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Abstract: Nowadays, arsenic (III) contamination of drinking water is a global issue. Laboratory
and instrument-based techniques are typically used to detect arsenic in water, with an accuracy of
1 ppb. However, such detection methods require a laboratory-based environment, skilled labor, and
additional costs for setup. As a result, several metal-based nanoparticles have been studied to prepare
a cost-effective and straightforward detector for arsenic (III) ions. Among the developed strategies,
colorimetric detection is one of the simplest methods to detect arsenic (III) in water. Several portable
digital detection technologies make nanoparticle-based colorimetric detectors useful for on-site
arsenic detection. The present review showcases several metal-based nanoparticles that can detect
arsenic (III) colorimetrically at a concentration of ~0.12 ppb or lower in water. A literature survey
suggests that biomolecule-based metal nanoparticles could serve as low-cost, facile, susceptible,
and eco-friendly alternatives for detecting arsenic (III). This review also describes future directions,
perspectives and challenges in developing this alternative technology, which will help us reach a
new milestone in designing an effective arsenic detector for commercial use.

Keywords: arsenic; nanoparticles; colorimetric detection; groundwater contamination; arsenicosis

1. Introduction

Globally, intake of arsenic (III) and arsenic (V) ions via food and drinking water has
dramatically increased, as per several recent reports [1–8]. Approximately 200 million
people worldwide are affected by arsenic toxicity [9]. According to the World Health Orga-
nization (WHO), arsenic in drinking water at a concentration of >10 ppb is highly unsafe
to community health [10,11]. Arsenic comes to the groundwater surface via magmatism
and periodic erosion [12–14]. In addition, several human activities are also responsible
for raising the concentration of arsenic levels in groundwater. Industries that discharge
effluents with arsenic into the soil or natural water resources include those involved in
agrochemicals, pesticides, wood processes, and preservatives [15–17].

In general, inorganic arsenite and arsenate salts are naturally present in groundwater.
A small amount of arsenic comes from organic compounds, such as dimethyl arsenic
acid, dithioarsenate, and monomethyl arsenic acid [18,19]. Arsenic may present in four
oxidation states, e.g., −3, 0, +3, and +5. Out of these, the trivalent and pentavalent forms of
arsenic species are harmful to animals and plants [20,21]. The toxicity may vary with the
type of exposure and oxidation state of arsenic. In particular, trivalent arsenic species are
more toxic than pentavalent arsenic species [9,22]. Long-term arsenic exposure causes a
variety of diseases, including arsenicosis, hemolysis, cancer, neurological disorders, and
painful patches on the hands and feet [20,23]. Therefore, arsenic (III) concentrations in
drinking water should be measured to avoid any harm to living organisms. Many detection
methodologies have been adopted to measure arsenic levels in water steam, such as Raman
spectroscopy (RS) [24], the fontal chromatography–ICP–MS method (FC–ICP–MS) [25],

Toxics 2021, 9, 143. https://doi.org/10.3390/toxics9060143 https://www.mdpi.com/journal/toxics

https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0003-3062-2321
https://orcid.org/0000-0001-7696-8649
https://doi.org/10.3390/toxics9060143
https://doi.org/10.3390/toxics9060143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxics9060143
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics9060143?type=check_update&version=1


Toxics 2021, 9, 143 2 of 17

total reflection X-ray fluorescence (TXRF) spectrometry [26], Surface-enhanced Raman
spectroscopy (SERS) [27], electrothermal atomic absorption spectrometry (ETAAS) [28],
inductively coupled plasma mass spectroscopy (ICP–MS) [29], laser-induced breakdown
spectroscopy (LIBS) [30], and atomic fluorescence spectroscopy (AFS) [31], all of which are
sufficient to detect arsenic. In addition, chemisorbent resins provide a new approach to
arsenic speciation [32]. However, these instrument-based strategies require a managed lab
environment, a long operating time, trained labor, and pure chemicals [33].

Moreover, instruments that require electrical power and additional services have
restricted use for on-site applications [34]. Therefore, a cheap and facile method, such as
colorimetric detection of arsenic in water, can be an effective alternative. recent decades,
researchers have explored metal nanoparticles (alone or in combination) based on colorimet-
ric detectors to overcome the sensing system’s drawbacks. Specifically, gold nanoparticles,
silver nanoparticles, metal-organic frameworks (MOFs), and metal graphene nanocom-
posites are extensively employed to fabricate arsenic sensors [35–42]. These colorimetric
sensors can detect arsenic (III) ions efficiently in an aqueous medium. Metal nanostructures
have excellent properties for the colorimetric determination of arsenic. However, these
need significant improvement for practical applications.

Therefore, this review work investigates the recent developments in metal-based
nanoparticles for the colorimetric detection of arsenic (III) in water. This review summarizes
the sustainable, cost-effective and efficient strategies for arsenic sensing to realize these
sensors in the real world.

2. Arsenic and Its Harmful Effects

An arsenic metalloid is one of the most naturally abundant metalloids, and it is also
the most carcinogenic metalloid to living organisms. Its isotope has four oxidation states,
from −3 to +5. Water contamination with arsenic can occur through insecticides, industrial
effluents, municipal sewage, and household waste [21,43]. A schematic representation of
human exposure to arsenic is shown in Figure 1.
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Daily intake of arsenic-contaminated drinking water can create acute to chronic health
impacts. Acute arsenic toxicity has been reported to cause acute paralytic syndrome (APS)
and acute gastrointestinal syndrome (AGS) [44]. The central nervous system is depressed,
and the cardiovascular system collapses in APS. Central nervous depression is caused by
the necrosis of both white blood cells (WBCs) and red blood cells (RBCs) [45]. Arsenic (III)
affects blood vessels, causing blood circulation problems and the sensation of pins and
needles in the hands and feet [44]. AGS symptoms start with a taste of garlic, burning
lips, dry mouth, and dysphagia [46]. Adsorption of arsenic by human beings for a longer
time results in black-foot illnesses [47], lung cancer [48], and bladder cancer [49]. The
symptoms are initially insidious in arsenicosis and based on the dose magnitude and
exposure duration [50]. The exact mechanism of the occurrence of arsenicosis diseases
in human organs is unclear. Arsenic biomethylation is crucial for the elucidation of its
toxic and carcinogenic action. Arsenic transforms enzymatically into methyl arsenic [CH3
AsO2

2−] and dimethyl arsenic [(CH3)2 AsO2
2−] [51]. Arsenic can also cause genetic changes

such as inhibition of DNA repair enzymes and changes in DNA methylation patterns [52].
Specific skin patches in pigmentation and keratosis are the common characteristics of

chronic arsenic toxicity. Pigmentation may also involve mucous membranes such as the
tongue under the surface or buccal mucous membranes [50]. Additionally, Leucomelanosis
tends to occur in a patient with arsenicosis [53]. Numerous epidemiological studies have
examined the risk of various cancers associated with arsenic absorption through drinking
water. Many of these studies are ecological, and others suffer from methodological faults,
particularly in exposure measurement [54]. However, there is significant evidence that
greater arsenic levels in drinking water are linked to cancer growth in various locations,
including the skin, bladder, and lungs. Arsenic-induced illness, including cancer, is a
significant public health issue across the globe [54]. Hence, it is urgent to measure the
concentration of arsenic in drinking water to identify arsenic-contaminated water. The
identification followed by purification of arsenic-contaminated water can control the
arsenicosis disease.

3. Colorimetric Sensing of Arsenic

In terms of ease of signal transduction, colorimetric analysis of arsenic has become
the most practically applicable method. The Gutzeit method is one of the most commonly
used methods for colorimetric analyses of arsenic. This method was employed to develop
arsenic field test kits [55]. Although the Gutzeit method-based technique is economical, it
produces toxic arsine gas as by-products. The molybdenum blue is also frequently used
to detect arsenic in water samples. The molybdenum blue-based method is specific to
arsenic (V); the interaction between arsenic (V) and reduced molybdenum resulted in the
appearance of the blue color [56]. Therefore, the molybdenum blue could differentiate
arsenic (V) and arsenic (III).

Researchers explored metal nanostructure-based materials to make arsenic colori-
metric sensors more sensitive, rapid, precise, economical, and efficient. Mainly, metal
nanostructures-based sensors have been used to elaborate on a fundamental principle of
color conversion, studied for colorimetric detection of arsenic solution [41]. This paper
discusses the potential of metal-based nanoparticles for arsenic detection.

3.1. Gold-Based Nanoparticles

Scientists have focused extensively on developing gold nanoparticle (AuNP)-based
sensors to detect arsenic in water samples. Recently, gold-modified lauryl sulfate nanopar-
ticles with a limit of detection (LOD) of 2 ppb were reported for colorimetric sensing of
arsenic (III), using localized surface plasmon resonance (LSPR) [57]. The LSPR band shifted
due to the color change of AuNPs—i.e., pink to blue—with arsenic (III) ions due to the inter-
particle coupling effect. Lauryl sulfate acts as a capping agent of AuNPs and is aggregated
and replaced by the arsenic contaminant. The modification of AuNP surfaces with sulfur-
containing compounds is highly beneficial in enhancing AuNP-based colorimetric sensors’
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sensitivity; arsenic generally displays the intrinsic property of a potent binding affinity for
sulfur-containing compounds. Therefore, glutathione (GSH), dithiothreitol (DTT), cysteine
(Cys), and 2,6-pyridine dicarboxylic acid (PDCA) [GSH-DTT-CYs-PDCA]-functionalized
AuNPs can detect arsenic (III) in water [58]. Arsenic (III) has a strong affinity for these
ligands [59,60]. Arsenic (III) ions can interact with 3 DTT-conjugated gold nanoparticles
through an As-S bond, as shown in Figure 2A–F [61]. However, there is no free SH group
available for binding with arsenic (III) ions in the case of GSH- or Cys-conjugated gold
nanoparticles. Figure 2G,H shows the colorimetric response of GSH/DTT/Cys-modified
gold nanoparticles after the addition of arsenic (III) [61]. The addition of PDCA improved
the test selectivity for arsenic (III) ions much more because PDCA could not interact
with gold nanoparticles through the SH linkage in the same way as DTT, GSH, and Cys
(Figure 2I,J) [61].
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Figure 2. Representation of AuNP-based arsenic detection. (a) DTT-modified AuNPs; (b) Cys-modified AuNPs; (c) GSH-
modified AuNPs; (d) TEM image showing GSH/DTT/Cys-modified AuNPs before the addition of arsenic (III); (e) TEM
image demonstrating aggregation of GSH/DTT/Cys-modified AuNPs after addition of 80 ppb arsenic (III); (f) TEM image
after the addition of 250 ppt arsenic (III); (g) photograph showing colorimetric change of GSH/DTT/Cys-modified gold
nanoparticles upon addition of 800 ppb arsenic (III); (h) absorption profiles of modified gold nanoparticles before and after
addition of arsenic (III) ions; (i) photograph showing colorimetric changes of GSH/DTT/Cys-modified gold nanoparticles
in the presence of PDCA upon addition of various metal ions (5 ppb) and (j) different concentrations of arsenic (III) [61].
Copyright 2009, reproduced with permission from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

Moreover, it exhibited a LOD of 1 ppb, which is less than the allowable limit (as
per Environmental Protection Agency (EPA) guidelines) of arsenic. Eco-friendly glucose-
functionalized gold nanoparticles are also sufficient for the colorimetric detection of arsenic
(III) in water [41]. The glucose-functionalized AuNPs exhibited an LOD of 0.53 ppb.
Hydroxyl groups of glucose interacted with gold particles and formed chemical bonds, sta-
bilising gold nanoparticles and reducing the inter-particle distance among the nanoparticles.
The color of nanoparticles changes depending on their inter-particle distance. Glucose-
functionalized gold nanoparticles showed a red color, but this changed sharply to blue
with arsenic [41].

Moreover, citrate-capped gold nanoparticles showed a detection limit for arsenic (III)
ions that was lower than 10 ppb due to more interaction of citrates ion with arsenic (III)
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ions [62]. Additionally, Mangifera indica Leaf Extract mediated AuNPs can detect arsenic at
a limit of 1.2 ppb by the colorimetric detection technique. The leaf extract of the Mangifera
indica acted as a reducing and stabilizing agent [63]. Encapsulation of gold Mangifera indica
flower extract can detect arsenic (III) ions in water at optimum conditions [64]. Using LC–
MS/MS, the authors reported that Mangifera indica flower extract contains more mangiferin
(977 ppb) than 3-hydroxy flavone (4 ppb). As shown in Figure 3, the theoretical study
shows that the mangiferin and 3-hydroxy flavone present in Mangifera indica flower extract
are responsible for detecting arsenic in aqueous media [64].
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However, glutathione-functionalized gold nanoparticles in RGB can carry out a fast
colorimetric detection of arsenic (III) [65]. The detection limit of arsenic was 0.12 ppb,
with a detection accuracy of around 2%. As shown in Figure 4, GSH-functionalized
AuNPs displayed excellent selectivity towards arsenic (III) ion in a water medium. Arsenic
ions bind to GSH ligands, causing AuNP aggregation and a rapid color change in the
solution [65].

3.2. Silver-Based Nanoparticles

Silver nanoparticles provide a rapid response to localized surface plasmon resonance
compared to gold nanoparticles with enhanced sensitivity [66]. As in AuNPs, various cap-
ping agents have been exploited to construct silver nanoparticles for sensitive and selective
sensing of arsenic. PEG-functionalized silver nanoparticles’ are well-suited for detecting
arsenic (III) ions in an aqueous medium [40]. The PEG-modified silver nanoparticles are
sufficient enough to detect arsenic (III) in 1 ppb due to the addition of PEG. In addition,
PEG-functionalized silver nanoparticles have adjustable negative surface charges, respon-
sible for the stability of nanoparticles, and the electrostatic repulsion between negatively
charged surfaces of silver nanoparticle protects them from accumulation.
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Interestingly, in the presence of arsenic (III), these functional silver nanoparticles inter-
acted with PEG hydroxyl groups, which led to the aggregation of silver nanoparticles [67].
As a result, the color of functionalized nanoparticles changed from yellow to bluish [40], as
shown in Figure 5. Additionally, arsenic in Aptamer-AgNP solution remarkably decreases
the absorbance peak due to the formation of the As–Aptamer–AgNPs complex. This testing
method indicates highly selective detection of arsenic (III) ions with a LOD of 6 ppb and a
linear range of 50 to 700 ppb [68].
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AgNPs functionalized with polyvinylpyrrolidone (PVP) have a significant affinity
for arsenic (III) ions, as adding arsenic (III) ions to PVP-AgNP improved electrostatic
interactions and morphological changes in nanoparticles. The UV–Vis spectra of AgNPs
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with different concentrations of arsenic (III) ions are shown in Figure 6 [69]. In addition,
silver nanoplates (AgNPls) changed color quickly in the presence of arsenic (III) and arsenic
(V). Ferrihydrite-coated silica gel has improved the selectivity of AgNPs towards arsenic
(V) (SiO2-Fh). The AgNP-SiO2-Fh Acomposites can detect arsenic in concentrations ranging
from 500 to 30000 ppb [70].
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Figure 6. (A) Concentration-dependent color-coded sensing of arsenic (III) between the concentration range of 10−6 to
10−3 M, (B) tuning of SPR as a result of morphological change of AgNPr at different concentrations of arsenic (III) between
10−6 and 10−3 M where (B) shows the variation of plasmon band at different lower concentrations of arsenic (III) in the range
of 0.0–10.0 µM (0.0 µM (blank): black trace (λmax = 704 nm), 1.0–2.0 µM: blue trace, 2.0–4.0 µM: orange trace, 5.0–7.0 µM:
red-violet trace, 8.0–10.0 µM: blue-violet trace) and (C) at different higher concentrations of arsenic (III). The plasmon band,
and hence the color of the nanomaterials, changes in a distinct manner, where a specific color remains unchanged in a
broader range of growing concentrations such as: 10.0–80.0 µM: yellow, 90.0–100.0 µM: orange, 110.0–200.0 µM: dark red,
250.0–500.0 µM: purple, 750.0 µM to 2 mM: different shades of blue, 3–10 mM: faded blue, and above 10 mM the color
becomes faint blue to grey or almost colorless [69]. Copyright 2019, reproduced with permission from American Chemical
Society, Washington, DC, USA.

Recently, multi-ligand-based AgNPs were studied to detect arsenic (III) using the
colorimetric approach. It could be synthesized by the chemical reduction method using
asparagine (Asn) as the capping agent and further alteration with reduced GSH and
DTT. The synthesized GSH/DTT/Asn–AgNPs could be used as multifunctional probes
for an multimodal arsenic assay (III) due to their outstanding plasmonic properties and
characteristic electrochemical activity. This approach can detect arsenic even at a low
concentration of 0.36 ppb [71].
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3.3. Metal Oxide-Based Nanoparticles

Nanostructured transition metal oxides such as Fe3O4, MgO, TiO2, ZnO, NiO, SnO2,
CeO2, MnO2, ZrO4, and NiWO4 are used for heavy metal sensing. Transition metals are
usually economical, highly conductive, suitable adsorbents and highly stable [72]. There-
fore, metal nanoparticles displayed excellent performances for the detection of arsenic
(III) ions in water. For example, Fe3O4 nanoparticles bonded with gold ligands exhibited
excellent selectivity and quick visual detection of arsenic. The Fe3O4 @Au-based colorimet-
ric system exhibited a LOD of 0.86 ppb for arsenic (III) detection [73]. In another report,
α-Fe2O3 was prepared from a waste banana peel extract because banana peel contains
excessive polyphenols and flavonoids that act as reducing agents. Almost similar size
(60 nm) nanoparticles were used to simultaneously detect and adsorb arsenic (V). The
α-Fe2O3-based colorimetric sensor exhibited a LOD of 100 ppb for arsenic (V) [74]. The
positive charge of nanoparticles facilitated the high adsorption of negatively charged arse-
nate ions due to electrostatic interaction. A schematic of the synthesis of α-Fe2O3 and its
application in detecting arsenic (V) is shown in Figure 7 [74].
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DNA-functionalized Fe3O4 nanoparticles showed significant affinity and selectivity
towards arsenic and could be used to detect arsenic in water up to 0.95 ppb by the fluores-
cence quenching technique [75]. Furthermore, other nanoparticles, e.g., CeO2 nanoparticles,
were modified with DNA to investigate arsenic levels [76]. The desorption of DNA from
nanomaterials is caused by interactions between DNA-conjugated nanostructures and ar-
senic. The results showed that CeO2 nanoparticles had improved performances compared
to Fe3O4, with the LOD nearly 10-fold less than Fe3O4 [76]. A novel CuInS2 quantum
dots@magnetic Fe3O4 nanocomposite-based "turn off" nanosensor for arsenic detection
was revealed. The CuInS2 quantum dots@magnetic Fe3O4 was able to detect at as low as
10 ppb [77]. A schematic illustration of the fabrication of CuInS2 quantum dots@magnetic
Fe3O4 is shown in Figure 8.
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Fe3O4 NPs [77]. Copyright 2015, reproduced with permission from Elsevier B.V., Amsterdam, The
Netherlands.

Cobalt oxyhydroxide (CoOOH) nanoflakes showed significant arsenic detection ef-
ficiency in addition to iron oxide [78]. CoOOH nanoflakes show peroxidase-like activity,
which produces a green-colored oxidation product in the presence of H2O2 and 2,2′-
azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Interestingly, the green color was
not observed in the presence of arsenic, as arsenic binds with CoOOH through electro-
static attraction and forms an As–O bond to inhibit peroxidase-like activity. Therefore,
it can effectively detect arsenic in water using the colorimetric method with a LOD of
3.72 ppb [78].

3.4. Metal GO- or CNT-Based Nanoparticles

A variety of nano-scale carbon-based building blocks, including nanotubes, graphene
and graphene oxide, have drawn significant interest as electrode materials for detection of
heavy metals owing to their extraordinary physical and chemical properties, i.e., elevated
surface area, high electrical conductivity, powerful mechanical strength, biocompatibility
and low manufacturing costs [79,80]. Graphene oxide (GO) has a two-dimensional plane
and many functional groups containing oxygen with the disorder on the basal planes
and edges. The GO develop significant mechanical properties and chemical sensing activ-
ity [81]. Recently, a magnetic graphene quantum dot-based sensor (fluorescence probe)
was reported as a highly sensitive and arsenic-selective material [82]. The fluorescent
zinc oxide and CdS quantum dots (QDs) were revealed as arsenic sensor components
by fluorescence spectroscopy [83,84]. A magnetic graphene quantum dot-based sensor
yielded better outcomes than ZnO (QDs) and CDS (QDs) due to the presence of iron
oxide, which offered more contact for the formation of the chelating complex with ar-
senic in the medium [82]. A research group has recently reported a highly selective and
sensitive and cost-effective prism-based SPR sensor integrated with a hydrous ferric oxide-
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magnetite-reduced graphene oxide nanocomposite to detect arsenic ions at a detection
limit of 0.1 ppb [85].

3.5. Metal-Organic Framework

The MOFs are essential in separation, drug delivery and catalysis fields [86]. The MOF
shows the attractive hybrid characteristic of organic bridging ligands and metal particulates
in a framework that displays a larger surface area [87]. The large surface area of MOFs
offers multiple channels for guest molecules to enter and interact with the framework. This
phenomenon is quite helpful for trapping targeted pollutants effectively and fulfils the
requirement of detection and removal of contaminates. The intrinsic open pore structure
and extensive channels can encourage the quick diffusion and transportation of targeted
pollutants, thus ensuring a rapid response time, selective detection and fast kinetics [88].
Hence, MOF materials are becoming promising candidates for sensing and removing
arsenic simultaneously [89]. Several recent studies have shown MOFs’ proper function
and composites to detect and remove arsenic [90,91]. Figure 9 illustrates a modification
of MOFs to coordinate arsenic (V) moieties at the node [90]. Therefore, amino-decorated
MOF products are interesting.
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The amino-functionalized iron-based MOFs showed good selectivity for arsenic (III)
identification. The most frequently observed MOF structure warped after coming into
contact with water. High-valance metal ions such as Cr (III), Zr (IV), Fe (III), and Al (III)
were used to build chemically stable coordination bonds to improve the water stability of
ligand-based carboxylate MOF. The introduction of ligands with hydrophobic functional-
ity such as methyl, ethyl, and trifluoromethyl is important to protect metal bodies from
hydrolysis [92,93]. Therefore, two organic tritopic carboxylic acids with methyl and ethyl
groups, dimethyl-5′-(4(methoxycarbonyl)phenyl)-2′,4′,6′-trimethyl-[1,1′:3′,1′ ′-terphenyl]-
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4,4′ ′-dicarboxylic acid (H3CTTA) and dimethyl-2′,4′,6′-triethyl-5′-(4-(methoxycarbonyl)
phenyl)-[1,1′,3’,1′ ′-terphenyl] -4,4′ ′-dicarboxylic acid (H3CETA) were synthesized. Then,
both H3CTTA and H3CETA were reacted with aluminium nitrate in DMF solvent, respec-
tively. The materials derived from this reaction were observed to be extremely porous and
labeled Al-MOF (CTTA) and Al-MOF (CETA). Al-MOF (CTTA) exhibited an improved
detection efficiency to arsenic (III) from roxarsone (ROX) and nitrosone (NIT) [92].

The above information has been summarized in Table 1 to compare the colorimetric
detection performances of nanoparticles.

Table 1. The LOD of arsenic (III) using various nanoparticles and a colorimetric approach.

No Metal Nanoparticles Limit of
Detection (ppb)

Range of
Detection (ppb) Reference

1. S–layer protein–AuNPs 240 240–2400 [37]

2. Glucose–AuNPs 0.53 1–14 [41]

3. AuNPs-lauryl sulfate 2.0 5–500 [57]

4. GSH–DTT-CYs–PDCA–AuNPs 2.5 2–20 [58]

5. Glutathione + AuNPs 0.003 n.a. [61]

6. AuNPs-PEG 5.0 n.a. [94]

7. Aptamer-based AuNPs 1.26 1.26–200 [95]

8. Aptamers-AuNPs-surfactant 0.6 1–1500 [96]

9. Citrate-capped AuNPs 1.8 4–100 [62]

10. Mangifera indica leaf extract–AuNPs 1.2 n.a. [63]

11. GSH-functionalized AuNPs 0.12 n.a. [65]

12. ssDNA–AuNPs 0.18 1–30 [97]

13. Aptamer–CTAB–AuNPs 16.9 1–100 [98]

14. AuNPs DNA aptamer 161 76.6–766 [99]

15. DMSA-Au nanorod 1.0 n.a. [100]

16. DTT–AuNRs 10 10–100.1 [101]

17. Europium–AuNPs 10 n.a. [102]

18. Au-cationic polymer and aptamer 5.3 n.a. [103]

19. Peptide–AuNPs 1.5 n.a. [104]

20. Thioctic acid–thioguanine–AuNPs 1.0 n.a. [105]

21. Asparagine–AuNPs 100 100–2000 [106]

22. Sucrose–AuNPs 20 50–3000 [107]

23. PEG–AgNPs 1.0 5–13 [40]

24. Aptamer–AgNPs 6.0 50–700 [68]

25. AgNPls-SiO2-Fh 500 500–3000 [70]

26. AgNPls-SiO2-Fh 500 500–30,000 [70]

27. GSH/DTT/Asn–AgNPs 0.36 0.4–20 [71]

28. Fe3O4 (core)-gold (shell)-thiol ligands 0.86 n.a. [73]

29. α-Fe2O3 100 100–2000 [74]

30. DNA-functionalized Fe3O4 nanoparticles 0.95 n.a. [75]

31. CuInS2 quantum dots@magnetic Fe3O4 10 0.015–15384.6 [77]

32. Cobalt oxyhydroxide (CoOOH) nanoflakes 3.72 4–500 [78]

33. Zinc oxide modified with curcumin 100 100–3000 [108]

34. Oxidase-mimicking activity of Mn3O4 NPs 1320 5000–100,000 [109]

35. Dithiothreitol-capped Pd nanoparticles 3.5 3.3–333,330 [110]

36. Hemin-H2O2 6 10–200 [111]

37. L-arginine-modified FeOOH 420 670–3,333,330 [112]
n.a. @ represents core and shell.

3.6. Future Directions, Perspectives and Challenges

Despite the recent advances in this area, there are still many issues to be addressed.
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(1) pH and temperature are significant for detecting arsenic (III) ions in water. There
are only a few colorimetric methods for detecting arsenic (III) with the variation of tem-
perature and pH. Therefore, the development of new nanomaterials would support their
practical applications.

(2) Although some reported nanomaterials have good sensitivity, they are often af-
fected by other metal ions found in groundwater. Therefore, research and development on
the sensitivity of nanomaterials should be sufficient to detect arsenic in other situations
that are also of great interest.

(3) Some biomolecule-based nanoparticles have higher sensitivities, but they are
challenging to use in practice due to the reproducibility of steady-size nanoparticles.
Since the size of the nanoparticles is the key in the detection of arsenic (III), research and
development on repeated synthesis with regular-sized nanoparticles is still of the utmost
importance.

(4) Further research on arsenic (III) detection using metal nanoparticles will be neces-
sary to enhance practical application.

(5) Nanoparticles should be designed to be low-cost, simple to use, environmentally
friendly, and have practical applicability accessible to the general public.

Future research in this field should focus on developing novel highly selective and
sensitive nanoparticles for colorimetric detection of arsenic that are simple to use, anti-
interference, fast, have a low detection limit and environmentally friendly.

4. Conclusions

This review highlights metal nanoparticles’ progress for detecting arsenic in aqueous
media by colorimetric techniques. Compared to other techniques, the colorimetric meth-
ods covered in the present review showed better sensing efficiency. Here, we discussed
the colorimetric detection of arsenic (III) in comparison to AuNPS, AgNPs, metal oxide
nanoparticles, metal GO or CNT-based materials, and metal-organic frameworks. We found
that colorimetric methods for detecting arsenic with various AuNPs were appealing. This
paper could help to develop new nanomaterials for colorimetric detection of arsenic (III).
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Abbreviations

AFS Atomic Fluorescence Spectroscopy
AgNPls Silver Nanoplates
AgNPs Silver Nanoparticles
AGS Acute Gastrointestinal Syndrome
APS Acute Paralytic Syndrome
AuNPs Gold Nanoparticles
CNT Carbon Nanotube
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Cys Cysteine
LOD Limit of detection
DMSA Meso-2,3-Dimercaptosuccinic Acid
DNA Deoxyribose Nucleic Acid
DTT Dithiothreitol
EPA Environmental Protection Agency
ETAAS Electrothermal atomic absorption spectrometry
GO Graphene Oxide
GSH Glutathione
ICP-MS Inductively Coupled Plasma Mass Spectroscopy
LIBS Laser-Induced Breakdown Spectroscopy
LSPR Localized Surface Plasmon Resonance
MOF Metal-Organic Framework
PDCA Pyridine Dicarboxylic Acid
PEG Polyethylene Glycol
ppb Parts Per Billion
PVP Polyvinylpyrrolidone
QDs Quantum Dots
RBC Red Blood Cell
RS Raman Spectroscopy
WBC White Blood Cell
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