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Abstract: Biodegradation of bisphenol A in the environmental waters (lake, river, and sea) has been
studied on the base of fortification of the samples taken and the biodegradation products have
been analyzed using HPLC/UV/ESI-MS. Analysis of the characteristic fragmentation patterns of
[M-H]− ions permitted unambiguous identification of the biodegradation products as 2,2-bis(4-
hydroxyphenyl)-1-propanol or as p-hydroxyacetophenone, depending on the type of surface water
source. The formation of 2,2-bis(4-hydroxyphenyl)-1-propanol was much more common than that
of p-hydroxyacetophenone. Moreover, 2,2-Bis(4-hydroxyphenyl)-1-propanol has not been further
biodegraded, in contrast to the p-hydroxyacetophenone, which was further mineralized. It has been
proved, for the first time, that 2,2-bis(4-hydroxyphenyl)-1-propanol can be regarded as persistent
product of bisphenol A biodegradation in the fortified environmental waters.

Keywords: bisphenol A; bio-oxidation; 2,2-bis(4-hydroxyphenyl)-1-propanol; environmental water;
mass spectrometry

1. Introduction

Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane) is a well-known precursor of
plastics, mainly epoxy resins and polycarbonates, and it is one of the endocrine-disrupting
chemicals produced in large volumes worldwide. The wide use of the products based on
BPA implies a high possibility of environmental contamination by BPA, mainly of lakes
and rivers [1]. It has prompted a vast number of studies devoted to the biodegradation of
bisphenol A as recently discussed in detail in review papers [2–5].

The biodegradation processes observed in laboratory conditions reflects the processes
occurring in the natural environment. However, it is well known that even a small change
in the conditions can substantially affect biological processes. Therefore, it should be
ascertained if the processes observed in the laboratory are really the same as those occurring
in the environment. In this study, we decided to evaluate the biodegradation of BPA in the
environmental waters (lake, river, and sea) by fortification with BPA in water-in laboratory
conditions. To the best of our knowledge, such simple (or even trivial) experiment has not
previously been performed.

In many studies, the proposed first step of BPA biodegradation pathway is BPA
oxidation (bio-oxidation) and formation of two isomers shown in Scheme 1, namely, 2,2-
bis(4-hydroxyphenyl)-1-propanol and/or 1,2-bis(4-hydroxyphenyl)-2-propanol (further
referred to as Product 1 and Product 2, respectively, Scheme 1) [6–14].
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Scheme 1. Structures of bisphenol A and two biodegradation products. 

This report provides the evidence, obtained by HPLC/UV/ESI-MS, for formation of 
2,2-bis(4-hydroxyphenyl)-1-propanol (Product 1) as a persistent product of BPA biodeg-
radation in the environmental waters. The second BPA biodegradation product, although, 
less common, was para-hydroxyacetophenone (p-HAP, Scheme 2), which immediately un-
derwent mineralization (decomposition to the inorganic compounds, mainly CO2 and 
H2O). 
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From the point of view of the chemistry of the biodegradation process, the structures 
of biodegradation products are the most important. It is obvious that the room conditions 
are different from the environmental ones and may be regarded only as an approximation 
of the latter. On the other hand, it is likely that the biodegradation of BPA in the environ-
ment occurs in a similar way, since in our experiments, we did not change the composition 
of environmental water. 

2. Materials and Methods 
Bisphenol A (≥99%) and p-HAP (99%) standards were obtained from Sigma-Aldrich 

(Poznań, Poland) and were used without purification. The water samples used for the 
tests were taken in Poland from the Warta River (the main river in the region; sampling 
in Poznań), from the Baltic Sea (the nearest sea; sampling in Rewal), and from 10 lakes in 
the middle of the Wielkopolska region (Supplementary Figure S1): The water samples 
were collected in spring and summer, respectively. About 5 L of each water was collected 
by grab sampling into glass bottles at the depth of about 1 m by a sampler, leaving ade-
quate head space for aeration and kept at a temperature of +4 °C for no longer than 72 h 
before the biodegradation test. The pH of all water samples was around pH 7. The selected 
data obtained for Niepruszewo Lake, Lusowo Lake, and the Warta River are shown as 
representative examples.  

The degradation tests were performed in 200 mL bottles filled with environmental 
water samples to which 2 mg of BPA (10 mg/L) were added. Similar concentrations were 
used by other authors for biodegradation test performance. The bottles were kept at room 
temperature (20–25 °C), opened, and exposed to the day sunlight. Every fifth day, 1 mL 
was collected from each bottle and 0.5 mL of methanol was added to it, and the mixtures 
were placed in the fridge, to cease the biodegradation process. The samples were collected 
over 3 months and then subjected to HPLC/UV/ESI-MS analysis. 

The HPLC/UV/ESI-MS analyses were made on a Waters model 2690 HPLC pump 
(Milford, MA, USA), Waters 996 Photodiode Array Detector and Waters/Micromass 
ZQ2000 mass spectrometer (single quadrupole type instrument equipped with elec-
trospray ion source, Z-spray, Manchester, UK). The HPLC/UV and HPLC/MS are the two 
most commonly used methods used for analysis of bisphenol A and its metabolites [15–
18]. The software used was MassLynx V3.5 (Manchester, UK). Using an autosampler, the 

Scheme 1. Structures of bisphenol A and two biodegradation products.

This report provides the evidence, obtained by HPLC/UV/ESI-MS, for formation of
2,2-bis(4-hydroxyphenyl)-1-propanol (Product 1) as a persistent product of BPA biodegrada-
tion in the environmental waters. The second BPA biodegradation product, although, less
common, was para-hydroxyacetophenone (p-HAP, Scheme 2), which immediately under-
went mineralization (decomposition to the inorganic compounds, mainly CO2 and H2O).
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Scheme 2. Structure of para-hydroxyacetophenone.

From the point of view of the chemistry of the biodegradation process, the structures of
biodegradation products are the most important. It is obvious that the room conditions are
different from the environmental ones and may be regarded only as an approximation of
the latter. On the other hand, it is likely that the biodegradation of BPA in the environment
occurs in a similar way, since in our experiments, we did not change the composition of
environmental water.

2. Materials and Methods

Bisphenol A (≥99%) and p-HAP (99%) standards were obtained from Sigma-Aldrich
(Poznań, Poland) and were used without purification. The water samples used for the
tests were taken in Poland from the Warta River (the main river in the region; sampling in
Poznań), from the Baltic Sea (the nearest sea; sampling in Rewal), and from 10 lakes in the
middle of the Wielkopolska region (Supplementary Figure S1): The water samples were
collected in spring and summer, respectively. About 5 L of each water was collected by
grab sampling into glass bottles at the depth of about 1 m by a sampler, leaving adequate
head space for aeration and kept at a temperature of +4 ◦C for no longer than 72 h before
the biodegradation test. The pH of all water samples was around pH 7. The selected
data obtained for Niepruszewo Lake, Lusowo Lake, and the Warta River are shown as
representative examples.

The degradation tests were performed in 200 mL bottles filled with environmental
water samples to which 2 mg of BPA (10 mg/L) were added. Similar concentrations were
used by other authors for biodegradation test performance. The bottles were kept at room
temperature (20–25 ◦C), opened, and exposed to the day sunlight. Every fifth day, 1 mL
was collected from each bottle and 0.5 mL of methanol was added to it, and the mixtures
were placed in the fridge, to cease the biodegradation process. The samples were collected
over 3 months and then subjected to HPLC/UV/ESI-MS analysis.

The HPLC/UV/ESI-MS analyses were made on a Waters model 2690 HPLC pump
(Milford, MA, USA), Waters 996 Photodiode Array Detector and Waters/Micromass
ZQ2000 mass spectrometer (single quadrupole type instrument equipped with electrospray
ion source, Z-spray, Manchester, UK). The HPLC/UV and HPLC/MS are the two most
commonly used methods used for analysis of bisphenol A and its metabolites [15–18]. The
software used was MassLynx V3.5 (Manchester, UK). Using an autosampler, the sample
solutions were injected onto the XTerra® RP18 column (5 µm, 150 mm × 3 mm i.d.; Waters,
Warsaw, Poland). The injection volume was 10 µL. The solutions were analyzed using
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linear gradient of CH3CN-H2O with a flow rate of 0.4 mL/min. Two gradients were used,
namely, acidified and non-acidified. We found that acidified gradient was better for UV–
VIS detection and non-acidified was better for MS detection (MS detection was performed
in negative ion mode). The acidified gradient started from 0% CH3CN–95% H2O with 5%
of a 10% solution of formic acid in water, reaching 95% CH3CN after 30 min, and the latter
concentration was kept for 10 min. The non-acidified gradient started from 5% CH3CN–
95% H2O, reaching 95% CH3CN after 30 min, and the latter concentration was kept for 10
min. Thus, the full time of HPLC/ESI-MS analysis was 40 min, however, for the sake of
clarity, the chromatograms are shown for a smaller time range. As expected, HPLC/UV
yielded better linearity (signal intensities vs. compound concentration, Supplementary
Figure S2), whereas HPLC/ESI-MS allowed identification of biodegradation products.

The UV–VIS spectra were recorded in the range of 210–600 nm. The BPA and its
degradation products were monitored by absorbance at 280 nm [6,7,19–24]. For each
sample, the analyses were performed three times and the calculated relative standard
deviations for the peak areas obtained upon HPLC/UV analysis did not exceed 5%.

The ESI mass spectra were recorded in the m/z range of 70–1000, in negative ion
mode. The electrospray source potentials were: capillary 3 kV, lens 0.5 kV, extractor
4 V, and cone voltage 30–80 V. It is known that cone voltage has the greatest impact on
the mass spectra recorded. Increase in this parameter leads to the so-called “in-source”
fragmentation/dissociation but a too low cone voltage may cause a decrease in sensitiv-
ity. The source temperature was 120 ◦C, and the desolvation temperature was 300 ◦C.
Nitrogen was used as the nebulizing and desolvation gas at the flow rates of 100 and
300 L/h, respectively.

To corroborate the structures and fragmentation patterns of Product 1, we collected
the eluate containing this compound (in the proper range of retention time) and then the
eluate was directly infused into the Q-TOF mass spectrometer (coupling off-line of HPLC
to ESI-MS/MS), as described in the Supplementary Material.

3. Results and Discussion

At first, it has to be checked if we really deal with a biodegradation process, and not
with simple BPA oxidation by air. Therefore, BPA has been also added to pure water (the
tap water used was purified/deionized using demineralizer). It has to be stressed that in
pure water, even after 3 months, the BPA concentration was not lowered (Supplementary
Figure S3). When BPA was added to the environmental water from a lake or river, after
several days, its concentration started to decrease. When BPA was added to the sea water,
its concentration was only slightly decreased after several dozen days, no biodegradation
products were detected (Supplementary Figure S4).

Figure 1 shows exemplary UV chromatograms. When BPA was stored in samples of
environmental water, its concentration decrease was accompanied by an increase in the
concentration the compounds characterized with a retention time of 12.6 min (Figure 1),
for most of the fortified environmental water samples.

Exemplary breakdown plots of chromatographic peak areas (chromatograms obtained
at 280 nm) against days of biodegradation test are presented in Figure 2. The peak areas
expressed in arbitrary units were converted into percentages (the largest peak is assumed
as 100%).
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As clearly seen from Figure 2, the rate of BPA biodegradation strongly depends on 
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As clearly seen from Figure 2, the rate of BPA biodegradation strongly depends on the
source of environmental water taken for the test. However, in each test, the biodegradation
product characterized with a retention time of 12.6 min was not further degraded.

HPLC/ESI-MS analyses have indicated that molecular mass of the biodegradation
product at the retention time of 12.6 min is 244 (ion [M-H]− at m/z 243). In order to
unambiguously determine the structure of the biodegradation product, we performed
the HPLC/UV/ESI-MS analysis using non-acidified gradient, since it allowed obtaining
much higher signals to noise ratio of ions [M-H]− and product ions. Figure 3 shows the
exemplary chromatograms obtained using non-acidified gradient.
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The HPLC/ESI-MS analysis performed using high cone voltage allowed obtaining
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was formed as shown in Figure 4 and in the Supplementary Material (Supplementary
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The product ion at m/z 211 was formed by the loss of methanol from [M-H]− ion,
and formation of this fragment ion cannot be expected for Product 2 (Scheme 1). In
view of the above, the fragment ion at m/z 211 can be treated as a diagnostic ion proving
that we deal with Product 1. The product ion spectra (collision-induced dissociation-
MS/MS) obtained using a Q-TOF mass spectrometer confirmed the fragmentation pattern
of Product 1 (Supplementary Figure S6). On the other hand, our results are different from
those described by Sasaki et al. who have observed identical fragmentation patterns for
Product 1 and 2, regardless of minor differences in relative ion abundances [10].

Theoretically, it is possible that we deal with bio-oxidation in aromatic ring and
formation of 2-(4-hydroxyphenyl)-2-(3′,4′-dihydroxyphenyl)propane, however, the frag-
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mentation pattern of this compound is substantially different than that observed in our
work [22,25,26].

BPA is estrogenic and antiandrogenic compound, whereas 2,2-bis(4-hydroxy-phenyl)-
1-propanol is weekly estrogenic, non-antiandrogenic, and less toxic than parent com-
pound in in vitro and in vivo reporter assays [27]. As indicated by Suzuki et al. 2,2-bis(4-
hydroxyphenyl)-1-propanol and 2-(4-hydroxyphenyl)-2-(3′,4′-dihydroxyphenyl) propane
displaced the 17β-estradiol bound to the ERa (estrogen receptor α) in a competitive man-
ner, however, the competitive potency of these compounds was 50 times less than that of
diethylstilbesterol [11]. Moreover, in human cultured MCF-7 breast cancer cells, 2,2-bis(4-
hydroxyphenyl)-1-propanol did not cause proliferation. Therefore, bio-oxidation of BPA
into 2,2-bis(4-hydroxyphenyl)-1-propanol seems to be justified.

Only for two of the biodegradation tests, a biodegradation pathway different than that
described above has been observed. Namely, the biodegradation product characterized by
a retention time of 10.3 min was observed as shown in Figure 5.
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The m/z 135 of [M-H]− ion and fragment ions at m/z 120, 93, 92 (Supplementary
Figures S7 and S8) indicate that it is para-hydroxyacetophenone (p-HAP, piceol) [28,29].
The HPLC/UV/ESI-MS analysis of p-HAP standard fully confirmed the structure of the
biodegradation product characterized by the retention time 10.3 min. Figure 6 shows the
breakdown plots of chromatographic peak areas against days of biodegradation test, for
the test in which p-HAP was formed.
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In contrast to Product 1, p-HAP is not a persistent biodegradation product, since it
is also biodegraded, as shown in Figure 6. After the initial concentration increase, its
concentration decrease was observed, however, its further metabolites were not detected.

It has to be stressed that p-HAP can be formed from 1,2-bis(4-hydroxyphenyl)-2-propanol
(Product 2, Scheme 1) as suggested in a number of papers [4,5,7–9,11–14,21,30–32]. Therefore,
bio-oxidation of BPA into Product 2 in the environmental water is possible, however,
Product 2 is immediately converted into p-HAP (most probably through 4,4′-dihydroxy-
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α-methylstilbene). Furthermore, it has been also suggested that the produced p-HAP is
further mineralized [4,7,9,11,14,30,32], it can explain why further metabolites of p-HAP
have not been detected.

As indicated by Ike et al. (2002), the acute toxicity and estrogenicity of BPA can be
considerably eliminated by aerobic biodegradation [33]. Among above products p-HAP
shows much lower toxicity than BPA, lack of mutagenic activity, however, might have a
weak estrogenicity understood as dose-dependent increase in β-galactosidase activity [34].

4. Conclusions

It has been proved that under the conditions used, two BPA biodegradation pathways
in the environmental waters are possible. The first, most common, is the BPA bio-oxidation
and leads to the formation of 2,2-bis(4-hydroxyphenyl)-1-propanol, which is not further
biodegraded, thus 2,2-bis(4-hydroxyphenyl)-1-propanol can be regarded as a persistent
BPA metabolite. The second, less common, pathway is the formation of p-HAP, which is
further mineralized. Of course, as the target is to maintain water purity, the second pathway
seems to be more desirable. In order to explain why sometimes the BPA biodegradation
comprises the formation of 2,2-bis(4-hydroxyphenyl)-1-propanol (Product 1, Scheme 1)
and sometimes the formation of p-HAP, detailed biological studies should be performed.

Supplementary Materials: The following are available online at https://www.mdpi.com/2305-630
4/9/3/49/s1, Figure S1: Approximate water sampling sites from Baltic Sea, Warta River and local
lakes. Figure S2: Linearity obtained during HPLC/UV and HPLC/MS analysis of bisphenol A (BPA)
solutions (peak area is in the arbitrary units). Figure S3: Exemplary UV chromatograms obtained at
280 nm (acidified gradient) for BPA stored at sea pure water; the biodegradation process has not been
observed. Figure S4: Exemplary UV chromatograms obtained at 280 nm (acidified gradient) for BPA
stored at sea water; very slow biodegradation process has been observed. Figure S5: Electrospray
ionization mass spectra of Product 1 obtained at different cone voltages (CV); we have checked if
the fragment ions have identical retention time as [M-H]−, otherwise we deal with background ions.
Figure S6: Product ion spectra of [M-H]− ion of 2,2-bis(4-hydroxyphenyl)-1-propanol. Figure S7:
Exemplary HPLC/UV chromatograms obtained at 280 nm and single ion chromatograms of ions at
m/z 227 and 135 ([M-H]− of BPA and para-hydroxyacetophenone (p-HAP), respectively) obtained
using non-acidified gradient. Figure S8: Exemplary ESI mass spectra of p-HAP.
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