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Abstract: A healthy soil is a healthy ecosystem because humans, animals, plants, and water highly
depend upon it. Soil pollution by potentially toxic elements (PTEs) is a serious concern for hu-
mankind. The study is aimed at (i) assessing the concentrations of PTEs in soils under a long-term
heavily industrialized region for coal and textiles, (ii) modeling and mapping the spatial and vertical
distributions of PTEs using a GIS-based ordinary kriging technique, and (iii) identifying the possible
sources of these PTEs in the Jizerské Mountains (Jizera Mts.) using a positive matrix factorization
(PMF) model. Four hundred and forty-two (442) soil samples were analyzed by applying the aqua
regia method. To assess the PTE contents, the level of pollution, and the distribution pattern in soil,
the contamination factor (CF) and the pollution load index load (PLI) were applied. ArcGIS-based
ordinary kriging interpolation was used for the spatial analysis of PTEs. The results of the analysis
revealed that the variation in the coefficient (CV) of PTEs in the organic soil was highest in Cr
(96.36%), followed by Cu (54.94%) and Pb (49.40%). On the other hand, the mineral soil had Cu
(96.88%), Cr (66.70%), and Pb (64.48%) as the highest in CV. The PTEs in both the organic soil and the
mineral soil revealed a high heterogeneous variability. Though the study area lies within the “Black
Triangle”, which is a historic industrial site in Central Europe, this result did not show a substantial
influence of the contamination of PTEs in the area. In spite of the rate of pollution in this area being
very low based on the findings, there may be a need for intermittent assessment of the soil. This helps
to curtail any excessive accumulation and escalation in future. The results may serve as baseline
information for pollution assessment. It might support policy-developers in sustainable farming and
forestry for the health of an ecosystem towards food security, forest safety, as well as animal and
human welfare.

Keywords: heavy metals; positive matrix factorization; contamination factor; pollution load index;
GIS-kriging

1. Introduction

Soil is an indispensable component of an ecosystem that directly or indirectly links and
maintains the Earth’s four spheres (namely the lithosphere, biosphere, hydrosphere, and
atmosphere). However, this essential potential of soil has, in recent times, been threatened
by heavy metals or potentially toxic elements (PTEs). Interestingly, the chemistry of
soil makes it vulnerable to high concentrations of heavy metals or PTEs. At a required
concentration, most PTEs such as Cr, Cu, Fe, Mn, Zn, Ni, Mo, Co, Se, and others are
essential for plants, animals, or humans [1,2]. The presence of PTEs in soil has been
attracting reasonable attention because of their ecological and biological risks. Several
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studies in different biomes have been performed to identify the sources of PTEs in the
soils [3–16].

Natural phenomena and anthropogenic activities are the two major sources that de-
termine the concentrations of PTEs in soils [17–24]. Natural phenomena are described as
the components generated from parent material, whereas anthropogenic sources primarily
originate from acute human activities [17,18,25,26]. Many authors have revealed that natu-
ral sources of some PTEs (such as Pb, Cd, and Hg) have been surpassed by anthropogenic
deposits into soils due to pedogenesis [17]. Industrial inputs, the combustion of fossil fuels,
municipal wastewaters, and sewage sludge have been identified as anthropogenic sources
of metals [11,14,27,28]. Furthermore, intensive agricultural practices have been reported to
increase PTEs in soils [16,17]. In addition, automobile and vehicle emissions, road dusts,
and military activities also account for increases in PTEs [4,29]. It has been estimated by
some authors that agricultural practices contributed to 79.6%, 56%, and 63% of the annual
concentrations of Cu, Zn, and Cd, respectively [30]. The authors further summarized that
the total annual input of Pb (85%), Ni (67.5%), and Cr (43%) found in soil emanates from
industrial atmospheric deposition.

The safety of plants, food, animals, and human health have been threatened by the
accumulation of PTEs in soil. Toxic elements are discharged into the soil and subsequently
absorbed by plants, which are consumed by animals and humans [12]. In some cases, the
PTEs penetrate into surface and underground water, which are used by living organisms
including humans [31–33].

In the Czech Republic, edible mushrooms grown in a smelting area were reported to
have been contaminated by the atmospheric deposition of Pb [34]. In Germany, there has
been an urgent call to address the Pb contents in plant-based foodstuffs including bread
and potatoes, which are important suppliers of this metal in human meals [35]. The yearly
deposition of Cr to soils in the UK was 327 tons [36]. In addition, the study reported that
126 tons out of the 327 tons were emanated from chemical fertilizers (mostly phosphate),
while 83 tons originated from atmospheric deposition and 78 tons came from sewage
sludge [36]. The effect of Cr is not only recorded in food crops but also in forest trees. The
health of forest plants has been at risk because of exacerbated Cr content in the soil [37].
Globally, there have been reports on the effects of increased Cu, Fe, Mn, Mo, Zn, Ni, and
other PTEs on soils, plants, animals, humans, and water. Therefore, the issue has become
of critical concern to the government and the stakeholders, including decision makers.

The urgency of the situation demands a robust assessment with effective quantitative
and qualitative analyses. An investigation of the PTEs in soil and their sources is the
principal purpose for preserving and enhancing soil quality in most areas in the world.
Thus, to develop reliable policies for a sustainable soil safety for an area, it is important
to have good information on the soil and its contamination level. In recent years, several
analyses including statistical, geostatistical, geo-accumulation index, multivariate and
modeling, as well as potential ecological risk index analyses have been proposed and
applied to investigate the source, degree, and spatiotemporal state of PTE pollution in
the soil [3–6,12,14,24,28,29,31–33]. As reported by some authors, an assessment of the
contents and distribution of PTEs in soil requires intensive and robust sampling to inves-
tigate the soil conditions under distinct soil types [38–42]. Furthermore, considering the
high temporal, spatial, and vertical variability in the uppermost soil layers of a forest, a
substantial number of samples need to be examined in order to thoroughly quantify the
soil adequately along an extensive scale [43]. Routinely, the study of PTE content in soil
has been performed following the regular laboratory chemical methods, including atomic
absorption or inductively coupled plasma analysis. These methods are expensive and time-
consuming and involve consecutive serial procedures with growing complications [44,45].
Thus, a systematically structured and affordable analytical method to monitor and assess
the PTEs in soil on an appropriate vertical and spatial scale is necessary [46], especially
when a tangible number of sampling points are considered. The flexibility and rapid
accessibility of the positive matrix factorization (PMF) model in assessing soil pollutions is
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remarkable [6,41]. This analytical method has high functionality for the investigation of
the PTEs in soil. The PMF provides a great advantage in detecting and monitoring PTEs in
organic and mineral soils: it is one of the best and latest models [6,41,47,48].

The study area is located in a northern part of the Czech Republic. The area is called
Jizerské hory Mountains (Jizera Mts.). The area was polluted by past accumulation of
PTEs from human and natural sources. However, there have been ongoing policies and
efforts by the government and the people to ameliorate the problem, yet the impact is still
prevailing in the ecosystem (mainly in the soil and vegetation). This is partly because,
after soil is polluted, it takes a longer period for remediation and for ecosystem recovery
processes to be completed [49]. Second, a large amount of the PTEs are enriched in the
acidified forest soil, and these elements are still being discharged [5,50,51]. Some authors
have reported health risks from the PTEs in high-altitude mountains in Europe including
the Jizera Mts. [52–54]. For example, in a study performed by EscartÍn and Porte [52], the
authors reported that a high percentage (76%) of polycyclic aromatic hydrocarbon (PAH)
metabolites were detected in trout from the Central European high Mountains lake and that
this has a high health risk. There have been many studies that focused on the acidification
by sulfur and nitrogen oxides in the area. Studies focusing on the spatial and vertical
distributions as well as the content and hotspots of PTEs are crucial for closing the gap in
sustainable pollution assessment in the area. The benefits of applying PMF to investigate
PTEs in the soil is commendable [55]. This study aims (i) to assess the concentrations of
PTEs in the soil under Jizera Mts. in the Liberec region of Czech Republic after long-term,
heavy industrialization; (ii) to model and map the spatial and vertical distributions of
the PTEs using a GIS-based ordinary kriging technique; and (iii) to identify the possible
sources of these PTEs and their contamination levels in the area using a PMF model. The
findings from this study may serve as a baseline for the pollution assessment of farmland
and forest soil quality in the Czech Republic and in Europe. The results might support
policy-developers in sustainable farming and forestry for the health of the ecosystem and
for food security, forest safety, as well as animal and human welfare.

2. Materials and Methods
2.1. Study Area

The study covered about 110 square kilometers in the Jizera Mts. The height above
sea level of the area ranges from 600 to 1100 m. The average yearly temperature falls
between 3 and 6 ◦C, which is contingent upon the altitude. The annual precipitation
reaches about 1500 mm at the top of the mountains. Most areas are covered by forests
(Figure 1), though in some areas, the regeneration of trees has been slow after intensive
forest decline in the 1980s and 1990s [5,13]. Coniferous species, namely Norway spruce
(Picea abies) and the European beech (Fagus sylvatica), are key forest trees. There are also
areas with pockets of peatbogs. PTE pollution in the area is considered to have been
emanated from atmospheric deposition released from the coal, textile, and steel industries
and from agricultural activities. Geologically, the area is characterized by principal acidic
bedrocks such as granite (granodiorite) and gneiss. Haplic/Entic Podzols, Stagnosols, and
Cambisols are the predominant soils [56–58]. In most of the area, especially in the higher
altitudes, the mor form of humus dominates while the moder humus type is observable
only at lower altitudes [59]. The value of the soil pH was relatively low (Table 1), thus
contributing to the high acidic condition of the area.
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Figure 1. Sampling points and land use–land cover of the Jizera Mts. area derived from the CORINE database (central
Map), the location of the Jizera Mts. in Liberec region in the northern part of the Czech Republic (top left and down left
maps), and the location of the Czech Republic in Europe (top right map).

Table 1. Mean values of the physiochemical characteristics of the soil in the study area.

Properties (Unit) Organic Soil Mineral Soil

Sand (%) 29.7 28.2
Silt (%) 44.2 25.3

Clay (%) 26.1 46.5
Texture Sandy clay-loam Clay-loam
N (%) 1.6 0.5
C (%) 30.9 7.5
S (%) 0.34 0.26

P (mg kg−1) 946.9 386.2
K (mg kg−1) 811.6 935.3
Ca (mg kg−1) 915.2 327.9
Mg (mg kg−1) 839.5 1078.1
Al (mg kg−1) 9473.5 8614.4

pH 3.6 3.8
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2.2. Soil Sampling and Laboratory Analysis

At every 3 km, soil samples were collected for both organic soil and mineral soil (to
the depth of 30 cm). The samples were collected in 3 replicates for each sampling point, and
the average value of the sampled points was used for the analysis. The sampling points
were located using a handheld GPS system, while samples were collected using either a
push probe or bucket auger depending on the terrain. A total of 221 samples each were
collected from organic soil (org) and mineral soil (A) across the study area. The collected
soil samples were stored in well-labelled plastic bags and taken to the laboratory. The
collected samples were air-dried, ground, and sieved with a mesh of size 2.0 mm to obtain
a pulverized sample.

Chemical Analysis and Instrument

The presence of elements such as Cr, Cu, Pb, Mn, and Fe in the soil were extracted
using the aqua regia standard method (ISO 11466:1995, 1995) to determine their pseudo-
total content [60]. For quality control (QC) of the method, the standard addition technique
was adopted. For example, the QC of the concentration determination was guaranteed
using the SRM 2711 (Montana II soil) reference material (National Institute of Standards
and Technology, Gaithersburg, MD, USA). The values achieved were consistent with the
reference data. The recovery differences were generally < 10% (n = 3). The detection
limits for the elements based on the applied method were as follows: Cr (0.03 mg L−1),
Cu (0.015 mg L−1), Pb (0.05 mg L−1), Mn (0.05 mg L−1), and Fe (0.15 mg L−1). The presence
of Fe and Mn in the soils were also investigated; their concentrations posed no threat in the
area because their concentrations were far below the EU and world recommended limits.

2.3. Contamination Level Analysis for PTEs

The PTE pollution status of the study area was assessed through various contamination
assessment indices, namely the contamination factor (CF) and the pollution index (PLI).

2.3.1. Contamination Factor

CF is defined as the ratio of metal content in the sample to the background value of
the same metal. It is given by the following:

CF = C (metal) Sample/C (metal) background value (1)

where C (metal) is the concentration of metal analyzed from sampled soil and where
C (metal) background value is the geochemical background value (or concentration) of
that metal.

It is important to state here that the baseline values used were the world values [10].

2.3.2. Pollution Load Index (PLI)

The PLI is an estimation and was first proposed by [60]. The pollution load index has
been in use for the detection of pollution. It is robust and effective in the comparison of
pollution levels in space and time. The PLI was calculated based on the concentration factor
of each PTE by focusing on the background value in the soil, where CF is the contamination
factor earlier stated (Equation (1)) and the letter ‘n’ signifies the number of metals studied.
A pollution load index less than 1 indicates the optimal soil quality, and a PLI that is equal
to 1 proves that only the baseline levels of contaminants are present, while a PLI greater
than 1 infers the degradation of the quality of the site by [61].

The pollution load index (PLI) equation is given by the following:

PLI = n
√

(CF1 × CF2 × CF3 × . . . × CFn) (2)

where CF is the contamination factor derived for each metal and where n is the number
of metals.
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2.4. Source Apportionment Using a Positive Matrix Factorization (PMF) Model

The positive matrix factorization (PMF) model is an effective method acquired from
the software EPA-PMF v 5.0, Washington DC, USA [55]. It was applied to determine
the contribution of PTE sources to contamination in the study area. The mathematical
method is a receptor model used in calculating the contribution of the sources to samples
built on the composition or fingerprints of the sources. The PMF model apportions the
collaborations of elements in soil composition by solving chemical mass balance:

Cij =

p

∑
K=1

Gik + Fkj + Eij (3)

where Cij signifies the content of PTEs j in soil sample I, p represents the number of factors
(i.e., pollution sources), Gik shows contribution of factor k to soil sample I, Fkj denotes the
content of PTEs j in factor k, and Eij stands for the residual.

Additional information on the procedures, methods, and formulas used in this study
for determining the soil or site contamination level through the PMF model was followed
as specified by [55,62] and as applied by [3,6].

2.5. Statistical Analysis and Spatial Modeling

Basic statistical parameters (such as mean, median, minimum, maximum, standard
deviation, and coefficient of variance) were first calculated for each soil property based on
horizon. Positive matrix factorization (PMF, EPA version 5.0, Washington, DC, USA) was
used for the estimation of source apportionment and contamination level of the PTEs. To
determine the relationship between the PTEs in organic and mineral soils, an ANOVA and
correlation analysis were used. Ordinary kriging interpolation was used in determining
the differences and/or similarities among sites with a proportional distance among them.
The interpolation technique enhanced the creation of the spatial distribution maps of the
PTEs of the study area. ArcGIS, version 10.7.1, CA, USA [63], was used for processing and
visualizing of the spatial data. By applying the ordinary kriging technique, maps of the
spatial distribution of these soil properties were generated [64]. The result was validated
using the mean error [65,66]. In other words, to determine the accuracy of the produced
maps, the mean error (ME) was used for the validation. The formula is shown below in
Equation (4):

ME = ∑n
i=1

(
x1.i − x2.j

)
/n (4)

where x1 is prediction of the variable x, x2 is measure of that variable, and n is number
of records.

3. Results and Discussion
3.1. General Description of PTEs Concentrations and Their Spatial Distribution in the Soil

The basic statistical characteristics of the studied PTEs including Cr, Cu, Fe, Mn, and
Pb for the organic soil and mineral soil have been described in Table 2. The coefficient of
variation (CV) defines the degree of variations within PTE concentrations [67]. A coefficient
of variation value less than 20% represents low variability, and a CV that falls between
21–50% is regarded as moderate variability. On the other hand, a CV ranging from 50–100%
signifies high variability, while a CV greater than 1 (that is >100%) is described as having
extremely high heterogeneity. In this study, the CV of the PTEs in the organic soil increased
in the following order: Fe < Pb < Cu < Cr < Mn, accounting for 46.31%, 49.40%, 54.94%,
96.36%, and 97.06%, respectively.
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Table 2. Basic statistical characteristics of the soil PTE concentrations in the study area.

Soil Horizons Parameters † Cr Cu Fe ‡ Mn ‡ Pb

Organic soil Count 221 221 221 221 221
Mean 11.0 16.2 7357.8 149.6 99.2

Median 9.1 15.5 7010 73 92.9
Mode 7.2 18.5 10,200 32 104

Minimum 3.1 2.3 1004 1.0 7.1
Maximum 85.2 81.9 21,000 1650 339

Std dev 10.6 8.9 3407.5 145.2 49
Coef of Var. (CV) 96.36 54.94 46.31 97.06 49.4

Mineral soil Count 221 221 221 221 221
Mean 4.5 6.4 6744.3 168.0 65.6

Median 3.8 3.8 6194.4 68.4 58.8
Mode 3.9 1.0 3610 248 111

Minimum 0.4 0.2 159.3 0.5 6.7
Maximum 26.5 38.3 24,274.0 1940.0 281.0

Std dev 3.0 6.2 4054.5 137.6 42.3
Coef of Var. (CV) *

Czech Republic
66.7

<11.0
96.88
<16.0

60.12
>8000

81.9
<150.0

64.48
<60.0

** European mean
value 94.8 17.3 38,000 524 32

** World mean
value 59.5 38.9 35,000 488 27

** Crati Basin 90.54 44.36 54,700 1300 63.67
* Authors’ estimates from most publications in the Czech Republic on the issue as there was no official existing
baseline; ** Kabata-Pendias [10]. † All parameters and numbers are reported in mg kg−1, while CV is reported in
%. ‡ Fe and Mn also showed reasonable variability; they posed no threat because their concentrations were far
below the EU and world limits.

The CV of the PTEs for mineral soil was also in ascending order: Fe (60.12%) <
Pb (64.48%) < Cr (66.70%) < Mn (81.9%) < Cu (96.88%). The results derived from the CV
revealed a high variability between the PTEs in the mineral soil. Similarly, in the organic
soil, the CV for Cr, Mn, and Cu indicated a high variability (Table 2). In general, both the
organic soil and the mineral soil revealed high heterogeneity (or variability). All of the
PTEs showed relatively high variability in both soil horizons except for the Fe (46.31%)
in the organic soil. The spatial distribution of the heterogeneity of the PTEs suggest that
the metals are enriched by intensive sources of from the industrial, commercial, domestic
and agricultural sectors [3,5,13]. However, the content of the PTEs varies between the
soil horizons, yet the organic soil had higher mean values across the metals, excluding
Mn. The content of manganese was 18.4 mg kg−1 higher in the mineral soil compared
with its content in the organic soil. This finding agrees with a report by other authors in
the same region [21]. Studies have shown that, in addition to human activities and their
associated soil acidifications [13], the geological bedrock of the area also contributes to
accruing PTE concentrations [15]. The study area has Podzols and Dystric Cambisols as
the prevailing soils [5], and this might have contributed to the high contents of Pb, Fe, and
Mn. The concentration of Fe in the study area is remarkable when compared with other
metals. This could be attributed to the high acidic soil status of the area (Table 1). As has
been earlier reported, the concentration of Fe in the soil solution at optimal soil pH falls
between 30 and 550 µg L−1, but in high acid soils, it may exceed 2000 µg L−1 [68]. Higher
concentrations of the PTEs were found in this study area relative to the neighboring regions
in the country [3]. In comparison with the European value [10], the world value [10], and
the Crati Basin value [69], the contents of Pb in both the organic soil and the mineral soil
were higher. The exceptional content of Pb in the study area might be attributed to past
intensive anthropogenic activities and the prevailing geological formation of Cambisols.
Lead has been reported to exhibit the highest content in a Cambisols soil group [10].
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3.2. Relationships among the PTE Concentrations in the Organic and Mineral Soils

The correlation analysis for the PTE concentrations in the organic and mineral soils
revealed that the content of Cr in the mineral soil (Cr_tot_A) showed a significant and
strong positive correlation with Cu, Fe, Mn, and Pb in the mineral soil (Table 3). Chromium
has a strong relationship with other elements because it is easily mobilized in acidic
soils and our study area is highly acidic [5,10]. Furthermore, in the mineral soil, Pb is
significantly correlated with Cu and Mn. In the organic soil, Pb has a significant and
strong positive relation with Cu and Fe. The strong relation between Pb, Fe, and Mn was
documented earlier [10]. The concentrations of Pb in Fe–Mn nodules can be as high as
20,000 mg kg−1 [70]. Most of the negative correlations between the PTEs occurred in the
inter-horizon and not within the same horizon. The correlation between the elements in
the same soil horizon showed more positive relationships. This could be described by the
likelihood that they shared the same origin. Furthermore, the correlation of the PTEs in
the mineral soil revealed stronger relationships when compared with the correlation in
the organic soil. This probably proved that these PTEs are more closely associated in the
mineral soil relative to the organic soil. This finding was consistent with a recent report by
other authors on the same issue [3].

Table 3. Summary of correlation analyses between the PTE concentrations in the organic and mineral soils.

Parameters Cr_tot_org Cu_tot_org Fe_tot_org Mn_tot_org Pb_tot_org Cr_tot_A Cu_tot_A Fe_tot_A Mn_tot_A Pb_tot_A

Cr_tot_org 1.00
Cu_tot_org 0.03 1.00
Fe_tot_org 0.77 * 0.43 * 1.00
Mn_tot_org 0.52 ** −0.40 0.19 1.00
Pb_tot_org 0.00 0.71 ** 0.64 * −0.56 * 1.00
Cr_tot_A 0.53 * −0.14 0.10 0.58 −0.21 1.00
Cu_tot_A 0.10 −0.13 −0.10 0.20 −0.26 * 0.78 * 1.00
Fe_tot_A 0.03 0.16 0.50 * −0.06 0.43 0.56 ** 0.00 1.00
Mn_tot_A 0.10 −0.22 * −0.05 0.73 * −0.59 ** 0.60 * 0.58 * 0.03 1.00
Pb_tot_A 0.05 −0.12 −0.08 0.10 −0.10 0.76 ** 0.81 ** 0.19 0.54 * 1.00

* = Correlation is significant at the 0.01 p-value, at <0.05; ** = correlation is significant at the 0.05 p-value; tot_org = total concentration in
organic soil; tot_A = total concentration in the mineral soil.

The ANOVA in Table 4 was used to analyze the distribution of PTE contents in relation
to the organic soil and the mineral soil horizons. It was revealed that all of the elements,
with the exception Mn, showed significant relationships in both the organic soil and the
mineral soil. There have been few studies within and outside the study area that focused on
the relationship between soil horizon [8,21]. Consistent with our study, many authors have
reported a significant relationship between soil horizon, elevation, and the concentrations
of metals. For example, in the Suxian district of Chenzhou City in Hunan Province of
China, it was revealed that heavy metal concentrations decreased at low elevation but
increased considerably with increasing elevations [8]. Other studies have affirmed that
fine-particle metals including Cr and Cu accumulate more at lower elevations [11].

Table 4. Summary of ANOVA for PTE concentrations for the tot-org and tot-A horizons.

Soil Parameters df F-Statistics p-Value *

Cr_tot_org 220 2.12 0.019
Cu_tot_org 220 −3.73 <0.001
Fe_tot_org 220 −1.40 <0.001
Mn_tot_org 220 3.31 0.685
Pb_tot_org 220 0.63 <0.001
Cr_tot_A 220 2.06 0.016
Cu_tot_A 220 −1.94 0.021
Fe_tot_A 220 −1.13 <0.001
Mn_tot_A 220 4.91 0.283
Pb_tot_A 220 0.82 0.041

* Figures (or values) in bold are significant at the 0.05 confidence level. tot_org = total concentration in organic
soil; tot_A = total concentration in the mineral soil.
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In the organic soil, the highest contents of Cr, Pb, Fe, and Mn were found in the
northern and central parts of the area (Figure 2). Studies have revealed a close association
between Mn and Fe. Manganese is described as a member of the iron family, and both
elements are closely linked in geochemical processes [10]. The author further stressed that
Mn cycles follow Fe cycles in various terrestrial environments. Copper on the other hand
had a concentration hotspot that spread from the northeast to the northwest.

Figure 2. Spatial and vertical distributions of soil characteristics in the organic soil (org) assessed using ordinary kriging (all
of the elements are reported in mg kg−1). Though Fe and Mn posed no threat in the region, they were mapped/modeled to
draw inferences on Cr, Cu, and Pb. In other words, the study attempted to assess if the presence of Fe and Mn in the soil
influenced the vertical and spatial distributions of the three other PTEs (namely Cr, Cu, and Pb) in the different soil horizons.
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The kriged map of Cu and Pb distributions showed almost the same pattern in the
mineral soil (Figure 3). They tend to have higher concentrations towards the east in this
area. In this mineral soil, Fe and Cr showed extensive spatial distribution patterns that
spread from the northeast, through the central region, and to the northwestern part of
the mapped area. On the other hand, the kriged map of Mn distribution showed higher
concentrations within the northwest and north-central parts of the area. In general, for
both organic and mineral soils, the northern and central parts of the kriged maps revealed
more distribution of the elements when compared with the southern part. This could be
explained by the historical distribution pattern of industrial and agricultural activities in
the study area, which were mainly located in the northern and central parts [71].

Figure 3. Spatial and vertical distributions of soil characteristics in the surface mineral soil (A) made by ordinary kriging.
(all of the elements are in mg kg−1). Though Fe and Mn posed no threat in the region, they were mapped/modeled to
draw inferences on Cr, Cu, and Pb. In other words, the study attempted to assess if the presence of Fe and Mn in the soil
influenced the vertical and spatial distribution of the other three PTEs (namely Cr, Cu, and Pb) in the different soil horizons.



Toxics 2021, 9, 181 11 of 16

3.3. Source Apportionment by the Positive Matrix Factorization (PMF) Model

There have been many reports and studies that affirmed that our study area is lo-
cated within the vicinity of various anthropogenic activities including mining, intensive
agriculture, automobile gas emissions, and acute biological sludge, which might affect
the soil [4,52,53,72,73]. It is important to examine the sources of PTEs in the study area.
Therefore, the PMF model was adopted as one of the best and latest models with high
functionalities for effective PTE source identification [6]. The validity and reliability of the
analysis are based on minimum Q to model the residual matrix that influences a substantial
number of variables. To derive the best result, the PMF model was run 20 times, while
the best outputs (which were Run 8 and Run 20) were selected following the software
developer’s guide [55]. The PMF analysis produced six factors (see Figures 4 and 5) and
disclosed the origin of contributions based on each PTE [62].

Figure 4. Source fingerprint of the total organic soil (tot-org) from the PMF model analysis showing the percentage
contribution of PTEs. Note that the source and availability of Fe and Mn posed no risk to the soils.

In the organic soil, factor 1 was dominated by Pb and Cr, with a factor loading of
73.5% and 23.7%, while in the mineral soil, Cu and Pb had factor loads of 92.2% and 18.3%,
respectively (Figures 4 and 5). Factor 2 was characterized by Cr and Mn, and these accrued
factor loadings of 45.1% and 15.1%, respectively, in the organic soil layer. On the other
hand, in the mineral soil, Mn and Cu accumulated factor loadings of 28.3% and 6.7%,
respectively. The factor 3 load consisted mainly of Mn (72.6%) and Cu (4.9%) in the organic
soil, while Fe (64.8%) and Cr (11.9%) accrued in the mineral soil. Furthermore, factor 4 load
was characterized by Cu (51.7%) and Fe (18.3%) in the organic soil while Mn (71.1) and Pb
(26.4%) accumulated in the mineral soil. The factor 5 had Fe (42.5%), Cr (19.6%), and Pb
(14.2%), accounting for the highest elements in the organic soil, while Cr (72.9%) and Fe
(20.1%) accrued in the mineral soil. The 6th factor (which is the last factor) revealed that
Cu (15.7%) had the highest factor load in the organic and mineral soils relative to all of the
studied elements. Cr, Cu, and Pb accumulations in the study probably confirmed intensive
pollution from many sources such as industrial, agricultural, commercial, and municipal
activities and wastes [28]. These PTEs might have also been deposited during weathering
because, in mineral forms, most of the elements are oxidized, released, and reprecipitated
in the soil [74]. However, the sources of Mn and Fe in the soil are natural sources, posing
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no threats if the concentrations do not exceed the maximum allowable limits. However, the
sources of Mn and Fe in the soil are natural sources, posing no threats if the concentrations
do not exceed the maximum allowable limits.

Figure 5. Source fingerprint of the total mineral soil (tot-A) from the PMF model analysis showing the percentage
contribution of PTEs. Note that the source and availability of Fe and Mn posed no risk to the soils.

3.4. Contamination Factor and Pollution Load Index of PTEs for Organic Soil and Mineral Soil

The research revealed that, in organic soil, there was no obvious pollution recorded
in any of the soil sample points except in samples 33, 36, 65, 81, 103, 113, 147, 157, and
193. On the other hand, in the mineral horizon, the soil at some sites were polluted,
observed only in samples 111, 126, 213, and 221 horizon (Table S1 and Table S2). This
finding, however, is in contrast with the reports from previous studies in the same area. For
example, there are studies showing that, in the past few decades, the area was among the
major pollution zones caused by industrial and agricultural activities [5,75]. Furthermore,
as one of the regions located in northern Bohemia, the study area has been documented as
a region characterized by power and coal production from the 1950s to the 1980s [75]. In
addition to intensive agriculture, industrial activities, and geological processes, the study
area has some peatbogs, and these increased the pollution of the area by PTEs to a large
extent [76,77]. This study area lies in the “Black Triangle”, which is affected by industrial
activities linked to the extraction and exploitation of coal and other natural resources on
the sides of the Jizera Mts areas [20,21,72,73]. The study area is historically susceptible to
pollution, but the current results revealed otherwise. This could be due to measures put in
place by authorities to ameliorate the impact of industrial activities in the area.

4. Conclusions

In both organic and the mineral soils, a high variability in the PTEs was observed. The
spatial distribution and the heterogeneity of the PTEs suggested that there were widely
distributed sources of the metals’ enrichment from the industrial, commercial, domestic,
and agricultural sectors. Lead revealed a high concentration level. Chromium showed a
strong relationship to other elements investigated, while Pb has a significant and strong
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positive relation with Cu. This was probably because Cr is easily mobilized in acidic soils
and our study area is highly acidic.

The correlation between the elements in the same soil layer showed more positive
relationships, while the correlation of the PTEs in the mineral soil revealed stronger rela-
tionships when compared with the correlation in the organic soil. The findings revealed
that all the elements in exemption of Mn indicated significant relationships in both the
organic soil and the mineral soil. Meanwhile, the concentrations of Mn and Fe were not
harmful in the study area. On the other hand, Mn and Fe we below the EU and World
limits. In both the organic soil and the mineral soil, the northern part of the kriged maps
revealed more distribution of the elements when compared with either the southern part.
This implied that the concentrations of the elements were oriented towards the northern
part of the study region.

The applications of the Positive Matrix Factorization (PMF) model, ArcGIS-based
ordinary kriging, and contamination level analysis were effective for source identification,
hotspot location, and assessment of the contamination level of the PTEs. In the organic
soil, there was no obvious pollution recorded in any of the soil sample points except in
samples 33, 36, 65, 81, 103, 113, 147, 157, and 193. On the other hand, in the mineral
horizon, some deteriorated site quality was observed only in samples 111, 126, 213, and 221.
The method and results presented might be applicable in coniferous and broad-leaf tree-
dominated highlands with a history of industrial activities and atmospheric acidifications.
The methods are suitable for measuring the distribution and concentration of elements.

The current result revealed that there is no evidence of pollution by PTEs in the Jizera
Mts area. In contrast, this area lies within the “Black Triangle”, which was affected by
industrial activities linked with the extraction and exploitation of coal and other natural
resources in Central Europe. However, the rate of pollution in the area is very low based
on the findings of this study. There may be a need for intermittent assessment of the soil.
This regular assessment will help to curtail the possibility of any excessive accumulation
and escalation in the future. The findings from this study may serve as a baseline for
pollution assessments of farmland and forest soil quality in the Czech Republic and in
Europe. The results might support policy-developers in sustainable farming and forestry
for the health of the ecosystem to achieve food security, forest safety, as well as animal and
human welfare.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics9080181/s1, Table S1: Contamination Factor (CF) and Pollution Loading Index (PLI)
for PTEs in organic soil (n = 221), Table S2: Contamination Factor (CF) and Pollution Loading Index
(PLI) for PTEs in mineral soil (n = 221).
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contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environ. Geochem.
Health 2020, 43, 601–620. [CrossRef] [PubMed]

4. Barker, B.J.; Clausen, J.L.; Douglas, T.L.; Bednar, A.J.; Griggs, C.S.; Martin, W.A. Environmental impact of metals resulting from
military training activities: A review. Chemosphere 2021, 265, 129110. [CrossRef]
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