50 × 10−5 0.20 19 100%

Eisenia fetida Eisenia andrei 0.34 0.88 0.63 4.50 × 10−5 0.24 19 100%

2
Eisenia fetida Lumbricus terrestris 0.97 0.60 0.36 3.07 × 10−3 0.28 22 100%

Lumbricus terrestris Eisenia fetida 0.96 0.60 0.36 3.07 × 10−3 0.28 22 100%

3
Eisenia andrei Lumbricus terrestris 0.34 0.72 0.39 3.03 × 10−2 0.42 12 100%

Lumbricus terrestris Eisenia andrei 1.09 0.54 0.39 3.03 × 10−2 0.32 12 91.67%

Table 3. Significant within-taxa models (same Order: Opisthopora) using single chemical lowest observed effect concentra-
tion (LOEC) data. Model parameters included intercept, slope, and R2, the model p-value, mean square error (MSE), and
the total number of data points (n). The cross-validation within 5-fold describes the prediction success rate, or percentage of
estimated toxicity values from leave one out cross validation that were within 5-fold of the measured LOEC value. Numbers
in the left-most column indicate model pairs which use the same two species, alternating which is used as the surrogate.

Model
Pair

Predicted Species
(y-axis)

Surrogate Species
(x-axis) Intercept Slope R2 p-Value MSE n

Cross-
Validation

within 5-Fold

1
Eudrilus euganiae Eisenia fetida −0.07 1.09 0.60 8.77 × 10−3 0.26 10 90%

Eisenia fetida Eudrilus euganiae 1.00 0.55 0.60 8.77 × 10−3 0.13 10 100%

2
Eudrilus euganiae Allolobophora

tuberculata –0.27 1.04 0.96 4.48 × 10−6 0.02 9 100%

Allolobophora
tuberculata Eudrilus euganiae 0.35 0.92 0.96 4.48 × 10−6 0.02 9 100%

3
Perionyx excavatus Eisenia fetida 0.27 0.94 0.58 1.03 × 10−2 0.21 10 90%

Eisenia fetida Perionyx excavatus 0.83 0.62 0.58 1.03 × 10−2 0.14 10 100%

4
Eisenia fetida Allolobophora

tuberculata 0.59 0.67 0.74 1.50 × 10−3 0.09 10 90%

Allolobophora
tuberculata Eisenia fetida 0.06 1.09 0.74 1.50 × 10−3 0.14 10 90%

5
Perionyx excavatus Allolobophora

tuberculata 0.09 0.90 0.95 7.88 × 10−6 0.02 9 100%

Allolobophora
tuberculata Perionyx excavatus 0.03 1.05 0.95 7.88 × 10−6 0.02 9 100%

6
Eudrilus euganiae Perionyx excavatus –0.31 1.13 0.96 2.84 × 10−6 0.02 9 100%

Perionyx excavatus Eudrilus euganiae 0.36 0.86 0.96 2.84 × 10−6 0.01 9 100%
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Table 4. Significant across-taxa models (different Phylum) using lowest observed effect concentration (LOEC) data. Model
parameters included intercept, slope, and R2, model p-value, mean square error (MSE), and the total number of data points
(n). The cross-validation within 5-fold describes the prediction success rate, or percentage of estimated toxicity values from
leave one out cross validation that were within 5-fold of the measured LOEC value. Numbers in the left-most column
indicate model pairs which use the same two species, alternating which is used as the surrogate.

Model
Pair

Predicted Species
(y-axis)

Surrogate Species
(x-axis) Intercept Slope R2 p-Value MSE n

Cross-
Validation

within 5-Fold

1
Folsomia candida Eisenia fetida 0.85 0.47 0.93 3.37 × 10−2 0.04 4 50%

Eisenia fetida Folsomia candida –1.55 2.00 0.93 3.37 × 10−2 0.15 4 75%

4. Discussion

The current study was a proof-of-concept demonstration that ICE models can be
developed for soil invertebrates. ICE models showed high prediction accuracy within the
Order Opisthopora (i.e., earthworm to earthworm), but lower accuracy in the two across-
taxa models (Arthropoda to Annelida and the inverse). These initial results are similar to
observations of ICE model extrapolation in aquatic species, where increasing taxonomic
distance results in less prediction accuracy and generally greater uncertainty [12,14]. The
soil invertebrate ICE models were developed with compounds from multiple chemical
classes, which can reduce model accuracy for pairs of species with limited taxa relatedness.
Research with aquatic toxicity ICE models has shown that across-taxa predictions can be
improved by developing models using only compounds with the same mode of action
(MOA) and same structural class [3]. Additional data would be needed to develop a suite
of single chemical class-specific models and to more comprehensively explore whether
these models could improve cross-taxa extrapolation in soil invertebrates, but were not
available in the explored databases.

Soil invertebrate toxicity data used in this study were not curated beyond acute
toxicity endpoint and were not standardized for test conditions, which can result in greater
uncertainty in ICE models and lower prediction accuracy [15]. Although toxicity values
from knowledgebases such as ECOTOX are typically used without further curation in
environmental toxicology applications, it can lead to greater uncertainty and less prediction
accuracy in model development [10,15,16]. For example, Hrovat et al. [17] reported orders
of magnitude variability in fish acute toxicity values and incomplete records in nearly
70% of the 4654 ECOTOX records assessed. Toxicity data in the current study were not
standardized for soil type, which can substantially influence species sensitivity of soil
organisms, particularly for ionizable chemicals, such as metals, and phenolics affected by
pH and clay content [18]. However, the availability of standardized test methods should
provide for datasets of more consistently collected toxicity data (e.g., OECD [9]). Future
research should determine if standardization for soil chemistry and physical properties
would reduce uncertainty in interspecies extrapolation modeling, particularly for species
pairs with large taxonomic distance.

One surprising aspect of this study was the generally limited toxicity data for soil
invertebrates from single chemicals tests in soil media. Additional data for single chemical
tests are available as short-term contact toxicity tests, but these were excluded from the
current study because of apparent lack of ecological relevance to soil exposures. Bioassays
of field collected samples are more routinely collected as part of contaminated site assess-
ments (e.g., Reinecke et al. [19]; Fründ et al. [20]), but single chemical test data appear to
be rarely reported based on current knowledgebase searches. Earthworm tests dominate
the soil toxicity data from the comprehensive ecotoxicity databases used for source data,
with few data for other taxa. Given their ecological importance and prevalence of soil
contamination globally, the availability of additional toxicity data for soil invertebrates
is critically needed and would allow for the expanded development of ICE models and
application in ecological assessments. In particular, toxicity data for a wider diversity of
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species may benefit the development of benchmark values, such as ecological soil screening
levels (EcoSSL), by better representing soil ecosystem biodiversity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9100265/s1, Table S1: Summary of search parameters used in the ECOTOX knowledge-
base and Standartox databases to obtain toxicity values for use in this study. Spreadsheet S1: Soil ICE
database which includes all toxicity data used in this study.
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