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Abstract: Background: For several years now, research teams worldwide have been conducting
high-tech research on the development of acupuncture robots. In this article, the design of such an
acupuncture robot is presented. Methods: Robot-controlled acupuncture (RCA) equipment consists
of three components: (a) Acupuncture point localization, (b) acupuncture point stimulation through
a robotic arm, and (c) automated detection of a deqi event for the efficacy of acupuncture point
stimulation. Results: This system is under development at the Department of Computer Science and
Information Engineering, National Cheng Kung University, Tainan. Acupuncture point localization
and acupuncture point stimulation through a robotic arm works well; however, automated detection
of a deqi sensation is still under development. Conclusions: RCA has become a reality and is no
longer a distant vision.

Keywords: robot-controlled acupuncture (RCA); robot-assisted acupuncture (RAA);
computer-controlled acupuncture (CCA); high-tech acupuncture

1. Introduction

Robots are an indispensable part of healthcare today. They perform services silently and in the
background, transporting medical equipment and material or laundry, and shaking test tubes or filling
in samples. However, should a robot perform an operation or can it make a diagnosis? Most of us will
have strong reservations on this. We all want an experienced person to conduct operations. The use of
robots in the operating room, however, does not exclude the experienced physician; on the contrary,
robots are ideal at supporting them at work. A robot cannot and should not replace a doctor, but can
be an important asset. Like other tools, it can have a variety of shapes. For example, medical surgical
systems can be more flexible than a human and can have more than two arms that are moved by a
console controlled by the physician. Thus, the various robots in medicine are special tools that can
support the services of the doctor and ensure better results. The robot’s role as a team member in the
operating room will certainly be enhanced in the future. The fact that the robot with its high degree of
specialization can help people and work tirelessly makes medicine safer. So why waive the support of
such a helper in acupuncture and not benefit from its many advantages?

In this article, the design of an automated robotic acupuncture system is presented. The system
consists of three main components: (1) Acupuncture point localization, (2) acupuncture point
stimulation through a robotic arm, and (3) automated detection of a possible deqi event for the
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efficacy of acupuncture point stimulation (developmental stage). The overall system design is
schematically shown in Figure 1.Medicines 2019, x FOR PEER REVIEW  2 of 14 

 

 

Figure 1. Schematic presentation of the robot-controlled acupuncture system. Note: Part 3 is still 
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patient can quickly locate the corresponding acupuncture points for the application of acupuncture 
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While there are studies [2,3] that propose similar ideas (the use of AR for acupoint localization), 
they did not consider the effect of different body shapes and changes of the viewing angle on the 
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Jiang et al. proposed Acu Glass [2] for acupoint localization and visualization. They created a 
reference acupoint model for the frontal face, and the acupoint coordinates are expressed as a ratio 
to face bounding box (returned by the face detector). The reference acupoints are rendered on top of 
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estimated transformation matrix. Instead of scaling the reference acupoints like [2], Chang et al. [3] 

Figure 1. Schematic presentation of the robot-controlled acupuncture system. Note: Part 3 is still
under development.

Parts 1 and 2 of the system were developed at the Department of Computer Science and Information
Engineering at the National Cheng Kung University in Tainan. The first measurements will take place
at the Traditional Chinese Medicine (TCM) Research Center, Medical University of Graz.

2. Acupuncture Point Localization

TCM is a system that seeks to prevent, diagnose and cure illnesses, dating back to several thousand
of years. In TCM, qi is the vital energy circulating through channels called meridians, which connect
various parts of the body. Acupuncture points (or acupoints) are special locations on meridians, and
diseases can be treated or relieved by stimulating these points. However, it is not easy to remember all
of the acupoint locations and their corresponding therapeutic effects without extensive training.

Traditionally, people use a map or dummy to learn about the locations of acupuncture points.
Given that now over one-third of the world’s population owns a smartphone [1], a system using
Augmented Reality (AR) is proposed to localize the acupuncture points. The proposed system includes
three stages: Symptom input, database search and acupuncture point visualization.

(1) Symptom input: The user interacts with a chatbot on the smartphone to describe her/his symptoms.
(2) Database search: According to the symptom described by the user, a TCM database is searched

and symptom-related acupuncture points are retrieved.
(3) Acupoint visualization: Symptom-related acupoints are visualized in an image of the human body.

Compared to the traditional acupoint probe devices that work by measuring skin impedance, the
presented system does not require any additional hardware and is purely software-based. In the case
of mild symptoms (e.g., headache, sleep disorder), with the aid of the proposed system, the patient can
quickly locate the corresponding acupuncture points for the application of acupuncture or massage,
and relieve her/his symptoms without special help from TCM physicians.

While there are studies [2,3] that propose similar ideas (the use of AR for acupoint localization),
they did not consider the effect of different body shapes and changes of the viewing angle on the
accuracy of acupoint localization. In this project, several techniques, including facial landmark points,
image deformation, and 3D morphable model (3DMM) are combined to resolve these issues. Due to
clarity, the focus of the discussion on localizing acupoints should be on the face, because it is one of the
most challenging parts of the human body, with regards to RCA.

2.1. Image-Based Acupoint Localization

Jiang et al. proposed Acu Glass [2] for acupoint localization and visualization. They created a
reference acupoint model for the frontal face, and the acupoint coordinates are expressed as a ratio
to face bounding box (returned by the face detector). The reference acupoints are rendered on top
of the input face based on the height and width of the subject’s face and the distance between the
eyes, relative to the reference model. They used Oriented FAST and Rotated BRIEF (ORB) feature
descriptors to match feature points from the current frame and the reference frame, to obtain the
estimated transformation matrix. Instead of scaling the reference acupoints like [2], Chang et al. [3]
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implemented a localization system based on cun measurement. Cun is a traditional Chinese unit of
length (its traditional measure is the width of a person’s thumb at the knuckle, whereas the width of
the two forefingers denotes 1.5 cun and the width of four fingers side-by-side is three cuns). They used
the relative distance between landmarks to convert pixel into cun, assuming that the distance between
hairline and eyebrow is 3 cun. The acupoint can be located based on its relative distance (in cun) from
some landmark point. However, there are issues with the above approaches for acupoint localization,
including:

(i) The differences of face shape between different people are not considered
(ii) A conversion of pixel to cun, based on the frontal face, cannot be directly applied to locating

acupoints on the side of the face.

Since landmark points contain shape information, all landmark points should be considered,
instead of just a few being used to estimate the location of an acupoint (like in [3]). In the current project,
landmark points are used as the control points for image deformation, and the locations of acupoints
can be estimated by deforming a reference acupuncture model. In addition, the reference acupuncture
model is allowed to be changed dynamically to match different viewing angles. More specifically,
a 3D model with labeled acupoints is created so that the 3D model can rotate to match the current
viewing angle. Finally, a 3D morphable model for different face shapes is provided. In other words, a
3D morphable model is deformed to best fit the input face, and the acupoints are projected to 2D as
the reference acupuncture model. A summary of previous studies in acupoint localization is shown
in Table 1.

Table 1. Comparison of related work.

Method Angle-aware Shape-aware Reference
Model Estimation Limitation

Chang et al. [2] No No 2D

Using cun
measurement system
by first converting
pixel into cun

1) Assuming that the hairline
is not covered with hair
2) Does not work for side face

Jiang et al. [3] Partially No 2D Scaling of the
reference model

1) The scaling factor is based
on the bounding box ratio
returned by the edge detector,
which can be unreliable
2) Does not work for side face

Proposed system Yes Yes 3D
3DMM, weighted
deformation,
landmarks

Need landmark points

2.2. Landmark Detection

A marker is often used in AR for localization. Instead of putting markers on the user, landmark
points and landmark detection are often used for markerless AR. The processing overhead of the
landmark detection algorithm is vital for our application due to its real-time requirement. Therefore,
the complexity of the algorithm must be considered. Real-time face alignment algorithms have been
developed [4,5], and the Dlib [6] implementation by [4] is used in the present work.

2.3. Image Deformation

Image deformation transforms one image to another, wherein the transformed image is deformed
from the original image by being rotated, scaled, sheared or translated. A scaling factor can be
estimated with two sets of corresponding points. Jiang et al. [2] used the distance between eyes and
the height of the face as the scaling factor of the x and y directions. Then the same transformation is
applied to every pixel on the reference acupoint model. However, given that their scaling factors are
based on a frontal face model, it cannot be applied to the side face. In addition, they did not consider
difference face shapes. In the present work, we use a weighted transformation based on moving least
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squares [7]. The distance between the control points is used as the weight during the transformation.
Here, the control points are the landmark points.

2.4. 3D Morphable Model (3DMM)

Given that the acupoints are defined in a 3D space, a 3D face model is useful for acupoint
localization. The 3D Morphable Models (3DMM) [8–11] are common for face analysis because the
intrinsic properties of 3D faces provide a representation that is immune to intra-personal variations.
Given a single facial input image, a 3DMM can recover 3D face via a fitting process. More specifically,
a large dataset of 3D face scans is needed to create the morphable face model, which is basically
a multidimensional 3D morphing function based on the linear combination of these 3D face scans.
By computing the average face and the main modes of variation in the dataset, a parametric face model
is created that is able to generate almost any face.

After the 3DMM is created, a fitting process is required to reconstruct the corresponding 3D face
from a new image. Such a fitting process seeks to minimize the difference between an input new
face and its reconstruction by the face model function. Most fitting algorithms for 3DMM require
several minutes to fit a single image. Recently, Huber et al. [12] proposed a fitting method using local
image feature that leverages cascaded regression, which is being widely used in pose estimation and
2D face alignment. Paysan et al. [13] published the Basel Face Model (BFM), which can be obtained
under a license agreement. However, they did not provide the fitting framework. On the other hand,
Huber et al. [14] released the Surry Face Model (SFM), which is built from 169 radically diverse scans.
SFM is used in the present work, as it provides both the face model and the fitting framework.

2.5. Face Detection (FD) and Tracking

Haar-like features [15] with Adaboost learning algorithm [16,17] have been commonly used for
object detection. However, they tend to have a high false positive rate. Zondag et al. [18] showed
that the histogram-of-oriented-gradient (HOG) [19] feature consistently achieves lower average false
positive rates than the Haar feature for face detection. In the present work, a face detector based on
HOG-based features and support vector machine (SVM) were implemented. However, the computation
overhead to combine HOG and SVM could be a bit significant when running the face detector on a
smartphone. In addition, a low detection rate might occur for a fast-moving subject. For example,
during the process of acupuncture or acupressure, some part of the face might be obscured by the hand
such that the face is undetected by the face detector. Therefore, a face-tracking mechanism has been
implemented to mitigate these problems.

A correlation-based tracker is known for its fast tracking speed, which is vital for the application.
Bolme et al. proposed the minimum output sum of squared error (MOSSE) based on the correlation
filter [20]. Danelljan et al. introduced the discriminative scale space tracker (DSST) [21] based on the
MOSSE tracker. DSST can estimate the target size and multi-dimension feature such as PCA-HOG [22],
which makes the tracker more robust to intensity changes. The Dlib [6] implementation of DSST [21] is
used in this work.

2.6. Method—Acupuncture Point Localization

A flow chart of the 3D acupuncture point localization is shown in Figure 2. The offline process is
shown in dark gray and online process in light gray. The acupoints are labeled in the offline process.
During the online process, face detection is performed on the input image, and then landmark detection
is applied to the face region to extract facial landmark points.
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Figure 2. Flow chart of 3D acupuncture point estimation.

The landmark points are then utilized in the fitting process of 3D morphable model (3DMM) to
have a fitted model to the input face, and the 3D model is then rotated to the same angle as the input
face. Next, landmark points on the 3D model will be projected onto 2D. During the acupoint estimation
process, the projected acupoints are deformed using the control points, which contain the projected
landmark points and the input landmarks points. Finally, the estimated acupoints are warped into the
input image to visualize the acupoints.

2.6.1. 3D Morphable Model

A facial 3D morphable model (3DMM) is a static model generated from multiple 3D scans of
human faces. The 3DMM can be used to reconstruct a 3D model from a 2D image. In this work, Surry
Face Model (SFM) [14] is used to implement our 3DMM model. The generated model is fitted using
the landmark points on the 2D image, such that different face shapes can be considered.

The generated 3D model is expressed as S = [x1, y1, z1, . . . , xn, yn, zn]T, where [xn, yn, zn]T is the
n-th vertex. Principal component analysis (PCA) is applied to the 3DMM, which yields a number of
m components. A 3D model can be approximated by linear combination of the basis vectors S = v¯+∑m αivi, where v¯ is mean mesh, α is the shape coefficients, v is the basis vector, m is the number of
principal components.

2.6.2. Acupoint Annotation

Face images from a large number of subjects with different face angels should be captured, and
blue stickers put on their faces to annotate the acupoints. To define an acupoint reference model, a
mean face for thirteen different face angles will be built, and all mean faces then merged into an isomap
texture, as shown in Figure 3b. The texture and mean model of the 3DMM are then loaded into the 3D
graphics software. For every acupoint, the 3D coordinates of the center point of the blue sticker and its
three nearest vertices are marked. The coordinates of the landmark points are marked as well.
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2.6.3. 3D Acupuncture Model

The 3D acupuncture model contains labeled metadata during the step of acupuncture annotation,
including the indices of landmark vertex (denoted as Lindex), the 3D coordinates of acupoints (denoted
as Aref 3D), and the indices of three nearest vertices to the acupoint (denoted as AneiIndex).

2.6.4. Face Detection and Tracking

We plan to implement a face detector using SVM with HOG-based features. In addition, a
DSST-based tracker will be employed to speed up the system and reduce face detection failure when
the face is occluded by the hand during acupuncture or acupressure. The face is tracked by the tracker
once the face is detected.

Peak to Sidelobe Ratio (PSR) [23] is a metric that measures the peak sharpness of the correlation
plane, commonly used to evaluate tracking quality. For estimation of the PSR, the peak is located first.
Then the mean and standard deviation of the sidelobe region, excluding a central mask centered at the
peak, are computed. In this work, a 11x11 pixel area is used as the central mask.

Once the face is detected, the face area is used to calculate filter Hl, which is then used to track the
face for future frames. If the PSR is lower than a defined threshold, the face is re-detected to reduce
the tracking loss. For every FD frame, we select a region around the current face image. The selected
region is slightly larger than the face region and we try to re-locate the face region in order to keep the
region constrained. The constrained face region improves the accuracy of the landmark detection.

2.6.5. Landmark Detection

For concerns of computation speed, an ensemble of regression trees is used in our work for
landmark detection [4]. The difference of pixel intensity between a pair of landmark points are selected
as the feature used to train the regression tree. Each tree-based regressor is learned using the gradient
boosting tree algorithm [24].

2.6.6. Fitting 3DMM

2D landmarks are used in the process of fitting 3DMM to find optimal PCA coefficients. The goal
is to minimize the re-projected distance of the landmark points.

2.6.7. Acupoint Projection

Pose estimation problem is often referred as perspective-n-point (PNP) problem [25,26]. Given
the input of a set of 2D points and its corresponding 3D points, a pose estimation function estimates
the pose by minimizing re-projection errors. The output of such a function contains information that
can transform a 3D model from the model space to the camera space. We plan to utilize the pose
estimation algorithm included in the SFM fitting framework [14]. In our case, the 2D points set are
obtained from landmark detection, while the 3D points are labeled at the offline stage.

2.6.8. Acupoint Estimation

The acupoint estimation problem is treated as an image deformation process, in which image
deformation using moving least square [7] is used. The basic image deformation affine transform is
defined as lv(x) = Mx + T, where M is a matrix controls scaling, rotation and shear, x is a 2D point,
T controls the translation. Let f be a function of image deformation, f(p) = q transform a set of control
points p to a new position q.

As shown in Figure 4, since the reference acupoints Aref are only available in the mean model, the
actual acupoint location ArefFitted in the fitted model will be estimated using the nearby vertices as the
control points (see Equations (1) and (2)).

ArefFitted = deform(AneiMean, AneiFitted, Aref) (1)
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Ain = deform(Lfitted, Lin, Aref F itted) (2)
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2.6.9. Acupoint Visualization

Landmark points (denoted as dots) and acupoints (denoted as crosses) are illustrated in Figure 5a.
The landmark points in the input image are used as the destination control points, while landmark
points in the reference model (i.e. the fitted 3DMM model) are used as the control points to deform the
reference acupoints. The deformed acupoints are then visualized onto the input image, as shown in
Figure 5b. The warping not only visualizes the acupoints, but also takes care of the non-rigid part of
the face, such as facial expressions, the mouth opening, etc.
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3. Automated Acupoint Stimulation

The second part of this future-oriented work is to build a system for automated acupuncture.
Given that a depth camera is still quite expensive (8–10 times more expensive than a 2D camera), this
project plans to build an automated acupuncture system with an inexpensive 2D monocular camera
and a robot arm. The main research issue is identifying how to localize the acupoint from the image
space to the robot arm space. The system architecture is shown in Figure 6.
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3.1. Hand-Eye Calibration

The problem of determining the relationship between the camera and the robot arm is referred to
as the hand-eye calibration problem, which is basically to transform the target coordinate position in
the image plane to the corresponding coordinate position in the robot arm plane. Due to the use of a
2D camera, we limit the conversion from the 2D image plane to the robot arm X-Y plane. In this project,
perspective coordinate transformation is used, also called 8-parameter coordinate transformation [27],
which does not have to maintain parallelism compared to other coordinate transformation methods.

The present system can be divided into three big parts—acupoint estimation, transformation
matrix calculation and coordinate transformation. Transformation matrix calculation estimates the
matrix used by coordinate transformation and only performs at the first time of setting up the system
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(Figure 7). The camera first reads an image as input, and then moves to the acupoint estimation part (as
discussed in the previous acupoint localization section) to get the image coordinates of the acupuncture
points. Then, the acupoint image coordinate is passed to the coordinate transformation part to get the
robot arm coordinates of the acupoints.
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3.2. Transformation Matrix Calculation

Perspective transformation transform coordinates between image plane and robot arm plane was
used here:

X =
ax + by + c
gx + hy + 1

Y =
dx + ey + f
gx + hy + 1

(3)

Perspective equation (3) shows that one can transform the coordinate from the original coordinate
(x, y) to the destination coordinate (X,Y). The eight parameters (a–h) control in-plane-rotation,
out-plane-rotation, scaling, shearing, and translation. The goal is to calculate the eight unknowns
(a–h), so that Equation (5) can be used to transform coordinates from origin to destination. With these
eight unknowns (a–h), at least four known points in both systems are required. Intuitively, using more
known reference positions to solve the equation can reduce errors and increase accuracy. If we have
more than four known points in both systems to solve eight parameters’ transformation, we call this as
an overdetermined system. The method of least squares is a standard approach in regression analysis
to approximate the solution of overdetermined systems. Considering the time and distribution, we
selected 13 reference points to obtain 13 known points in both systems and solve the perspective
transformation equation. We can simply find the least squares solution by using linear algebra (4):

Ax = b⇒ x =
(
ATA

)−1
ATb (4)

X = ax + by + c− gxX − hyX Y = dx + ey + f − gxY − hyY (5)

Since the original equation is nonlinear (3), we have to linearize (5) it in order to solve it using
linear algebra.

Finally, it can be converted to Ax = b, and Equation (4) is used to find the least squares solution of
the perspective transformation. We apply perspective transformation to the camera and robot arm to
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conduct hand-eye calibration, as shown in Figure 8. We take the image plane as the original coordinate
and the robot arm plane as the destination coordinate, in order to calculate perspective matrix T (6,7).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1 0 0 0 −x1X1 −y1X1

x2 y2 1 0 0 0 −x2X2 −y2X2

x3 y3 1 0 0 0 −x3X3 −y3X3

x4 y4 1 0 0 0 −x4X4 −y4X4

0 0 0 x1 y1 1 −x1Y1 −y1Y1

0 0 0 x2 y2 1 −x2Y2 −y2Y2

0 0 0 x3 y3 1 −x3Y3 −y3Y3

0 0 0 x4 y4 1 −x4Y4 −y4Y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
b
c
d
e
f
g
h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1

X2

X3

X4

Y1

Y2

Y3

Y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6)

P′ = T ∗ P′′

P′′ =
{
p′′1 , p′′2 , p′′3 , p′′4 , . . .

}
P′ =

{
p′1, p′2, p′3, p′4, . . .

}
T : perspective matrix f rom image plane to robot arm plane

(7)
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Figure 8. Diagram of hand-eye calibration.

It is to be kept in mind that the camera might be placed at the side of the image and different
acupoints might have different heights; therefore, when we project the coordinates of the actual height
of the acupoint to the calibration height, it might not be the point of the acupoint position we see in the
image, which could result in an estimation error, as shown in Figure 9.
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Figure 9. Errors caused by different heights.

Therefore, perspective transformation is again applied to the image plane at a different height to
obtain the fine-tuned height matrix as shown in Figure 10. The image plane is taken at the calibration
plane height (plane a) as the original coordinate and the image plane at the height higher than the
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calibration height (plane b) as the destination coordinate to calculate perspective matrix F, as shown
in Figure 10.
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Combining Equations (7) and (8), we get Equation (9), which converts the acupoint from the
image space to the robot arm space, as shown in Figure 11.

P′′a = F ∗ P′′b
P′′b =

{
p′′b1, p′′b2, p′′b3, p′′b4, . . .

}
P′′a =

{
p′′a1, p′′a2, p′′a3, p′′a4, . . .

}
a : calibration plane heightb : heigher than calibration plane height

F : perspective matrix f rom image plane on height b to image plane on height a

(8)

p′i = T(p′′i +
(

k
b−a

)(
Fp′′i − p′′i

)
)

p′′i : acupoint image coordinate
p′i : tip o f robot arm coordinate

k : height o f the acupoint

(9)
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4. Automated Detection of Deqi Event

The arrival of qi (deqi) is considered to be related to acupuncture efficacy [28]. Deqi can be
measured by the sensation of the acupuncturists and the reaction of the patient.

While a deqi sensation scale is considered an important qualitative and quantitative measuring
tool, there is no standardization or reliable deqi scale due to lack of sufficient evidence [29–32]. In 1989,
the Vincent deqi scale was invented based on the McGill pain questionnaire. The Park deqi scale and
MacPherson deqi scale followed [33,34].

The Massachusetts General Hospital acupuncture sensation scale (MASS) [35] is composed of
various needling sensations and has a system that measures the spread of deqi and patient’s anxiety
levels during needling. These scales mainly focus on the patient’s sensations and are pretty subjective.
Ren et al. [36] conducted a survey to determine the perspectives of acupuncturists on deqi. Again, their
results are based on subjective questionnaires collected from a small number of acupuncturists [36].

The effects of acupuncture are well reflected in electroencephalogram (EEG) changes, as revealed
by recent reports [37–39]. Therefore, the EEG can also be used as an objective indicator of deqi, as
its change is significantly associated with autonomic nervous functions. Observing EEG changes in
relation to acupuncture is more objective than using a questionnaire.

While observing the deqi effect via EEG is considered a more subjective measure, the results
from prior studies are not consistent. Yin et al. [40] observed significant changes in alpha band
electroencephalogram powers during deqi periods, while Streitberger et al. [41] only found significant
changes in alpha1 band. Other studies [37,39,42,43] have shown that EEG power spectrum increases
in all frequency bands, including alpha-wave (8–13 Hz), beta-wave (13–30 Hz), theta-wave (4–8 Hz),
and delta-wave (0.5–4 Hz) in the frontal, temporal, and occipital lobes when a deqi effect is reported
by the subjects. Note that the number of subjects in these studies are generally small (10–20 people)
and different acupuncture points are used in different studies. Furthermore, while deqi sensation is
commonly believed to be the most important factor in clinical efficacy during acupuncture treatment,
the detection of deqi mostly relies on the participant’s subjective sensations and sometimes the
acupuncturist’s perceptions. It has been found that there can be some differences between a patient’s
real-life experience and the acupuncturist’s sensation [44]. In clinical practice, many acupuncturists can
only detect deqi effects based on the patient’s report or observation of the reaction of a patient to deqi.

In this context, there is the plan to design a portable device based on collection of EEG signals to
automatically detect a deqi effect. Such a device can be useful for clinical practice and acupuncture
training in schools. It should be developed such that it automatically detects deqi events and reports it
wirelessly to the acupuncturist.

5. Discussion

Reports on medical robotics [45] show applications in the field of acupuncture. In the humor
section for the online publication, Science-based Medicine, Jones [46] picturizes a patient being treated
for fatigue syndrome by an acupuncturist and an acupuncture anesthetist, who use robotic acupuncture.

It is interesting, as Jones states, that one of the greatest strengths of acupuncture, namely the
direct connection between the doctor and the acupuncture needle, is also one of its major weaknesses.
As mentioned in the introduction, surgeons use robotic technology to perform an increasing number of
minimally invasive procedures [45].

The healing art of acupuncture is deeply rooted in ancient Eastern culture, but the modern
technology that is now being used to expand it comes from Western medicine [45,46]. Jones says that
state-of-the-art medical robotic technologies feature high-resolution 3D magnification systems and
instruments that can maneuver with far-greater precision than the human wrist and fingers. This allows
specially-trained acupuncturists to locate and successfully control hard-to-reach acupuncture points
(those next to the eye or in the genital area). This could expand the number of indications suitable for
acupuncture [45].
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However, robot-assisted acupuncture is not the only high-tech therapeutic option in the field
of complementary medicine. Other methods have been incorporating modern technology into their
protocols for years. Chiropractors, for example, adopt the latest high-tech electronics devices. This helps
facilitate the localization of subluxations in the spine. Once a safe diagnosis is made, it can be treated
using traditional hands-on techniques [45,46].

6. Conclusions

In 1997, our Graz research team at the Medical University of Graz in 1997 showed how acupuncture
worked without the aid of an acupuncturist and we introduced the term “computer-controlled
acupuncture” [47]. However, we did not imply that the computer would replace the acupuncturist;
rather, we were seeking to highlight the quantification of the measurable effects of acupuncture.
This vision of “robot-controlled acupuncture” is now a reality [47–50]; the research work in this article
clearly shows its present status. Further modernization of acupuncture, like automatic artificially-based
detection of dynamic pulse reactions for robot-controlled ear acupuncture, is under development.
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