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Abstract: Background: Limited evidence is available on the health effects of particulate matter (PM
including PM2.5 with an aerodynamic diameter ≤ 2.5 µm; PM10, ≤ 10 µm; PM2.5–10, 2.5–10 µm)
during the pandemic of COVID-19 in Italy. The aims of the study were to examine the associations
between all-cause mortality and PM in the pandemic period and compare them to the normal periods
(2015–2019). Methods: We collected daily data regarding all-cause mortality (stratified by age and
gender), and PM concentrations for 107 Italian provinces from 1 January 2015 to 31 May 2020. A
time-stratified case-cross design with the distributed lag non-linear model was used to examine the
association between PM and all-cause mortality. We also compared the counts and fractions of death
attributable to PM in two periods. Results: Italy saw an increase in daily death counts while slight
decreases in PM concentrations in pandemic period. Each 10 µg/m3 increase in PM was associated
with much higher increase in daily all-cause mortality during the pandemic period compared to
the same months during 2015–2019 (increased mortality rate: 7.24% (95%CI: 4.84%, 9.70%) versus
1.69% (95%CI: 1.12%, 2.25%) for PM2.5; 3.45% (95%CI: 2.58%, 4.34%) versus 1.11% (95%CI: 0.79%,
1.42%) for PM10; 4.25% (95%CI: 2.99%, 5.52%) versus 1.76% (95%CI: 1.14%, 2.38%) for PM2.5–10).
The counts and fractions of deaths attributable to PM were higher in 2020 for PM2.5 (attributable
death counts: 20,062 versus 3927 per year in 2015–2019; attributable fractions: 10.2% versus 2.4%),
PM10 (15,112 versus 3999; 7.7% versus 2.5%), and PM2.5–10 (7193 versus 2303; 3.7% versus 1.4%).
Conclusion: COVID-19 pandemic increased the vulnerability and excess cases of all-cause mortality
associated with short-term exposure to PM2.5, PM2.5–10, and PM10 in Italy, despite a decline in air
pollution level.

Keywords: particulate matter; all-cause mortality; COVID-19; Italy

1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus [1] has substantially affected
human society, including healthcare, economic structure, and social relationships. The
measures and responses to control virus transmission can protect human health, but it
also results in unprecedented side-effects. Even though the severe health impacts of the
COVID-19 emergency remain the top priority, it is still unknown how the pandemic may
affect the association between environmental exposure and health, notably the health
impacts of air pollution, particularly for ambient particulate matter (PM) air pollutant,
which is an important risk factor for cardiovascular and respiratory health outcomes [2,3].
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The COVID-19 pandemic has observed a noteworthy decline in anthropogenic PM
in many countries, such as China [4,5], Morocco [6], Malaysia [7], India [8], Brazil [9], the
United States [10], and Spain [11], due to the reduced social activities and vehicle exhaust
emission [5,12]. To control the COVID-19 outbreak, Italy was the first European country
to impose a quarantine first in ten municipalities of the province of Lodi in Lombardy
and neighboring municipalities in the northern region at around 21 February 2020, and
then in early-March, the quarantine measures were expanded to the entire country [13].
Near the end of May 2020, the restrictions on movement were downgraded step-by-step.
Alicandro et al. [14] suggested that Italy’s first wave of the COVID-19 pandemic has ended
in May because there was no excess mortality, but COVID-19 deaths were probably over-
registered. During the first wave of COVID-19 pandemic (March to May) in Italy, the severe
limitation of people movements determined a significant reduction of PM10 and PM2.5
pollutants concentration mainly due to vehicular traffic, especially over hard-hit northern
Italy (e.g., Milan [15] and Roma [16]). It is expected that reductions in PM could reduce
burden of the air pollution-related diseases if the magnitude of mortality/morbidity risks
associated with PM would not change. However, it is still unclear whether this hypothesis
is correct because the exposure-response association could be changed due to the alteration
of people’s behaviors and reorganized medical resources during the COVID-19 pandemic.

Previous assessments have focused on the effects of PM on the deaths related to
COVID-19 [17–20]. However, the number of COVID-19 deaths in official reports may be
significantly lower than the actual death toll due to the insufficient testing availability, es-
pecially during rapid growth phases of the epidemic [21]. In addition, indirect deaths from
the pandemic may increase because of the limitation of health care resources, especially
for the patients who were scheduled for surgery or treatment but were suspended due
to the pandemic [22,23]. On the other hand, some susceptible populations are concerned
about being infected when going to a hospital [24]. The overlap of vulnerable populations
from COVID-19 and PM exposure makes the measurement of the pandemic impacts com-
plex. Unlike the deaths attributed to COVID-19, all-cause mortality could be an accurate
measurement to estimate the direct and indirect effects of the pandemic on deaths [25].

In this study, we aimed to quantify the association between short-term exposure to
PM and all-cause mortality in Italy during the first wave of COVID-19 pandemic and
compare it with that of the same months in 2015–2019 to identify the changes in PM-
mortality association.

2. Materials and Methods
2.1. Study Area

Italy is a country consisting of a peninsula delimited by the Alps and surrounded by
several islands, covering a total area of 301,340 km2. There are currently 107 provinces
(second level constituent entities) in Italy, within 20 regions (first-level constituent entities).
Its northern regions (Lombardia, Veneto, Piemonte, Emilia Romagna) together host 39% of
the national population, and approximately one-half of the Italian GDP is produced there.
Such a spatial concentration of economic activities involves the industrial manufacturing
sectors to the largest extent, and the consequent high level of emissions is at least in part
responsible for heavy pollution in the region [26]. During the COVID-19 pandemic, Italy
has been one of the worst countries affected by the spreading of coronavirus, especially the
northern regions [27].

2.2. Mortality Data

We collected daily all-cause mortality from Italian National Institute of Statistics
(ISTAT) from 1 January 2015 to 31 May 2020. The mortality data cover 7357 municipalities
in 107 provinces, representing 95.0% of Italy population since 1 January 2015. Daily counts
of all-cause mortality were aggregated at province level and stratified by gender and
age-specific groups (<65 years and ≥65 years).
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2.3. Environmental Exposure Data

Air pollution data were downloaded from the European Environment Agency (EEA)
air quality database (https://www.eea.europa.eu/data-and-maps/data/aqereporting-8,
accessed on 18 February 2021). The database includes hourly PM2.5, PM10, ozone (O3),
nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). Our analysis
method is based on a case-crossover design to compare the air pollution exposure in two
different time periods (2015–2019 vs. 2020). To do this, we extracted air pollution data at
station level, in which the beta attenuation monitoring (BAM) method was used to measure
the levels of PM in Italy. BAM is a widely used air monitoring technique employing the
absorption of beta radiation by solid particles extracted from air flow [28]. The 24-h average
concentrations of PM2.5, PM10, NO2, SO2, and CO were calculated as daily concentration,
while we used the maximum 8-h average concentrations of O3 as its daily value. Daily
PM2.5–10 was calculated as the difference between 24-h average PM10 and 24-h average
PM2.5 [29]. For both time-series analyses, daily air pollution, for each pollutant, in a
province was calculated as the average of all central monitoring stations in that province. If
a province only had one monitoring station, data from this station were used to represent
the exposure level of this province.

To allow adjustment for the meteorological factors, we collected the ERA5 hourly
surface (at 2 m above the land surface) ambient temperature and ambient dew point
temperature at 0.1◦ × 0.1◦ spatial resolution from the ERA5-L and hourly data. Hourly
data were averaged into daily values. We calibrated the collected temperature data with
the observed meteorological data through random forest models (see Method S1 for detail),
and then we linked the data to the centroid of each municipality based on longitude and
latitude. We then calculated daily mean relative humidity from the calibrated ERA5 daily
mean temperature and ERA5 daily mean dew point temperature, using the algorithm
provided by the “humidity” R package [30]. Weather data at municipality level were
aggregated into province level by averaging observations of all municipalities within
the province.

2.4. Statistical Analysis

A time-stratified case-crossover design was used to examine the association between
PM air pollution and all-cause mortality at national level. The design compares the air
pollution exposure in the case period when events occurred with air pollution exposures in
control periods to compare the differences in exposure, which might explain the differences
in the daily number of cases. In this study, the province-level information was controlled
by the time-stratified case-crossover design through matching case and control days by
day of the week in the same calendar month, the same year, and in the same province. The
Quasi-Poisson regression [31] allowing for over-dispersion was applied to perform time-
stratified case-crossover design. To determine an appropriate lag time (i.e., the number of
days between exposure and the estimated effect) for PM to be used in the main analyses,
we compared a variety of lag days and choose all significant lags as the maximum lag day
(Figure S3). A linear function was used for PM concentrations while a 3 degrees of freedom
natural cubic spline was used for lags. Our initial analyses showed that significant mortality
effects were observed in lag 0, 1, 2, and 3 days for PM2.5; lag 0, 1, and 2 days for PM10;
and lag 0, 1 days for PM2.5–10. Therefore, we used cumulative effects along lag 0–3 days
for PM2.5, lag 0–2 for PM10, and lag 0–1 for PM2.5–10 for subsequent analyses. We have
controlled for potential nonlinear and lagged confounding effects of weather conditions,
with 3 degrees of freedom natural cubic spline for 21-day moving averages [32,33] of daily
mean temperature and daily mean relative humidity, respectively.

To compare the associations between PM air pollution and all-cause mortality during
the COVID pandemic and pre-outbreak periods, we performed above analyses for 2020
COVID pandemic period (from 1 March to 31 May 2020) and the same months during
2015–2019, respectively. The analyses for PM2.5, PM10, and PM2.5–10 were performed
separately to avoid their high collinearity. Fixed effect meta-regression was used to compare

https://www.eea.europa.eu/data-and-maps/data/aqereporting-8
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the magnitude of the mortality risks associated with PM air pollution in different time
periods and sub-groups.

To estimate the burden of mortality attributable to PM, the attributable number deaths
(AD) caused by PM were calculated every day and total AD was generated by summing
the AD during the study period [34]. The corresponding attributable fractions (AF) of
mortality were calculated by dividing the total AD by the death toll.

2.5. Sensitivity Analyses

Sensitivity analyses were performed to examine the robustness of the results. We
tested the variation of the PM pollution-mortality association in the normal period by
replacing the study period of 2015–2019 with every single year. To evaluate potential
impacts of gaseous pollutants on the associations between PM air pollution and mortality,
we also performed multi-pollutant models through adjusting for different combinations of
NO2, CO, O3, and SO2.

All the analyses were performed by the R software (v. 3.6.1). The “dlnm” package was
used to perform the distributed lag non-linear models for PM, describing simultaneously
the linear relationship along air pollution and non-linear along lags; the “gnm” package
was used to perform conditional Poisson regression [35]. The “mvmeta” package was used
to perform meta-regression [36]. The relative risks (RRs) with 95% confidence intervals
(CIs) per 10 µg/m3 change in PM concentration were reported. For all statistical tests, a
p-value of 0.05 (two-tailed) was considered statistically significant.

3. Results

Daily air pollutants, meteorological variables, and all-cause death counts for each
year in Italy are summarized in Table 1. There were 1,000,459 (51.9% females; 89.4% aged
≥65 years) all-cause deaths in the years from March to May during 2015 and 2020. The
death counts in the pandemic period were significantly higher than the same months
during 2015–2019 in subgroups. There were slight reductions in PM10, PM2.5, and PM2.5–10
concentrations over 2015–2020. The average (±SD) PM2.5 concentration during March and
May reduced from 15.60 ± 10.23 µg/m3 in 2015 to 12.52 ± 7.57 µg/m3 in 2020, PM10 from
23.05 ± 12.25 µg/m3 to 20.54 ± 13.95 µg/m3, and PM2.5–10 from 8.86 ± 5.83 µg/m3 to
8.14 ± 7.43 µg/m3, with all the differences being statistically significant (p < 0.001).

Figure 1 shows the spatial variation in all-cause death counts, PM2.5, PM10, and
PM2.5–10 during March and May in 2020 and 2015–2019, respectively. The figure presents
the difference by subtracting the average of 2015–2019 from the daily value in 2020. The
northern region witnessed an increased number of deaths and declined PM concentrations
in 2020.

Cumulative RRs along lag 0–3 days for PM2.5, lag 0–2 for PM10, and lag 0–1 for
PM2.5–10 for all-cause mortality and group-specific mortality are shown in Figure 2. Each
10 µg/m3 increase in PM was associated with a much higher increase in daily all-cause
mortality during the 2020 pandemic period compared to the same months during 2015–2019
(increased mortality risk: 7.24% (95% CI: 4.84, 9.70) versus 1.69% (95% CI: 1.12, 2.25) for
PM2.5; 3.45% (95% CI: 2.58, 4.34) versus 1.11% (95% CI: 0.79, 1.42) for PM10; 4.25% (95% CI:
2.99, 5.52) versus 1.76% (95% CI: 1.14, 2.38) for PM2.5–10). All p-values for the difference of
the 2020 pandemic period compared to the normal period during 2015–2019 were <0.001
(Table S1). Such disparity in the PM-mortality associations were consistent among different
gender and age groups. The comparison of the risks between different periods and specific
subgroups were in Table S1.

Table 2 shows the attributable mortality fractions and attributable deaths associated
with PM2.5, PM10, and PM2.5–10 during March and May in 2020 and average values in
2015–2019. AFs and ADs were higher in 2020 than 2015–2019. We estimated that 10.21%
(95% CI: 7.13, 13.31) of deaths were attributable to PM2.5 in the first three months of
pandemic in 2020, whereas the average AF was only 2.44% (95% CI: 1.63, 3.23) in 2015–2019,
and this disparity was consistent across all sex and age groups and was similar for PM2.5–10



Toxics 2021, 9, 56 5 of 11

and PM10. During March to May, 20,062, 15,112, and 7193 all-cause deaths were estimated
to be attributable to PM2.5, PM10, and PM2.5–10 in 2020, which is approximately 5 times
higher than the average values in 2015–2019.

Table 1. Descriptive statistics for temperature, relative humidity, and death counts during the first three months of COVID-19
pandemic in 2020 and the same months in 2015–2019.

Variables 2015 2016 2017 2018 2019 2015–2019 2020 p Value

Temperature (◦C) 12.32 (4.51) 12.20 (4.14) 13.01 (4.07) 12.75 (5.18) 11.48 (3.1) 12.35 (4.29) 12.52 (4.40) <0.001
RH (%) 67.62 (11.45) 69.12 (10.43) 65.64 (10.96) 72.76 (9.43) 68.85 (12.07) 68.80 (11.15) 65.41 (12.08) <0.001

PM2.5 (µg/m3) 15.60 (10.23) 12.60 (7.71) 13.59 (9.50) 13.38 (8.49) 11.77 (8.02) 13.55 (9.01) 12.52 (7.57) <0.001
PM10 (µg/m3) 23.05 (12.25) 20.42 (13.46) 20.73 (12.45) 22.66 (12.21) 19.71 (12.95) 21.40 (12.7) 20.54 (13.95) <0.001

PM2.5–10 (µg/m3) 8.86 (5.83) 8.24 (6.78) 8.46 (5.66) 8.48 (6.16) 8.49 (6.07) 8.51 (6.83) 8.14 (7.43) <0.001
NO2 (µg/m3) 21.54 (11.09) 19.88 (9.87) 20.31 (10.84) 19.36 (10.61) 17.96 (9.90) 19.91 (10.56) 11.96 (7.19) <0.001
CO (mg/m3) 0.49 (0.29) 0.44 (0.25) 0.41 (0.22) 0.45 (0.24) 0.40 (0.17) 0.44 (0.24) 0.38 (0.24) <0.001
O3 (µg/m3) 92.93 (18.97) 87.55 (18.94) 94.95 (18.45) 85.80 (20.71) 83.36 (20.75) 89.15 (20.00) 85.13 (22.66) <0.001

SO2 (µg/m3) 3.35 (2.70) 2.89 (2.39) 2.83 (2.46) 2.63 (2.31) 2.82 (3.49) 2.91 (2.66) 2.46 (2.89) <0.001
Daily Average deaths counts

Age < 65 years 200 (17) 192 (15) 190 (15) 192 (17) 187(17) 192 (17) 196 (37) 0.097
Age ≥ 65 years 1590 (150) 1523 (104) 1544 (82) 1548 (154) 1573 (125) 1555 (128) 1939 (556) <0.001

Female 941 (93) 887 (66) 903 (53) 906 (93) 918 (80) 911 (80) 1093 (271) <0.001
Male 849 (70) 828 (50) 831 (46) 835 (73) 842 (64) 837 (62) 1043 (325) <0.001
Total 1790 (157) 1715 (109) 1734 (88) 1740 (161) 1759 (135) 1748 (135) 2136 (590) <0.001

Mean and SD (Standard deviation) were presented; p-Value was calculated by independent Two-Sample t-Test comparing observations in
2020 versus all observations in 2015–2019.
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Figure 2. Cumulated relative risk (RR) of all-cause mortality and group-specific mortality associated with a 10 µg/m3

increase in the concentrations of particulate matter (PM2.5 with an aerodynamic diameter ≤ 2.5 µm; PM10, ≤ 10 µm;
PM2.5–10, 2.5–10 µm).

Table 2. Attributable fractions and attributable counts of all-cause mortality due to PM2.5, PM10, and PM2.5–10 during March
to May in 2020 and 2015–2019, respectively.

PM Subgroups Attributable Mortality Fractions (%) Attributable Deaths

2020 2015–2019 2020 2015–2019

PM2.5 Total 10.21 (7.13, 13.31) 2.44 (1.63, 3.23) 20,062 (13,811, 25,862) 3927 (2693, 5171)
Female 8.05 (4.15, 11.60) 3.11 (1.95, 4.22) 8094 (4129, 11688) 2605 (1680, 3560)
Male 12.36 (8.26, 16.29) 1.70 (0.47, 2.87) 11,860 (8009, 15371) 1308 (465, 2182)

Age < 65 years 7.42 (−0.41, 14.32) 0.01 (−2.54, 2.43) 1340 (−86, 2685) 1 (−474, 454)
Age ≥ 65 years 10.47 (7.34, 13.76) 2.73 (1.85, 3.57) 18,675 (12,494, 23,935) 3902 (2691, 5006)

PM10 Total 7.69 (5.82, 9.59) 2.49 (1.80, 3.19) 15,112 (11,381, 18,574) 3999 (2886, 5111)
Female 7.97 (5.74, 10.09) 3.16 (2.21, 4.13) 8013 (5793, 10150) 2652 (1844, 3449)
Male 7.38 (4.99, 9.96) 1.73 (0.72, 2.79) 7081 (4758, 9233) 1334 (542, 2103)

Age < 65 years 5.21 (0.72, 9.78) 0.3 (−1.87, 2.33) 942 (147, 1721) 53 (−345, 418)
Age ≥ 65 years 7.93 (6.08, 9.85) 2.75 (2.1, 3.43) 14,144 (10,859, 17,330) 3932 (2883, 4948)

PM2.5–10 Total 3.66 (2.67, 4.67) 1.43 (0.88, 1.94) 7193 (5163, 9144) 2303 (1494, 3119)
Female 3.88 (2.65, 5.04) 1.66 (0.99, 2.39) 3905 (2734, 5073) 1389 (819, 1991)
Male 3.43 (2.13, 4.69) 1.18 (0.39, 1.89) 3293 (2085, 4452) 910 (296, 1471)

Age < 65 years 2.70 (0.15, 4.93) 0.99 (−0.62, 2.46) 488 (59, 934) 175 (−102, 436)
Age ≥ 65 years 3.76 (2.67, 4.82) 1.48 (0.97, 1.98) 6707 (4705, 8451) 2123 (1375, 2861)

To be able to compare with the attributed deaths in 2020 (single year), we reported annual average attributed deaths in 2015–2019 (i.e.,
dividing the cumulated value by 5 years).

Sensitivity results in Figure S4 consistently showed a stronger PM-mortality asso-
ciation during the 2020 pandemic period compared to the associations during the same
months in each year of 2015–2019, despite the variations after adjusting for different
gaseous pollutants. Likewise, when we used different lag days of PM (lag 0–4 and lag 0–5
for PM2.5, lag 0–3 and lag 0–4 for PM10, and lag 0–2 and lag 0–3 for PM2.5–10), the effects
remained higher during the 2020 pandemic period than the same period in 2015–2019
(Figure S5).

4. Discussion

To the best of our knowledge, this the first study in the world to investigate the
relationship between PM air pollution and daily all-cause mortality during the COVID-19
pandemic period. In this study, we examined the effects of PM (PM2.5, PM10, and PM2.5–10)
on daily all-cause mortality in 107 Italian provinces and compared the mortality risks
and mortality burdens associated with PM before and during the COVID-19 pandemic.
The mortality risks (vulnerability) and burden associated with PM2.5, PM10, and PM2.5–10
in the pandemic were significantly higher than risks estimated in 2015–2019. People
aged ≥ 65 years were consistently at higher risk than younger people in both pandemic
period and normal periods. Exposure to PM air pollution has been identified as the risk
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factor for excess mortality [37,38]. Our results are in line with a previous multi-country
epidemiological study [39], in which it observed a 0.65% (95% CI: 0.26%, 1.04%) increase
in all-cause mortality risk per 10 µg/m3 increase at lag 0–1 of PM10 in 18 Italian cities
during 2006–2015. Although the effect estimate is slightly lower than ours for PM10 at lag
0–2 (increased risk: 1.11% (95% CI: 0.79%, 1.42%)), such difference in the PM10-mortality
associations could be ascribed to the heterogeneity in period and season, as PM-mortality
association might be stronger during cold months that we chose [40].

In this study, we found that PM-attributed deaths during the COVID-19 pandemic in
2020 were 5 times higher than the same months during 2015–2019, despite a lower PM level.
One potential explanation is that PM may contribute directly to the COVID-19 related
deaths. Most current studies have reported a positive association between ambient PM2.5
or PM10 and COVID-19 deaths [26,41–47], although they were limited by the inaccurate
official reports of COVID-19 deaths. A review study highlighted the potential role of PM
in the spread of COVID-19, focusing on Italian cities in which correspondence between
poor air quality and COVID-19 induced mortality was the starkest yet [48]. First, COVID-
19 could have an air transmission [49,50] and atmospheric PM could create a suitable
environment for transporting the virus at greater distances than those considered for close
contact [51]. Second, PM has been shown to induce inflammation in lung cells [52] and
exposure to PM could increase the susceptibility and severity of the COVID-19 patient
symptoms [53].

However, the increase of PM-related mortality during the pandemic period could
also be from non-COVID-19 causes, particularly for those vulnerable populations (e.g.,
elderly people, people with chronic diseases). For example, during the early days of
the COVID-19 outbreak, the regional disparities in health-care resource availability and
accessibility [54] could play an important role in the change of the vulnerability to PM
related deaths. In March, though Italy’s health system has 3.2 hospital beds per 1000 people
(as compared with 2.8 in the United States), it was over occupied to meet the needs of
rapid surge of COVID-19 cases [55]. The health needs created by the coronavirus pandemic
went well beyond the capacity of national health system, and diagnostic, therapeutic,
and preventive interventions were scarce and rationed [54,56]. In the worst scenario,
patients with PM-related diseases would die while waiting for needed resources (e.g., ICU,
ventilator, and acute care) [57]. This hypothesis is supported by observations showing a
significant decrease in hospitalization rates for acute coronary syndrome (13.3 admissions
per day versus 18.0) [58] and acute myocardial infarction (a reduction of 52.1% in North
Italy, 59.3% in Central Italy, and 52.1% in South Italy) [59] compared with the equivalent
time in 2019 in Italy.

The interaction between SARS-CoV-2 infection and cardiovascular diseases could
be another possible reason. Pierre et al. have examined the effects of PM on public
health including increased risks of hospital admissions and mortality for respiratory and
cardiovascular disease, and investigated that cardiovascular diseases are the main cause
of mortality attributed to PM10 in Italy [60]. Current COVID-19 case reports show that
patients with cardiovascular diseases may be more susceptible to SARS-CoV-2 infection. It
can be seen not only that the number of COVID-19 patients with cardiovascular disease is
large, but also that these patients have poor tolerance to severe pneumonia and are more
likely to develop severe cases [61].

We found that the impacts of PM on all-cause mortality lasted longer during the
pandemic period than those in normal time, and there was a trend that the mortality impacts
strengthened rather than weakened with lag days elongated. This could be explained by
delay or disruptions in routine and nonemergency medical care access and delivery caused
by the pandemic and lockdown measures. In this scenario, the health conditions induced
by PM exposure cannot be addressed timely; thus, they tended to become worse and worse
as time went by. We also investigated the different effects between gender and age groups
in the pandemic and normal periods. With regards to the age-stratified analysis, older
people generally have a higher risk of PM-related death risk in both pandemic period and
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pre-pandemic periods, which was consistent with most previous studies [62,63]. Though
the detailed reasons are still unclear, pre-existing cardiovascular and respiratory diseases
are more prevalent in elderly people, and it may enable the elderly to be more susceptible
to ambient PM air pollution.

There are some limitations to this study. First, like most case-crossover or time-series
studies, we used province-level air pollution to represent the individual-level exposure,
which is likely to cause random exposure assessment error, and thus, underestimate the
PM-mortality associations [64]. However, since the same design was applied to the 2020
and 2015–2019 period, this error is not likely to affect our main findings. Second, we were
not able to assess the actual indoor exposures to PM, which might be important because
people would increase the indoor time during the lockdown period. We found evidence of
the correlation between outdoor and indoor pollutant concentrations from previous studies
in Italy or European cities. For example, the correlations between 24-h average indoor and
outdoor PM2.5/PM10 concentrations were substantially high in Helsinki, Amsterdam, and
Birmingham (correlation among cities ranged from 0.40 to 0.80 for PM2.5, 0.31 to 0.77 for
PM10) [65]. Another study detected strong association (r = 0.74, p < 0.01) between indoor
and outdoor PM observations across five European countries (Finland, Greece, Hungary,
Italy, and the Netherlands) [66]. Wenjing et al. analyzed the published data to examine the
health effects of indoor exposure to PM of outdoor origin, following an extensive review of
the research in China, US, Europe (including Italy), and globally [67]. The findings suggest
that indoor PM pollution of outdoor origin is a cause of considerable mortality, accounting
for 81% to 89% of the total increase in mortality associated with exposure to outdoor PM
pollution for the studied regions. Finally, we cannot exclude the COVID-19 deaths from our
analyses because the daily data were not available at province level. Therefore, we were
uncertain about whether the increase in PM-mortality association was due to COVID-19
deaths or deaths due to other causes.

Ambient PM exposures during the COVID-19 pandemic have important health im-
plications. Even though the quarantine reduced air pollution level, the health cost is still
significant given the increased vulnerability to ambient PM. In response to the pandemic,
stricter regulation on air quality standard for ambient PM than pre-COVID time is needed.
Secondly, our findings underscore the importance of giving close attention to specific
vulnerable groups.

5. Conclusions

With a large nationwide data set covering 107 Italian provinces, we observed sig-
nificantly increased impacts of PM on all-cause mortality during the pandemic period
compared to pre-COVID-19 periods. This suggests the historical exposure-response rela-
tionship between PM and mortality may underestimate the health impacts of PM during
the COVID-19 pandemic, although air pollution concentrations declined.

Supplementary Materials: The following are available online at https://www.mdpi.com/2305-630
4/9/3/56/s1, Table S1: Estimation of the differences of increased relative risk (RR) between different
time periods and subgroups, Method S1: Calibration of ERA5 temperature data against weather
observations, Figure S1: Distribution of weather stations that used to calibrate the ERA5 daily
temperature and dew point temperature (see Method S1), Figure S2: 10-fold cross-validation of the
random forest model that using ERA5 daily mean temperature and dew point temperature and other
covariates to predict the daily mean temperature and dew point temperature observed by weather
stations. (A) daily mean temperature, and (B) daily mean dew point temperature (see Method S1),
Figure S3: RR (mean and 95%CI) of all-cause mortality associated with per 10 µg/m3 increase in
PM concentrations in single-pollutant models on different lag days of PM2.5, PM10 and PM2.5–10,
Figure S4: Cumulated RR (mean and 95%CI) of all-cause mortality associated with per 10 µg/m3

increase in PM concentrations in single- and multi-pollutant models, Figure S5: Cumulative RR
(mean and 95%CI) of all-cause mortality associated with per 10 µg/m3 increase in PM concentrations
in single-pollutant models on different lag days of PM2.5, PM10 and PM2.5–10.
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