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Abstract: Wuhan was locked down from 23 January to 8 April 2020 to prevent the spread of the
novel coronavirus disease 2019 (COVID-19). Both public and private transportation in Wuhan and its
neighboring cities in Hubei Province were suspended or restricted, and the manufacturing industry
was partially shut down. This study collected and investigated ground monitoring data to prove that
the lockdowns of the cities had significant influences on the air quality in Wuhan. The WRF-CMAQ
(Weather Research and Forecasting-Community Multiscale Air Quality) model was used to evaluate
the emission reduction from transportation and industry sectors and associated air quality impact.
The results indicate that the reduction in traffic emission was nearly 100% immediately after the
lockdown between 23 January and 8 February and that the industrial emission tended to decrease
by about 50% during the same period. The industrial emission further deceased after 9 February.
Emission reduction from transportation and that from industry was not simultaneous. The results
imply that the shutdown of industry contributed significantly more to the pollutant reduction than
the restricted transportation.

Keywords: air quality; COVID-19; emission inventory; WRF-CMAQ model; sensitivity analysis;
restriction policy

1. Introduction

China has experienced severe and persistent air pollution in the past decade as a side
effect of rapid economic development. The urbanization and industrialization in China
not only consume a large amount of energy but also cause air pollution problems in the
cities [1,2]. The concentrations of both particles (fine particulate matter less than 2.5 µm
in diameter (PM2.5) and 10 µm in diameter (PM10)) and gaseous pollutants (e.g., sulfur
dioxide (SO2), nitrogen oxide (NOx), and carbon monoxide (CO)) in Chinese cities have
been significantly above the World Health Organization’s (WHO) recommended annual
average in recent years [3]. For instance, the average levels of PM2.5 were five times higher
than the WHO standard in 58 Chinese cities in 2013 [3,4].

Energy consumption, especially coal-based power that accounts for roughly 67%
of the total energy, is the main source of anthropogenic emissions in China [5]. The
burning of fossil fuel in the power sector pollutes the air heavily by SO2, NOx, and PM2.5,
contributing roughly 33%, 33%, and 6% of the country’s total emissions of SO2, NOx, and
PM2.5, respectively [6,7]. As a result of rapid industrialization, the industry sector holds
a large share in the energy consumption structure and is one of the main contributors to
the air pollution in China [8]. Meanwhile, vehicle density has significantly increased and
vehicle exhaust has also aggravated Chinese air pollution [5]. Air pollution poses a major
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threat to health and climate [9–11]. To control the air pollution, Chinese authorities have
already spent tremendous efforts and issued policies to limit the emissions from the power,
industry, and transportation sectors [12], but it is hard to compensate for the effects of the
economic growth and increasing usage of fossil fuel.

Wuhan is one of the metropolises and the most populous city in Central China as
well as the capital of Hubei Province. It is located at the junction of the Yangtze River and
Hanjiang River, functioning as an important transportation hub and industrial center. The
industrialization and commercial trade inside and outside the city brought Wuhan a fast
growth in GDP, which was 7.8% in 2019 and 1.7% higher than the national average [13].
However, the rapid economic development also causes air quality problems around Wuhan.
Research showed the annual PM2.5 concentrations were 106.5 to 114.9 µg m−3, with sulfate,
nitrate, ammonium, and organic matter as dominant components in 2013. The peak value of
air pollution occurred in December as a result of increased local emissions, low temperature,
low wind speed, and high atmospheric pressure. The emissions from industrial activities
accounted for 34% of secondary particulate matter, 57% of primary dust, and 45% of total
SO2 emissions in Wuhan [14].

The novel coronavirus disease 2019 (COVID-19) is an infectious disease caused by
SARS-CoV-2, breaking out in December 2019 [15,16], which has spread globally. To prevent
the spread of virus, countries around the worlds adopted different approaches. Towns
and cities were locked down and large gatherings were banned. Restrictions on traffic
were imposed in a few countries, such as China, India, and Iran [17–21]. Many non-
essential human activities were also limited. The air quality was improved during the
worldwide lockdown as a result of the reduced polluting source, related to less human
activity. Reduced aerosol pollution was reported in India, Italy, the UK, etc. [17–22]. The
gaseous pollution, such as NOx, was also reduced worldwide [23]. To control the spread
of the coronavirus and quarantine the identified epicenter of the outbreak, Wuhan, the
Chinese authorities announced the lockdown of Wuhan city on 23 January 2020. All public
transportation was suspended to cut off the impact of the disease outside the city, including
buses, railways, highways, flights, and ferry services. The Wuhan airport, railway station,
and metro station were closed. The citizens of Wuhan were not allowed to leave the
city without permission from the authorities [24]. The lockdown was further applied to
16 neighboring cities in Hubei Province, such as Huanggang, Xiaogan, and Suizhou. Traffic
restrictions were also applied in the quarantined cities. The manufacturing industry was
impeded by the lockdown. Wuhan has large-scale industrial clusters in the electronics,
automotive, and pharmaceutical fields. The lockdown exerted a significant impact on the
production process and product delivery.

The lockdown of Wuhan and surrounding cities provided an unintended experimental
condition under which to investigate the influences of emissions from different sectors, e.g.,
traffic and industry, by completely or partially removed emissions. A few studies showed
that the air pollution level declined during the lockdown period [25–30]. The air pollution
reduction can be visualized from measurements by the China National Environmental
Monitoring Network [31]. However, the measurements only provide total concentrations of
pollutants, not detailed information that can be used to explore the reason for air pollution
reduction, such as the sector-specific contribution to the air pollution.

Air quality modeling is a powerful tool for reproducing and predicting air pollution
at diverse scales. There are multiple applications of numerical models, such as analysis
of physical processes [32–34], pollution forecasts [35–38], sensitivity analyses [39–41], and
inverse modeling [42–49]. While the observations can only provide limited information
on air pollution, the air quality model can be used as an analytical tool for supplementing
the details. For instance, the model-based source apportionment method can be used to
analyze the contributions of different sectors to air pollution [50]. Sensitivity analysis can
be conducted to estimate the change in pollutant concentrations associated with the change
in emissions.
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This study analyzed the influence of the lockdown of Wuhan city on the local air
quality. The contributions of transportation and industry sectors were calculated based
on air quality model analyses. The change in air pollution in Wuhan was discussed by
comparing the simulation results and the measurement data from ground stations.

2. Data and Methods
2.1. Air Quality Monitoring Data

The measurement data were collected from the stations of the China National Envi-
ronmental Monitoring Network. The Monitoring Network offers an air quality index (AQI)
as well as hourly and daily average concentrations of PM2.5, PM10, SO2, NO2, and CO
at different locations in China from 2014 to the present. Figure 1a shows the geograph-
ical locations of the 10 monitoring stations in Wuhan, with the distance of about 10 km
between each other. Since the monitoring stations are close, the observational data did
not vary abruptly from each other. The standard deviations of pollutant concentrations
among the 10 stations were relatively small, and the temporal trends of pollutant con-
centrations were similar. For instance, the standard deviations were around 10.3 µg/m3,
8.0 µg/m3, 1.4 µg/m3, 8.4 µg/m3, and 0.2 mg/m3 for PM2.5, PM10, SO2, NO2, and CO
during 10 January and 15 February. Data from the Tianhe observation station were close to
the mean concentration recorded by the 10 stations and therefore were representative. The
type of monitoring station was the urban traffic station. Table 1 shows the measurement
methods and the pollution limits according to China’s ambient air quality standards GB
3095–2012. Satellite data can also be used to compare the air quality before and after the
lockdown. Additional satellite data are given in the Supplementary Materials.

Table 1. Measurement methods and the upper limit concentrations of pollutants.

Pollutants Measurement Method
Upper Limit Concentration(µg/m3)

24-h Average
1st Class 2nd Class

PM2.5
tapered element oscillating microbalance /

Beta-ray method 35 75

PM10
tapered element oscillating microbalance /

Beta-ray method 50 150

SO2

UV fluorescence analyzer /
differential optical absorption

spectroscopy
50 150

NO2

chemiluminescence analyzer /
differential optical absorption

spectroscopy
80 80

CO Non-dispersive infrared
absorption method 4000 4000

The impact of lockdown was investigated using the observations. Meanwhile, model
simulations (Section 2.3) were also validated by comparing with the observations, and
more detailed information was analyzed using the simulations.

2.2. Significance Test

Before analyzing the impact from different sectors on air pollution, it is necessary
to perform the significance tests and examine the changes of pollutant concentrations
(PM2.5, PM10, SO2, NO2, and CO) before and after the lockdown based on the ground
measurements.

The Mann–Kendall test is a non-parametric test for identifying trends in time series
data. It is widely employed in analyses of environmental, meteorological, and hydrological
data. The test compares the relative magnitudes of sample data rather than the data
values themselves [51]. The data applied in the Mann–Kendall test can be any particular
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distribution and do not need to be normally distributed. Moreover, the test is tolerant of
non-detected data by assigning them a common value that is smaller than the smallest
measured value in the data set. The temporal data sequence should consist of one data
point for a certain time period.

The Mann–Kendall statistic, S, is normally distributed. The calculation of S is shown
in Equation (1). The initial value of S is set to be 0. Each data point in the temporal
sequence is compared with its former data point. If a datum’s value is higher than the
value of the former data point, S is incremented by 1. On the contrary, S is decremented by
1. S with a high positive/negative value indicates an increasing/decreasing trend of the
temporal sequence. Uk is the standard normal distribution converted from S, while Ub is
the standard normal distribution converted from the reverse sequence of S. The calculation
of Uk and Ub is shown in Equation (2). If the intersection point of line Uk and Ub exists, a
significant change is considered to occur.

S =
n−1
∑

k=1

n
∑

j=k+1
sign(xj − xk)

sign(xj − xk) =


1 if xj − xk > 0
0 if xj − xk = 0
−1 if xj − xk < 0

(1)

U =


S−1

[VAR(S)]1/2 if S > 0

0 if S = 0
S+1

[VAR(S)]1/2 if S < 0
(2)

2.3. Air Quality Model

The combined Weather Research and Forecasting Model (WRF) version 3.8 and Com-
munity Multiscale Air Quality Modeling System (CMAQ) version 5.2 were used in this
research. Driven by the meteorological field generated by the WRF model, the CMAQ
system calculated the pollutants’ formation, transport, evolution, and removal.

In the WRF-CMAQ model, two nested domains were set up using one-way nesting
in the Lambert Conic Conformal projection with horizontal resolutions of 10 km × 10 km
and 5 km × 5 km, respectively, shown in Figure 1b. The larger domain covered the Hubei
Province and some parts of the neighboring provinces. The smaller domain mainly cov-
ered Wuhan City. The simulation utilized 30 terrain-following σ-levels up to 10 hPa (i.e.,
~20 km a.s.l.). The land use information was obtained from the MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) IGBP (International Geosphere–Biosphere Programme)
21-category data [52].

To configure the WRF model, the WRF Single-Moment (WSM) 3-class simple ice
microphysics scheme, Rapid Radiative Transfer Model (RRTM) scheme, Dudhia scheme,
Kain–Fritsch (new Eta) scheme, Yonsei University (YSU) planetary boundary layer (PBL)
scheme, and Noah land-surface model were adopted. WRF was initialized by the me-
teorological field from the final global tropospheric analyses by National Centers for
Environmental Prediction (NCEP) Global Forecast System (GFS). The NCEP GFS data
also provided the boundary conditions for the WRF model. For the CMAQ model, the
boundary conditions of domain 1 were given by the default values embedded in CMAQ,
while the boundary conditions of domain 2 were derived from the simulation results of
domain 1. The initial conditions were also from the default initial values listed in CMAQ.
To reduce the influences of the initial conditions, the first 3 days were regarded as the
‘spin-up’ period of the simulation [53]. The chemical mechanisms used in the model were
CB05e51 (Carbon Bond 2005 e51) and aerosol6 [54]. The simulation period was from 10
January 2020 to 15 February 2020, in total 37 days, which covered 14 days before the city
lockdown and 23 days after the lockdown.
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Figure 1. (a) Locations of 10 observation stations. The stars refer to 10 observations stations in Wuhan,
including the representative Tianhe station (red star). (b) Model domains. The blue profile refers
to terrain heights of the two nested model domains with horizontal resolutions of 10 km × 10 km
(domain 1), 5 km × 5 km (domain 2). The red point is the location of Wuhan.

2.4. Emission Inventory for Wuhan

Emission inventory is the indispensable data for air quality models. It contains the
information on emission rates of different species, such as PM2.5, PM10, NOx, SO2, etc. This
study employed the Multi-resolution Emission Inventory for China version 1.3 (MEICv1.3)
as the emission inventory. MEIC is a static anthropogenic emission inventory with the
resolution of 0.25◦ × 0.25◦, including the emission information from five different sectors
in China, i.e., power sector, industry sector, residential sector, transportation sector, and
agriculture sector. The time coverage of MEIC ranges from 2008 to 2016. In this study,
the most recent emission inventory of 2016 was adopted. Since the emission inventory is
static and might not be capable of describing the scenarios in 2020 accurately, MEIC was
updated in our study to approach the actual emission. The detailed method is given in the
Supplementary Materials.

Sparse Matrix Operator Kerner Emissions Modelling System (SMOKE) version 4.5
was used as the preprocessor to prepare the baseline MEIC emission inventory [55]. The
emission inventory was re-gridded to match the spatial and temporal configurations of
CMAQ. The pollutants from the emission inventory were classified into more specific
species to fit the CMAQ chemical mechanism (cb05e51_aero6).

The lockdown of Wuhan and the nearby cities were implemented after 23 January, and
the intra-city and inter-city transportation was suspended. The quarantined area covered
the whole province except for Shennongjia Forest District.

In the study, four scenarios were designed to investigate the impact of the trans-
portation sector and industry sector on air pollution during the lockdown. The pollutant
concentrations were simulated under the following scenarios with the updated MEIC
emission inventory.

(A) Business as usual: it was assumed that the cities continued normal activities
and there was no lockdown in Hubei Province. Emissions in the period were from the
industry, transportation, residential, power, and agriculture sectors in the updated MEIC
emission inventory.

(B) Without traffic emission: It was assumed that there was no emission from trans-
portation in the simulation domains 1 and 2 after the lockdown of Wuhan and surrounding
cities. The emissions from the industry, residential, power, and agriculture sectors were
kept the same as in scenario (A).

(C) Without traffic and half industrial emissions: after lockdown of Wuhan, it was
assumed that there was no emission from transportation, and the industrial emission was
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reduced by 50% in the simulation domains 1 and 2. Emissions from residential, power, and
agriculture sectors were kept the same as in scenario (A).

(D) Without traffic and industrial emissions: it was assumed that there was no emission
from transportation or industries in the simulation domains 1 and 2. Emissions from
residential, power, and agriculture sectors were kept the same as in scenario (A).

3. Results
3.1. Meteorological Data

The meteorological data produced by WRF were evaluated first since they were the
driving force of pollutant transport. Simulation results were compared with the observa-
tions at Tianhe Station at Wuhan Airport, shown in Figure 2. Before the lockdown, the
ambient temperatures were between 0 ◦C and 10 ◦C. The temperatures rose approximately
by 5 ◦C afterwards, shown in Figure 2d. The northeast wind was dominant in January and
February, and the measured wind speed was moderate, below 6 m/s, shown in Figure 2a–c.
The wind speed was low between 9 February and 14 February, but the pollution was not
severe, indicating the emission might be lower than before. Influenced by the cold front
moving from the north, several rapid light rains occurred, shown in Figure 2e. The temper-
ature decreased along with the precipitation in a short time. The measured meteorological
variables did not change strongly before and after the city lockdown.

The modeled wind velocity agreed reasonably well with the measurements, but the
simulation overestimated the wind speed on 4 February and 13 February. The calculated
wind direction basically agreed with the observed wind direction. The simulated and
observed prevailing wind came from the north in general. The modeled temperature
captured the characteristics of the measurements.

3.2. Air Quality Measurements

Significance tests were conducted to analyze the changes in pollutant concentrations as
a result of the lockdown based on the Mann–Kendall test and ground measurements. The
temporal sequences of PM2.5, PM10, SO2, NO2, and CO were measured at Tianhe Station,
from 18 to 28 January 2020, shown in Figure 3a–e. The significance tests are shown in
Figure 3f–j. The mean value and the amplitude of the temporal series of NO2 concentration
varied significantly before and after the lockdown of Wuhan and surrounding cities. It
should be noted that meteorological conditions should also be taken into consideration.
The meteorological condition did not change much during the considered period and was
not the main reason for the change in the NO2 concentration. In Sections 3.4 and 3.5, we
further show that the simulated concentrations by WRF-CMAQ system considering the
effect of the weather conditions agreed well with the measurements before the lockdown
but became significantly higher than the observations (especially after 9 February) if the
emission remained, which indicated that meteorological condition was not the primary
cause for the alleviation of pollution.
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(a,b) wind direction, (c) wind speed, (d) air temperature, and (e) precipitation at Tianhe Station
between 10 January and 15 February.

The Mann–Kendall test for NO2 denoted a changing point on 23 January, shown in
Figure 3i. The value of Uk was negative and out of the 95% confidence interval, demonstrat-
ing the statistically significant decrease in NO2 concentration after locking down the cities.
Since the transportation sector and industry sector accounted for nearly 80% of the primary
NOx emission (Figure 4), the sensitivity analysis for transportation and industry sectors
was conducted as described in Sections 3.5 and 3.6. Similarly, the concentrations of PM2.5,
PM10, and CO decreased after 23 January, shown in Figure 3a,b,e, corresponding to the
changing point in the significance tests, shown in Figure 2f,g,j. In Figure 3c, the temporal
series of SO2 concentration had several peaks before the lockdown, while the sequence
flattened afterwards. However, the significance test of SO2 did not show a statistically
significant change around 23 January, shown in Figure 3h.

3.3. Emission Analysis

To have an overview of the annual emission in different sectors in Hubei Province, the
data from the MEIC emission inventory were collected and summarized in Figure 4, which
shows that industry and residential sectors contributed most to the total emissions in Hubei
Province. Industry was the main source of SO2 (75.2%), NOx (51.8%), CO (41.0%), VOC
(58.8%), and the average of PM2.5 and PM10 (51.4%). The transportation sector accounted
for 24.2% of NOx emissions, while accounting for equal or less than 11% of other species
emissions. Most NH3 was emitted from agriculture activities.
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3.4. Model Results and Validation

Air quality models, as source-oriented methods, are currently practical and low-cost
ways to evaluate the effects of emissions. However, the results of air quality models may
have notable discrepancies from the ambient measurements. The difficulties of acquir-
ing accurate simulation results are due to the inaccuracy of the model inputs, including
emission inventories, meteorological conditions, and the incomplete knowledge about the
physical and chemical processes. The emission inventory is the most direct information
to estimate the pollution, and it also has large uncertainty. MEIC v1.3 is the emission
inventory based on the investigation from 2016. Therefore, discrepancies were anticipated
from the actual conditions in 2020.

Before locking down cities in Hubei Province, it was assumed that all sectors had
normal activities. The MEIC emission inventory for all sectors was first preprocessed
with SMOKE and applied in the CMAQ model without any modification. The simula-
tion results from CMAQ from 10 January to 23 January were compared with the ground
observations to validate the air quality model, named the baseline MEIC case. After-
wards the MEIC emission data were updated to reduce the discrepancies between the
simulations and observations. The update method and detailed results are given in the
Supplementary Materials.

Before updating MEIC, the concentrations of modeled PM2.5 and PM10 were approx-
imately half of the observations, while the temporal trends of the daily variations were
basically consistent with the observations. The CMAQ model overestimated the concen-
tration of SO2 by 250%, and the daily variation was larger than the observations. CMAQ
also underestimated the concentrations of NO2 and CO by approximately 60% and failed
to capture several extremely high peaks. The discrepancies were mainly caused by the
outdated emission inventory.

The CMAQ simulation with the updated emissions showed a much better agreement
with the observations than the baseline case. After adjusting the emissions, the concentra-
tions of PM2.5 and PM10 were around 2.5 times higher than the baseline case and much
more consistent with measurements. SO2 was relatively stable after it was emitted into the
atmosphere, so the concentration of SO2 was reduced as the same ratio of the reduction in
the emission rate. The NO2 and CO concentrations increased significantly by a factor of
4 and 3.5, respectively.
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The simulation results were improved and had a comparable average as the observa-
tions after emission update. Therefore, the modified MEIC emission inventory was used to
analyze the impact from different sectors.

3.5. Impact of Transportation Sector on Air Pollution

In recent years, the concern about exhaust emissions from motor vehicles has been
increasing. Transportation is believed to be a major contributor to air pollution, especially
for NOx concentration [39]. The diesel engines have high emissions of NOx and particulate
matter. Since the transportation both in Wuhan City and Hubei Province was suspended
right after the lockdown, it was possible to evaluate the transportation emission trends and
associated air quality impact.

Scenario (A) ‘Business as usual’ and Scenario (B) ‘Without traffic emission’ after
lockdown were designed to evaluate the influence of the transportation sector on air
pollution. We compared the results of scenario (A) with scenario (B), and the simulation
results are given in Figure 5.
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Figure 5a,b show the measurements from Tianhe monitoring station and simulation
results of Scenario (A) and (B) regarding PM2.5 and PM10 concentrations. Before 23 January,
the meteorological and emission conditions for scenario (A) and (B) were the same. There-
fore, the simulation results showed no differences. After 23 January, the concentration
differences between Scenario (A) and (B) for PM2.5 and PM10 were not significant, even
though the transportation emission was completely removed in Scenario (B). The reduction
ratios of PM2.5 and PM10 were respectively around 9.7% and 9.0%. However, the obser-
vation showed a decrease by 40% of PM concentration after the lockdown and a further
decrease by 70% after 9 February. Compared with the observations, the simulation results
of both Scenario (A) and (B) were slightly higher after 23 January, but they were much
higher after 9 February. The results indicated that the suspension of transportation con-
tributed to only a portion of the PM2.5 and PM10 reduction from 23 January to 8 February;
the fraction of this contribution to the PM reduction after 9 February was even smaller.

Figure 5c shows the temporal trends of NO2 concentrations from measurements in
the monitoring station and the simulation results, where differences between scenario
(A) and (B) were observed following the lockdown. After removing the transportation
emission, the NO2 concentration decreased by 18.4% on average. However, the calculated
NO2 concentrations were still higher than the observations. Therefore, the transportation
emission was insufficient to completely explain the reduction in NOx pollution.

Figure 5d shows the observed SO2 concentration and the simulation results in scenario
(A) and (B). SO2 emission from transportation sector was quite limited, less than 2%. As
a result, the transportation sector had limited influence on the SO2 concentration, and
there was no significant difference between the simulation results of scenario (A) and
(B). Meanwhile, the SO2 concentration was higher than observations after the lockdown,
which meant the emission from other sectors had been overestimated. The comparison
between simulation results and observations of CO were parallel to that of particulate
matter, shown in Figure 5e. Without the transportation emission, the average concentration
of CO decreased by 13.4%, while the contribution of CO emission from the transportation
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sector was around 10%. The simulated concentration of CO was comparable with the
observations before 9 February, but higher than the observations afterwards.

In summary, transportation emission had an influence on air quality, especially on
NOx. From 23 January to 8 February, the pollution reduction after the lockdown was
partially caused by transportation restriction. However, After 9 February, the improvement
in air quality was mainly caused by the emission reduction from other sectors.

3.6. Impact of the Industry Sector on Air Pollution

The GDP of Wuhan and Hubei Province fell by 40.5% and 39.2% in the first quarter
year-on-year growth [56]. The lockdown of the city and the province had a substantial
impact on industry. Factories were shut down or operated in reduced capacity. As a result,
the emission reduction from industries should also be considered. In contrast, power
systems usually supply a large amount of uninterrupted power, and the emissions from
the power sector hardly change significantly. Meanwhile, the total amount of emission
from power sector was significant less than the industry sector (Figure 4). Furthermore, the
power sector contributed mainly to the emission of SO2 and NOx, but SO2 did not show a
significant change after the quarantine. Therefore, we did not consider the emission change
from the power sector. The emissions from residential and agriculture sectors were assumed
to stay constant because the basic life of residents continued during the quarantine.

Since the lockdown exerted a significant impact on the large-scale industrial clusters
and since industrial emissions contributed a large fraction to all pollutants, except for
NH3, it was necessary to analyze the sensitivity of the industrial emissions and quantify
its influence on air quality. Two scenarios were investigated in the section, which were
Scenario (C) ‘Without traffic and half industrial emissions’ and Scenario (D) ‘Without traffic
and industrial emissions’.

Figure 6a,b shows the comparisons between the observations and the simulation
results of PM2.5 and PM10 concentrations in scenarios (C) and (D). After removing 50%
industry emission and all the transportation emission, the particulate concentration was
significantly lower than the case only removing the transportation emission (scenario (B)),
with a reduction of 25.0% for PM2.5 and 25.6% for PM10 compared with Scenario (B). When
the total industry emission was removed, the concentrations of PM2.5 and PM10 decreased
further, with a reduction of 53.8% for PM2.5 and 54.8% for PM10 compared with scenario (B).
Scenario (C) and (D) underestimated the observed PM2.5 and PM10 concentrations before 9
February. Scenario (C) was closer to the observations from 23 January to 8 February, while
scenario (D) agreed better with the observations afterwards. Both cases captured some
characteristics of temporal evolution of PM2.5 and PM10 concentrations after the lockdown.

The simulation results for NO2 under scenarios (C) and (D) are shown in Figure 6c
and are compared with observations. The concentration of NO2 decreased by 30.0% after
removing 50% of industry emission and total transportation emission, compared with the
case in which only the transportation emission was subtracted (scenario (B)). When all of
the industry emissions were removed, the concentration of NO2 further decreased by 72.1%
compared with scenario (C) and by 80.4% compared with scenario (B). In general, the sce-
nario with 50% reduction in industry emission and total transportation emission removal
agreed better with the observations, but there were still peaks that did not occur in the mea-
surement. The scenario removing all the industry and transportation emissions (scenario
(D)) underestimated the observed NO2 concentration after the lockdown continuously.
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Reducing the industry emission had an impact on SO2 concentrations. The simulation
results of SO2 in scenario (C) and (D) and the observations are shown in Figure 6d. The
industry emission of SO2 accounted for 59% of total SO2 emission; thus, the SO2 concen-
tration decreased sharply after removing the industry emission. The SO2 concentration
decreased by 32.9% and 65.2% after removing half and all of the industry emission, respec-
tively, compared with the scenario only removing transportation emission (Scenario (B)).
Removing half of the industry emission after the lockdown led to higher SO2 concentration
than observations, especially after 9 February. When the total industry emission was
removed, the SO2 concentration became underestimated. Figure 6e shows the simulation
results of CO under scenarios (C) and (D). Similarly, the CO concentration decreased
with partially and totally removed industry emissions, and scenario (C) showed better
agreement with the observations.

4. Discussion

We collected the observed data in January 2018 and 2019 in Wuhan. Compared with
the average of pollutant concentrations in 2018 and 2019, PM2.5, PM10, SO2, NO2, and
CO decreased significantly by 40.3%, 38.1%, 71.0%, 28.6%, and 17.3%, respectively, in
the same period (from 23 January to 15 February) during the lockdown in 2020. The
comparison between data from previous years and 2020 showed a significant decline in
all the pollutants during the lockdown. Meanwhile, researchers investigated the trend of
pollutant concentrations from 2016 to 2020 around the world [17,18,57,58]. Most pollutants
decreased in all the continents. For instance, the average monthly ground-level PM2.5
concentration decreased by 10.6% and 26.8% globally in January and February relative
to the 5-year average for the same month [57,58]. Meanwhile, global NO2 concentration
decreased by 13.5% and 31.8% in January and February [57,58]. The decline in PM2.5, PM10,
and NO2 in Wuhan during the lockdown was higher than the world average.

The differences between the four scenarios and observations are summarized in
Figure 7. The relative difference was defined as the ratio of the difference between the
simulation and observation to the observation values. For PM2.5 and PM10, scenario (C)
agreed well between 23 January and 8 February, and scenario (D) captured the observed
characteristics afterwards. For NO2 and SO2, scenario (C) overestimated the concentrations,
while scenario (D) underestimated the concentrations after the lockdown. Scenario (B) and
(C) described the CO concentration variation reasonably. Overall, scenario (C) agreed best
from 23 January to 8 February. The emission subtraction from transportation and reduction
from industry was the major reason for the air quality enhancement. After 9 February,
scenario (D) captured the main characteristics of the air quality. The industrial emission
reduction contributed much more to the air quality improvement than transportation.
The four scenarios from 23 January to 15 February were compared statistically. The
Pearson correlation and the root-mean-square deviation (RMSD) were calculated for each
pollutant in the four scenarios. From 23 January to 8 February, scenario (C) showed the best
agreement with the observations, except for SO2 during the lockdown. After 9 February,
scenario (D) agreed well with the observations. The point-to-point comparison figures are
shown in the Supplementary Materials.
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The reduction rate of pollutant concentrations caused by transportation and industry
is shown in Figure 8. Removing the transportation emission was estimated to cause the
decline in PM2.5, PM10, SO2, NO2, and CO concentrations by 9.7%, 9.0%, 2.2%,18.4%, and
13.4%, respectively. The total industrial emission reduction would be responsible for 48.5%,
50.0%, 63.8%, 65.6%, and 40.8% of pollution reductions in PM2.5, PM10, SO2, NO2, and CO,
respectively, after the lockdown of Wuhan and surrounding cities.
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Our approach of choosing the transportation and industry sectors and conducting
emission reductions had limitations. Though the emission reduction corresponded to the
transportation restriction and the reduction in industrial activities, which was reported by
others as well [59], none of the four cases in our study reflected accurately the real emission
reductions during the lockdown in Wuhan.

5. Conclusions

We used both measurements and model simulations to investigate the possible reason
for the air quality improvement as a result of the lockdown of Wuhan and neighboring cities
in Hubei Province after the outbreak of COVID-19. The emissions from transportation and
industry sectors were taken into consideration since the transportation in Hubei Province
and some industrial production activities were suspended after 23 January to prevent the
spread of virus. The CMAQ results of four scenarios were compared with the observations.

Analysis of the observations confirmed that the temporal change in air pollutants
PM2.5, PM10, NO2, and CO right before and after the lockdown was statistically significant.

Scenario (A) assumed normal emissions from transportation, industry, power, agricul-
ture, and residential sectors; the simulation results showed higher pollutant concentrations
compared with the observations, which implied a reduction in emission in the real condi-
tion. Since transportation was suspended, the total emissions from the transportation sector
were removed from scenario (B). The concentrations for the pollutants decreased, especially
for NO2, and the simulation results were slightly higher than observations from 23 January
to 8 February, with average differences of 13.7%, 18.8%, and 10.6% for pollutants PM2.5,
PM10, and CO, respectively. Meanwhile, scenario (B) overestimated the concentration
of SO2 and NO2 by more than 50%. After 9 February, scenario (B) overestimated all the
pollutant concentrations. Therefore, the reduction in transportation emission was the one of
the factors that improved air quality after the lockdown of Wuhan and surrounding cities.

In scenario (C) and (D), 50% and 100% of industry emission was subtracted from the
total emission, respectively, to consider different degrees of industry shutdown. Scenario
(C) showed the best agreement with the observations for PM2.5, PM10, and SO2 before 9
February with a difference of 13.6%, 10.1%, 15.1%; for NO2 with a difference of 18.0% and
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47.5% before and after 9 February; and for CO with a difference of 1.3% after 9 February.
Meanwhile, Scenario (D) had the best agreement after 9 February for PM2.5, PM10, and
SO2 with a difference ratio of 28.0%, 31.1%, and 12.6%, respectively. The simulation results
indicate that emissions from the industry sector reduced during the quarantine period,
especially after 9 February, and imply that the reduction in transportation and industry
emission was not at the same pace.

In summary, this study evaluated the emission reduction from transportation and in-
dustry sectors and the associated air quality impact. The results indicate that the reduction
in traffic emission was nearly 100% immediately after the lockdown between 23 January
and 8 February and that the industrial emissions tended to decrease by about 50% during
the same period. The industrial emissions further decreased after 9 February. The results
also imply that the shutdown of industry contributed significantly more to the pollutant
reduction than the restricted transportation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9120358/s1, Figure S1: Satellite images. The red profiles refer to tropospheric columns of
NO2 observed by OMI over Hubei Province on 21, 26, and 28 January, Figure S2: Model validation.
Figures above compared the observation (black line), MEIC baseline case (blue line), and MEIC
updated case (red line) for PM2.5, PM10, SO2, NO2, and CO.
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