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Abstract: Blood calcium homeostasis is critical for biological function. Caldecrin, or chymotrypsin-
like elastase, was originally identified in the pancreas as a serum calcium-decreasing factor. The
serum calcium-decreasing activity of caldecrin requires the trypsin-mediated activation of the protein.
Protease activity-deficient mature caldecrin can also reduce serum calcium concentration, indicating
that structural processing is necessary for serum calcium-decreasing activity. Caldecrin suppresses the
differentiation of bone-resorbing osteoclasts from bone marrow macrophages (BMMs) by inhibiting
receptor activator of NF-κB ligand (RANKL)-induced nuclear factor of activated T-cell cytoplasmic
1 expression via the Syk–PLCγ–Ca2+ oscillation-calcineurin signaling pathway. It also suppresses
mature osteoclastic bone resorption by RANKL-stimulated TRAF6–c-Src–Syk–calcium entry and
actin ring formation. Caldecrin inhibits lipopolysaccharide (LPS)-induced osteoclast formation
in RANKL-primed BMMs by inducing the NF-κB negative regulator A20. In addition, caldecrin
suppresses LPS-mediated M1 macrophage polarization through the immunoreceptor triggering
receptor expressed on myeloid cells (TREM) 2, suggesting that caldecrin may function as an anti-
osteoclastogenic and anti-inflammatory factor via TREM2. The ectopic intramuscular expression
of caldecrin cDNA prevents bone resorption in ovariectomized mice, and the administration of
caldecrin protein also prevents skeletal muscle destruction in dystrophic mice. In vivo and in vitro
studies have indicated that caldecrin is a unique multifunctional protease and a possible therapeutic
target for skeletal and inflammatory diseases.

Keywords: calcium metabolism; bone metabolism; protease; osteoclast; macrophage; RANKL; LPS;
TLR4; TREM2

1. Introduction

Calcium homeostasis is controlled by calcium absorption in the intestine and reab-
sorption along the renal tubules, as well as by bone formation and resorption. Calcium
homeostasis is regulated by parathyroid hormone (PTH) and thyroid gland-derived cal-
citonin, and activated vitamin D3 produced in the kidney. In addition, the pancreas is
involved in calcium metabolism. Hypocalcemia is frequently observed in acute pancreati-
tis [1]. Glucagon [2,3], amylin [4,5], and calcitonin gene-related peptides [6,7] secreted from
the pancreas may be responsible for hypocalcemia. While the exact pathological mecha-
nisms of hypocalcemia are unknown, the pancreas may secrete hypocalcemic factors. We
previously purified and cloned the hypocalcemic factor, caldecrin, from the pancreas [8–10].
In this review article, we discuss the roles of the multifunctional protease, caldecrin, in the
pancreas.

2. Purification and Cloning of Caldecrin

In the 1960s, Takaoka et al. first demonstrated that a pancreatic extract of porcine had
hypocalcemic activity [11,12]. In 1992, Tomomura et al. purified a hypocalcemic factor,
calcium-decreasing factor (caldecrin), from a porcine pancreatic extract [8]. Caldecrin was
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purified from acetone powder of porcine pancreas via fractionation with acetone (30–60%)
and saturated ammonium sulfate (45–60%), followed by ion-exchange chromatography on
Q Sepharose Fast–Flow (pH 5.5), gel filtration on Superdex 75 fast protein liquid chromatog-
raphy (FPLC), and ion-exchange chromatography on Mono Q FPLC (pH 5.5). The isolated
caldecrin was confirmed as a single peak by high-performance liquid chromatography.
To identify caldecrin, each fraction of the purification steps was injected into the tail vein
of fasted mice, and serum calcium concentrations were measured 4 h post-injection. The
serum calcium concentration decreased in a dose-dependent manner as the products of
subsequent purification steps were administered, and the hypocalcemic activity increased
as a result of the purification process (Figure 1). In addition to this in vivo experiment,
the ability of caldecrin to inhibit PTH-stimulated calcium release was assessed using Ca45-
prelabeled fetal mouse long bone organ cultures. Caldecrin inhibited PTH-stimulated Ca45

release from the bone to the culture medium at concentrations as low as 10 ng/mL. These
experiments showed that caldecrin is an anionic protein (pI: 4.5) with a molecular weight
of approximately 28 kDa. In addition, we showed that caldecrin is a serine protease with
chymotryptic activity [8]. The immature form of caldecrin (procaldecrin), which is purified
in the presence of the serine protease inhibitor diisopropyl fluorophosphate (DFP) from
porcine pancreas, is activated by trypsin treatment in a dose- and time-dependent manner,
giving rise to the activated caldecrin that exerts chymotryptic activity [9].
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In 1995, we first isolated rat caldecrin cDNA by immunoscreening with an anti-
caldecrin antibody [10]. The nucleotide sequence was almost identical to that of a PCR 
clone named rat elastase IV (ELA4) [13]. A frame shift caused by a minor nucleotide 
change in both genes resulted in the difference of the amino acid sequences of the central 

Figure 1. Purification of porcine caldecrin and its serum calcium-decreasing activity. The caldecrin was isolated from
porcine pancreas following the following purification steps: porcine acetone powder was extracted (1), and active fraction
was separated with acetone (CH3)2CO precipitation (2), saturated ammonium sulfate (NH4)2SO4 precipitation (3), and
then Q Sepharose Fast–Flow ion-exchange chromatography (4), Superdex 75 size–exclusion fast protein liquid chromatog-
raphy (FPLC) (5), and Mono Q ion–exchange FPLC (6). Dose–dependent curves of serum calcium decreased activity
and its half maximal effective concentration (EC50) values, as shown by arrows on the x-axis, were prepared from the
representative preparation.

In 1995, we first isolated rat caldecrin cDNA by immunoscreening with an anti-
caldecrin antibody [10]. The nucleotide sequence was almost identical to that of a PCR
clone named rat elastase IV (ELA4) [13]. A frame shift caused by a minor nucleotide change
in both genes resulted in the difference of the amino acid sequences of the central region
of caldecrin from that of ELA4. Thus, the lysine-X bond of purified rat caldecrin was
digested with a metal endopeptidase in the presence of the chymotrypsin inhibitor phenyl-
methylsulfonyl fluoride (PMSF). The partial amino acid sequence of caldecrin fragments
purified from rat pancreas completely matched that encoded by cDNA. Furthermore, the
partial amino acid sequence of purified porcine caldecrin was closely related to that of
the corresponding fragments of purified rat caldecrin. However, the amino acid sequence
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of rat and porcine caldecrin differed from the deduced amino acid sequence of rat ELA4
cDNA. Amino acid sequences of caldecrin showed higher homology with elastase than
chymotrypsinogen A and B, although the N-terminal amino acid sequence of caldecrin
revealed that the mature form has a disulfide-linked activation peptide, which is charac-
teristic of chymotrypsin. In 1995, Gomis-Rüth et al. reported the crystalline structure of
bovine chymotrypsinogen C [14]. The amino acid sequence of chymotrypsinogen C was
very close to that of rat caldecrin, suggesting a high degree of similarity between caldecrin
and chymotrypsin C (CTRC).

In 1996, human caldecrin genes were cloned [15]. We transfected the insect cell
line Sf9 with a recombinant baculovirus harboring human caldecrin cDNA. Recombinant
human caldecrin was purified from the culture medium by using hydroxyapatite col-
umn chromatography. Subsequently, the purified recombinant human caldecrin showed
hypocalcemic activity. To address whether ELA4 is transcribed and translated in vivo
and has proteolytic activity, we constructed rat ELA4 cDNA by combinational PCR and
compared the recombinant rat ELA4 with the recombinant rat caldecrin synthesized in
a baculovirus expression system [16]. We detected recombinant caldecrin protein in the
medium. However, in the case of ELA4, we could not detect ELA4 protein in the cells
and the medium. Furthermore, we detected caldecrin mRNA expression in rat pancreas
but no ELA4, suggesting that ELA4 might be a single nucleotide polymorphism of the
caldecrin gene. It is now known that chymotrypsin C, caldecrin, and ELA4 are the same
protein encoded by the CTRC gene. The CTRC gene is located on chromosome 1p36.21 of
the human genome [17]. The rat and mouse CTRC genes are located on 5q36 and 4E1 of
each genome, respectively [18].

3. Protein Structure and Protease Activity of Caldecrin
3.1. Structure of Chymotrypsin C (Caldecrin)

Chymotrypsin C, also termed caldecrin, is a 268-amino acid-long protein. Its sequence
comprises a signal peptide (16 amino acids long, from residues 1 to 16), pro-peptide
(13 amino acids, residues 17–29), and mature protein (239 amino acids, residues 30–268).
The crystal structure of bovine Ctrc [14] revealed that rat and human caldecrin have five
disulfide bridges: Cys17–Cys141, Cys59–Cys75, Cys155–Cys222, Cys186–Cys202, and
Cys212–Cys243 [10,15] (Figure 2).
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Figure 2. Schematic for domain structure of caldecrin. Black box (signal peptide: amino acid
residue number 1–16); yellow box (pro-peptide:17–29 including 26–29 or 27–29 peptide removed by
autoactivation); blue box (mature protein: 30–268); red lines (disulfide bridges with cysteine number);
His74, Asp121, and Ser216 (charge relay system for serine protease activity).

Chymotrypsin C possesses two barrel structures, between which the charge-relayed
catalytic triad (His74, Asp121, and Ser216) is located. The activation peptide is first cleaved
at the Arg29–Ile30 peptide bond by trypsin, and further cleaved at Asp25–Leu26 [10] or
Leu26–Ser27 [19] by the autoactivation of chymotrypsin C. The cleaved Cys17–Asp25 or
Cys17–Leu26 long peptide remains attached to the mature protein by a disulfide bridge
such as Cys17–Cys141, a structure that resembles chymotrypsin [10,14,15,19,20].

3.2. Proteolytic Activity and Specificity of Chymotrypsin C (Caldecrin)

The enzyme classification of chymotrypsin C (caldecrin) is EC 3.4.21.2. It shows hy-
drolytic activity that can cleave leucyl, tyrosyl, phenylalanyl, methionyl, tryptophanyl,
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glutamine, and asparagine bonds. Chymotrypsin C preferentially hydrolyzes leucyl bonds
compared to chymotrypsin A [21]. Humans have five other chymotrypsin-like elastase
genes that encode the structurally similar proteins chymotrypsin-like elastase family, mem-
ber 1 (CELA1, EC3.4.21.36), pancreatic CELA2A and 2B (EC3.4.21.71), and pancreatic
CELA3A and 3B (EC3.4.21.70). The protease activity of CELA2 preferentially cleaves
leucine, methionyl, and phenylalanyl residues and hydrolyzes elastin [22]. CELA3B pref-
erentially cleaves alanyl residues, but has little elastolytic activity [23]. Human caldecrin
was more similar to CELA2A (63.4%), 2B (59.6%), 3A (52.2%), and 3B (53.0%) than with
chymotrypsin B (42.5%) [15]. The altered protease activity of chymotrypsin C revealed that
it can be a risk factor for chronic pancreatitis, a role that is described in detail in Section 3.3.

3.3. Chymotrypsin C (Caldecrin) and Pancreatitis

Chronic pancreatitis is a progressive inflammatory disease of the pancreas. It is char-
acterized by acinar cell atrophy, fibrotic tissue replacement, and duct irregularities with
calcifications [24]. The pathological mechanism of pancreatitis is uncontrolled trypsin
activity [25]. Cationic trypsinogen (PRSS1) mutations are gain-of-function mutations that
stimulate the autoactivation of the proform to trypsin, which are associated with autoso-
mal dominant hereditary pancreatitis [26]. Loss-of-function mutations in serine protease
inhibitor Kazal-type 1 (SPINK1), which can inactivate intrapancreatic trypsin activity, are
associated with pancreatitis risk [27]. Therefore, the inactivation of irregularly produced
intrapancreatic PRSS1 by SPINK1 or by an unidentified serine protease (Rinderknecht’s
enzyme Y) has been proposed to protect against pancreatitis [28–30]. In 2006, Nemoda
and Sahin-Tóth reported that chymotrypsin C (caldecrin) stimulates the autoactivation
of human cationic trypsinogen [31]. In 2007, Szmola and Sahin-Tóth reported that the
unidentified enzyme Y was identified as chymotrypsin C (caldecrin), in which the main
role of chymotrypsin C is trypsinogen activation and trypsin degradation [32]. In 2008,
Rosendahl et al. reported that loss-of-function variants in the CTRC gene were risk factors
for chronic pancreatitis [33]. Masson et al. also identified a CTRC mutation in patients with
idiopathic chronic pancreatitis [34]. Thus, loss-of-function mutations in CTRC can cause a
decrease in the catalytic activity of CTRC and impaired trypsinogen degradation, which
are causative risk factors for chronic pancreatitis [35]. CTRC is also a susceptibility gene
for tropical calcific pancreatitis associated with calcium deposition in the pancreas [36,37].
For genetic risk factors in chronic pancreatitis, see the www.pancreasgenetics.org (accessed
on 28 May 2021) website [38].

4. Non-Proteolytic Functions of Caldecrin
4.1. Caldecrin and Calcium Metabolism

As described above, purified porcine and rat caldecrin from the pancreas and pro-
duced recombinant rat and human caldecrin protein decreased serum calcium concentra-
tion in mice. Caldecrin dose-dependently decreased the serum calcium concentration. The
effect resulted in a maximum decrease of 15–20% with 20–100 µg (about 0.7–3.5 nmol)/kg
mice body weight. Procaldecrin did not exhibit serum calcium-decreasing activity, but
acquired serum calcium-decreasing and protease activity after trypsin treatment. PMSF
treatment after the trypsin activation of procaldecrin abolished its protease activity but did
not affect the serum calcium-decreasing activity [8] (Figure 3a). The calcium-decreasing
activity of porcine caldecrin was almost the same as that of porcine calcitonin (1 nmol/kg
body weight) (Figure 3b). Pretreatment with PMSF or recombinant caldecrin with point mu-
tations at positions coding for activity-related amino acids (Hm: His74Ala or Sm: Ser216Ala
substitution) decreased serum calcium concentration in vivo and bone destruction activity
in vitro and abolished the protease activity of caldecrin. Caldecrin not only decreased
calcium concentration but also hydroxyproline serum concentration, which is a marker
of bone resorption, suggesting that caldecrin inhibits bone destruction by osteoclasts [10].
Therefore, the mechanism by which caldecrin inhibits osteoclast formation and/or function
remains to be investigated.

www.pancreasgenetics.org
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Figure 3. Characterization of the serum calcium-decreasing activity of caldecrin. (a) PMSF treatment does not inhibit the
serum calcium-decreasing activity of activated caldecrin; (b) comparison of the serum calcium decreasing activities of
porcine caldecrin and calcitonin.

In 1996, Izbicka et al. independently purified a calcium metabolism-regulating fac-
tor from a porcine pancreas by determining the inhibitory effect of the proliferation of
human osteosarcoma MG-63 cells and bone resorption in organ culture stimulated by
PTH [39]. The factor had a molecular weight of 28 kDa, and it showed 92% homology
with human elastase IIIB (CELA3B) in the N-terminus. Recombinant human elastase IIIB
inhibited bone resorption in organ cultures stimulated with 1,25-dihydroxyvitamin D3.
This anti-resorptive activity was abolished by PMSF treatment, highlighting the impor-
tance of the proteolytic activity of elastase IIIB in the inhibition of bone resorption. The
differences between the hypocalcemic mechanisms of caldecrin and elastase IIIB have not
yet been elucidated.

4.2. Caldecrin and Osteoclast
4.2.1. Caldecrin and RANK Signaling

The serum calcium concentration is affected by osteoclast activity. Osteoclasts execute
bone resorption, which is differentiated from bone marrow by key molecules such as
macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-
kappa B (NF-κB) ligand (RANKL) [40–44]. Osteoclast differentiation and maturation occur
in the following stages: (i) osteoclast precursor cells are produced from bone marrow cells
in response to M-CSF and begin to differentiate following stimulation by RANKL; and
(ii) osteoclasts fuse with each other to form multinucleated giant cells. Multinucleated cells
secrete protons and cathepsin K, which are required for bone resorption. Osteoclast dif-
ferentiation is tightly regulated by many molecules to maintain bone homeostasis [45–47].
(Figure 4). During the initial stage, RANKL binds to its receptor RANK, which induces
the recruitment of the adaptor protein, tumor necrosis factor receptor-associated factor
6 (TRAF6) [48]. Activated TRAF6 stimulates NF-κB by activating IκB kinase (IKK) [49].
TRAF adaptor proteins also activate mitogen-activated protein kinases (MAPKs) such as ex-
tracellular signal-regulated kinase (ERK), C-Jun N-terminal kinase (JNK), and p38 [50–53].
NF-κB and MAPK signaling activates activator protein-1 (AP-1) including c-Fos, which
in turn activates the master transcription factor in osteoclastogenesis, nuclear factor of
activated T-cell cytoplasmic 1 (NFATc1) [54–56].
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RANK signaling also activates phospholipase Cγ (PLCγ)-dependent Ca2+ signaling
through splenic tyrosine kinase (Syk) [57–59]. Finally, calcineurin, a calcium/calmodulin-
dependent serine/threonine phosphatase activated by intracellular Ca2+ concentration,
causes the dephosphorylation of NFATc1 and induces translocation from the cytoplasm
into the nucleus [60]. Thus, TRAF6, NF-κB, c-Fos and NFATc1 are required for the initiation
stage of RANKL-induced osteoclast differentiation (Figure 4).

To understand the serum calcium-decreasing effects of caldecrin on osteoclast-mediated
bone resorption, we investigated whether caldecrin inhibits the initial stage of osteoclast
differentiation following RANKL exposure. In murine bone marrow macrophages and
macrophage-derived RAW264.7, protease-deficient caldecrin inhibited RANKL-stimulated
osteoclast differentiation [61]. The macrophage-type colonies formed from BMCs in the
absence or presence of caldecrin were not different, suggesting that caldecrin does not
affect macrophage formation. The frequency of osteoclast progenitor formation in the pres-
ence of M-CSF alone was not different from that in the presence of M-CSF and caldecrin.
Thus, caldecrin did not affect macrophage colony formation or osteoclast progenitors from
BMCs. However, caldecrin suppressed RANKL-stimulated mononuclear osteoclast differ-
entiation, assessed by tartrate-resistant acid phosphatase (TRAP) staining and enzymatic
activity, a specific osteoclast enzyme commonly used as a marker. Caldecrin inhibited
the RANKL-induced phosphorylation of Syk and PLCγ and abolished Ca2+ oscillations
within 5–10 min of caldecrin exposure. Caldecrin inhibited the activation of calcineurin, a
protein that enhances NFATc1 activity. Finally, caldecrin inhibited the RANKL-stimulated
nuclear translocation of NFATc1 and its mRNA accumulation, whereas other RANKL-
stimulated transcription factors such as NF-κB κ and c-Fos were unaffected. Thus, we
found that caldecrin inhibits osteoclast differentiation by suppressing NFATc1 activity via
the RANKL-mediated calcium signaling pathway at the initial stage of osteoclastogenesis
(Figure 4).

In the late stage of osteoclastogenesis, amplified NFATc1 induces the expression of
osteoclast-specific genes, leading to osteoclast differentiation (Figure 5). Mature osteo-
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clasts create a unique cytoskeletal structure, termed the sealing zone, which consists of
an actin ring attached to the bone surface [62,63]. The integrin vitronectin receptor αvβ3
binds to vitronectin present in the bone matrix, inducing the recruitment of c-Src tyrosine
kinase to the integrin receptor. Activated c-Src phosphorylates Syk, which phosphory-
lates the DNAX-activating protein of 12 kDa (DAP12) [64], and SLP-76, which induces
cytoskeletal organization and bone resorption [65]. Calcium-dependent proline-rich tyro-
sine kinase (PYK2) is an adhesion kinase localized in the sealing zone, which is activated
by binding to αvβ3 integrin and subsequent phosphorylation by Src kinase [66]. TRAF6-
induced cytoskeletal changes are mediated by interactions with cytoplasmic c-Src [67].
Thus, RANKL–RANK signaling enhances the TRAF6–c-Src interaction, which activates the
formation of the Src–Syk and Src–Pyk2 complexes that induce the cytoskeletal organization
of mature osteoclasts.
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Figure 5. Caldecrin inhibits RANKL signaling in mature osteoclasts. RANKL–RANK binding
activates c-Fos and NFATc1. RANK also activates c-Src and the c-Src–Syk complex. Activated Syk
phosphorylates PLCγ via SLP-76, which leads to the activation of TRPV4 channels and evokes
Ca2+ influx. Increased Ca2+ levels activate Pyk2 and are associated with Src, leading to cytoskeletal
organization. Caldecrin inhibits RANKL-induced phosphorylation of c-Src, Syk, PLCγ, SLP-76,
and Pyk2 in mature osteoclasts. Caldecrin also abolishes Ca2+ entry into the cytoplasm through
the TRPV4 channel and TRAF6–c-Src interaction. Akt: AKR mouse thymoma kinase; Src, sarcoma;
SLP-76:SH2 domain containing leukocyte protein of 76kDa; TRPV4: Transient Receptor Potential
Vanilloid 4.

Calcium signaling pathways have been shown to play a role in bone resorption,
exerting effects on actin metabolism, cytoskeletal organization, and cell–matrix interac-
tions. RANKL signaling activates PLCγ and enhances the production of inositol trispho-
sphate (IP3), which results in the release of Ca2+ from the ER through transient receptor
potential vanilloid channel 2 (TRPV2), which subsequently causes oscillations in Ca2+

concentration [68]. Ca2+ oscillations disappear during differentiations and are replaced
by RANKL-evoked Ca2+ influx via TRPV4 and 5 [69,70]. Thus, RANKL-triggered Ca2+

influx in multinucleated osteoclasts through TRPV channels maintains NFATc1 activity
and activates Pyk2, which is essential for actin filament organization (Figure 5).

Next, we investigated whether caldecrin inhibits RANKL-induced mature osteoclast
function. Caldecrin inhibited RANKL-stimulated osteoclastic bone resorption in vitro,
but did not induce apoptosis [71]. In addition, caldecrin inhibited the RANKL-induced
phosphorylation of c-Src, Syk, PLCγ, SLP-76, and Pyk2 in mature osteoclasts but not
the phosphorylation of ERK, JNK, and Akt. Furthermore, caldecrin inhibited RANKL-
induced Ca2+ entry through TRPV4 and actin ring formation in mature osteoclasts, RANKL-
stimulated c-Src kinase activity, and integrin–c-Src–Syk association and RANKL-mediated
TRAF6–c-Src association. Thus, we found that caldecrin suppresses RANKL-mediated Ca2+
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signaling and actin ring formation in mature osteoclasts via suppression of the TRAF6–c-
Src—Syk signaling pathway, resulting in the suppression of bone resorption (Figure 5).

In this section, we conclude that protease activity-deficient caldecrin inhibits both
RANKL-stimulated osteoclast formation from bone marrow progenitors and pre-existing
mature osteoclastic bone resorption, resulting in the serum calcium-decreasing activity
of caldecrin in vivo. Next, we investigated the role of caldecrin in inflammation-induced
bone loss.

4.2.2. Caldecrin and TLR4 Signaling

Inflammation is known to cause bone loss. Bacterial lipopolysaccharide (LPS), a
major constituent of the outer membrane of Gram-negative bacteria, is a potent inducer
of bone loss in inflammatory diseases, including periodontal disease, bacterial arthritis,
and dental implant infections [72,73]. Toll-like receptor (TLR) family members, which
are proteins homologous to the Drosophila Toll protein, play a critical role in the innate
immune system. TLR (TLR1–9) is expressed in osteoclast progenitors, of which TLR2 and 4
are also expressed in osteoclasts [74]. LPS has been shown to stimulate osteoclast formation
and bone resorption in vivo through TLR4 [75,76].

The signaling cascade of TLR4 has been extensively studied in macrophages [77–79].
LPS induces inflammation upon the production of pro-inflammatory cytokines, such as
interleukin-1 (IL-1) β, TNF-α, and IL-6 in macrophages and lymphocytes. Activated TLRs,
except for TLR3, induce pro-inflammatory cytokine production through the canonical
myeloid differentiation factor 88 (MyD88), which recruits TRAF6 downstream and activates
IKK and the NF-κB pathway [80], leading to osteoclast formation in vitro. Although LPS is
known to induce bone loss in vivo, LPS can both inhibit and stimulate osteoclastogenesis
in vitro. The simultaneous activation of TLR4 and RANK signaling by LPS and RANKL,
respectively, inhibits osteoclast formation in BMMs [74,81]. In this context, LPS/TLR4
activates NF-κB, p38, ERK1/2, and JNK, but inhibits RANKL-induced Nfatc1 expression.
In contrast, LPS treatment enhanced the osteoclast differentiation of BMMs primed with
M-CSF and RANKL [81,82]. The expression of Nfatc1 in RANKL-committed preosteoclasts
is no longer affected by subsequent LPS treatment [82]. Therefore, RANKL-primed NFATc1
expression is a prerequisite for LPS-stimulated osteoclast formation.

RANKL/RANK and LPS/TLR4 signaling pathways in osteoclast formation share
TRAF6, a ubiquitin E3 ligase, and downstream signaling pathways such as NF-κB activa-
tion. The LPS response is regulated by negative feedback with an NF-κB-inducible A20,
which is a deubiquitinating protease encoding tumor necrosis factor alpha-induced protein
3 (TNFAIP3) [83]. A20 removes lysine 63 (K63)-linked polyubiquitin chains from TRAF6 and
promotes K48-polyubiquitination for proteasomal degradation; thus, NF-κB-stimulated
A20 plays an anti-inflammatory role by inhibiting IκB phosphorylation and NF-κB activa-
tion [84]. LPS induces osteoclast formation from RANKL-pretreated macrophages and the
expression of A20, which is associated with TRAF6 degradation and NF-κB inhibition [85].
The overexpression of A20 inhibits osteoclastogenesis in a TRAF6-dependent manner,
whereas the silencing of A20 restores TRAF6 expression and NF-κB activation, resulting in
LPS-enhanced bone resorption [86]. Thus, the induction of NFATc1 by RANKL–TRAF6 is
necessary before the increase in the levels of A20 by LPS. Therefore, the anti-inflammatory
molecule A20 acts as a barrier to uncontrolled activation during osteoclast differentiation.

We investigated whether caldecrin inhibited LPS-induced osteoclastogenesis. Osteo-
clast progenitors from mouse BMMs and RAW264.7 cells were primed with a low dose
of RANKL for 40 h and subsequently exposed to LPS in the absence of RANKL, which
caused osteoclast formation [87]. LPS stimulated the phosphorylation of ERK, JNK, p38,
and IκB. Furthermore, LPS stimulated the expression of osteoclast differentiation markers,
such as ACP5 (tartrate-resistant acid phosphatase 5), CTSK (cathepsin K), and DCSTAMP
(dendrocyte expressed seven transmembrane protein) in RANKL-primed RAW264.7 cells
and osteoclast progenitors. When RANKL priming was combined with protease-deficient
caldecrin treatment, caldecrin inhibited the LPS-stimulated phosphorylation of IκB and
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that of JNKs, MAPKs, ERKs, and p38 to a lesser extent, leading to the inhibition of the
marker gene expression.

Interestingly, pretreatment with RANKL and caldecrin increased A20 mRNA and
protein levels. Furthermore, a reduction in the levels of A20 by means of RNA interference
(RNAi) in RAW264.7 cells pretreated with caldecrin and RANKL resulted in enhanced
osteoclast formation in response to LPS stimulation. These results indicate that caldecrin
enhances A20 expression at the RANKL priming stage, which interferes with LPS-evoked
NF-κB activation. Caldecrin alone did not activate the IκB, ERKs, JNKs, and p38 signaling
pathways, unlike LPS, suggesting that A20-induced caldecrin may be an anti-inflammatory
protein. The mechanism of A20 induction by caldecrin was further elucidated.

4.2.3. Caldecrin and TREM2 Signaling

Recent studies revealed that tissue macrophages, including osteoclasts, express DAP12
and its pairing triggering receptor on myeloid cell 2 (TREM-2), and participates in diverse
cell processes, including osteoclastogenesis, inflammation [88–90]. TREM-2 in mouse
macrophages and RAW264.7 cells stimulated by anti-TREM-2 antibody cross-linking en-
hanced RANKL-stimulated osteoclast formation, whereas silencing TREM-2 resulted in
the inhibition of bone differentiation, indicating that TREM-2 is a positive regulator of
osteoclast differentiation and function [91]. DAP12-deficient mice also show impaired
osteoclastogenesis in vitro [92]. In contrast, TREM2-deficient mice show accelerated os-
teoclastogenesis in vitro [93,94]. There are conflicting results regarding the relationship
between TREM-2, DAP12, and osteoclastogenesis in humans and mice, suggesting that
TREM-2′s contribution to osteoclasts’ biology may vary depending on the influence of other
receptors such as TREM-1 and/or on the presence of TREM-2 ligands with variable avid-
ity/affinity; for example, complete or partial DAP12 phosphorylation by TREM-2 ligand
binding may induce either activating or inhibitory signaling through TREM-2/DAP12 [93].

TREM2/DAP12 signaling contributes to macrophage activation. Tissue macrophages
have two key functions: (1) to interact with pathogens such as LPS and modulate the
adaptive immune responses, and (2) to facilitate tissue repair and tissue regeneration. These
macrophage polarizations, categorized as M1 and M2, are modulated by the chemokine
system [95–97]. Macrophages activated by LPS or interferon-γ alone or in combination
are differentiated as classical M1 activation, which produces pro-inflammatory cytokines,
whereas Th2-related cytokines IL-4 or IL-13, and anti-inflammatory molecules such as
IL-10 and TGF-β, promote alternative M2 activation, which shows an anti-inflammatory
and pro-healing phenotype [97,98]. TREM-2/DAP12 signaling contributes to the negative
regulation of LPS/TLR4-mediated M1 macrophage polarization [99]. TREM-2-deficient
macrophages enhanced the expression of pro-inflammatory cytokines and suppressed
phagocytosis following TLR4 stimulation with LPS, demonstrating that TREM-2 suppresses
inflammation and promotes bacterial clearance.

To address whether caldecrin inhibits osteoclast formation via TREM-2, we pre-
pared TREM-2 gene knockout (KO) RAW264.7 cells. Based on the study showing that
TREM-2/DAP12 signaling is essential for RANKL-induced osteoclastogenesis, TREM-2-
KO RAW264.7 cells were impaired to differentiate them into osteoclasts following RANKL
stimulation. Therefore, to elucidate the effect of caldecrin on LPS-induced M1 macrophage
polarization through TREM-2, BMMs and TREM-2-KO RAW 264.7 cells were incubated
with LPS and IFN-γ [100]. LPS induced the phosphorylation of p38, JNKs, and ERKs, the
degradation of IκB and the expression of pro-inflammatory cytokines such as IL-1β, IL-6,
and TNF-α in mouse BMMs, whereas caldecrin suppressed LPS-induced IκB degradation
and pro-inflammatory cytokine production but did not affect p38, JNKs, and ERKs signal-
ing pathways. Caldecrin also inhibited M1 macrophage polarization in BMMs stimulated
with LPS and IFN-γ. In RAW264.7 cells, caldecrin also inhibited LPS-induced IκB degrada-
tion, pro-inflammatory cytokine expression, and M1 macrophage polarization, while in
Trem2-KO RAW264.7, caldecrin-mediated suppression was not observed. These results
suggest that caldecrin is a negative regulator of LPS-induced inflammatory responses via
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TREM2. Taken together, our findings suggest that the inhibitory mechanism of caldecrin in
RANKL/RANK-mediated osteoclast formation and LPS/TLR4-mediated inflammation in
macrophages relies, at least in part, on TREM2. However, this is a mere hypothesis and
requires further testing (Figure 6).
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Figure 6. Caldecrin inhibits RANKL/RANK stimulated osteoclastogenesis from macrophages (a) and
LPS/TLR4-stimulated macrophage activation through TREM-2 (b). (a) RANKL/RANK-stimulated
osteoclast differentiation from macrophages is promoted with the activation of MAPKs, NF-κB, and
the TREM-2/DAP12 axis. Caldecrin inhibits the RANKL/RANK/TRAF6 co-stimulatory TREM-
2/DAP12 signal which is critical for NFATc1 activation. (b) LPS/TLR4 stimulates the TRAF6/NF-kB
and MAPK pathways in macrophages, resulting in the activation of macrophages to M1 polarization
with increased production of pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6. Caldecrin
inhibits LPS-induced M1 macrophage polarization through TREM-2/DAP12 signaling with the
induction of A20.

4.3. Caldecrin and Inflammation-Related Diseases

Rheumatoid arthritis (RA) is an autoimmune disease characterized by osteoclast-mediated
bone and cartilage destruction resulting from inflammation in the synovium [101–103]. Os-
teoclast precursor cells are identified in areas of pannus invasion into the bone in RA.
RANKL is expressed by both synovial fibroblasts and activated T lymphocytes derived
from synovial tissues from patients with RA [104–106]. Pro-inflammatory cytokine levels,
including TNF-α, IL1α, IL-1β, and IL-6, induce RANKL expression in synovial fibroblasts
in RA, resulting in the enhancement of osteoclastogenesis in RA [107–110]. The A20 is
decreased in monocytes and synovium from RA patients, suggesting that A20 may have a
protective role in RA [111–113].

We investigated whether caldecrin could improve inflammation-related bone diseases.
Therefore, we investigated whether caldecrin suppresses RANKL expression in synovium
derived from patients with RA. TNF-α treatment increased RANKL expression in synovial
fibroblasts from patients with RA but not in those from healthy individuals [114]. Caldecrin
inhibited TNF-α-stimulated RANKL overexpression in RA fibroblasts, suggesting that
caldecrin inhibits inflammatory cytokine-induced RANKL expression in RA.

Osteoporosis is associated with estrogen deficiency and bone loss in postmenopausal
women. The decrease in bone mass is due to enhanced or imbalanced bone resorption by
osteoclasts vs. osteoblastic bone formation in osteoporosis [115,116]. While basal levels of
RANKL and M-CSF are essential for physiological osteoclast formation, T-cell-derived pro-
inflammatory cytokines, such as TNF-α, are responsible for the upregulation of osteoclast
formation in estrogen deficiency [117,118]. The ovariectomy fails to induce bone loss in
TNF-α-deficient mice and in p55 TNF receptor KO mice [119]. Ovariectomized mice are
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an animal model commonly used to study postmenopausal osteoporosis, as they exhibit
increased serum calcium levels due to elevated bone resorption.

To address whether caldecrin improves OVX-induced osteoporosis, we transfected
plasmids encoding wild-type caldecrin or the protease-deficient mutant caldecrin in the
femoral muscle of OVX model mice [120]. Caldecrin abolished changes in calcium serum
concentration and collagen degradation in OVX mice, and restored bone resorption pa-
rameters to normal levels by micro-CT analysis, which decreased the bone surface to
bone volume ratio, trabecular separation, increased bone volume density, and trabec-
ular thickness and number, indicating that caldecrin suppresses estrogen deficiency-
induced osteoporosis.

These findings, taken together with our in vitro experiments, suggest caldecrin as a
possible therapeutic target in arthritis and osteoporosis.

4.4. Caldecrin and Muscular Dystrophy

Takaoka et al. [11,12] administered pancreatic extract to patients diagnosed with
myasthenia gravis and muscular dystrophy, including patients with fascio-scapulo-humeral
muscular dystrophy (FSHD). FSHD is an autosomal dominant disease, and it is the third
most common muscular dystrophy (1:15,000 to 1:20,000). It is characterized by weakness of
the skeletal muscles of the face, shoulders, and upper arms. The symptoms often progress
towards the lower body, and in the latest stages of the disease, the humeral, truncal, and
leg muscles are also affected [121]. Takaoka et al. reported that extract administration
improved the symptoms of FSHD, suggesting that the hypocalcemic effect of the pancreatic
extract could contribute to slowing down the progression of muscular dystrophy [12]. In
2005, Lefkowitz D.L. and Lefkowitz S.S. reported that Ca2+-triggered TNF-α induction,
and the overexpression of adenine nucleotide translocator-1 protein, which is a component
of the mitochondrial permeability transition pore, was observed in FSHD [122]. They used
the Ca2+ channel blocker, diltiazem, for the treatment of FSHD, resulting in the prevention
of the progression of muscle wasting, and proposed the use of diltiazem and a TNF-α
inhibitor for the treatment of FSHD. In 2011, we investigated the effect of caldecrin in
a naturally occurring mutant model of human congenital muscular dystrophy, a dy/dy
mouse model. These mice lacked the laminin gene and exhibited defective muscle basement
membranes. The peritoneal administration of caldecrin protein or the muscular ectopic
expression of caldecrin improved the muscular destruction seen in dy/dy mice [123]. In
2012, Lefkowitz et al. reported that the administration of anti-RANKL reagent, denosumab,
in FSHD patients improved muscle strength and dystrophic symptoms [124]. Recently,
RANKL was reported to reduce muscular function when expressed in muscle cells. Anti-
RANKL antibody treatment inhibits the NF-κB pathway and reduces muscle inflammation
and damage in dystrophic mice [125]. Osteoprotegerin KO mice, which lack a secreted
decoy receptor for RANKL, displayed reduced locomotor activity and signs of muscle
weakness. Inhibiting RANKL improved the selective weakness and atrophy of fast-twitch
IIb myofibers [126]. In addition, RANKL inhibition improved muscle strength and insulin
sensitivity in osteoporotic mice and humans [127]. Therefore, caldecrin, by virtue of its
anti-RANKL and anti-inflammatory activities, could be a suitable therapeutic approach for
skeletal muscle dysfunction.

5. Concluding Remarks

We have highlighted the serum calcium-decreasing factor caldecrin, which was first
discovered in the pancreas, and its structure and protease activity were identical to those
of chymotrypsin C (CTRC). Protease-deficient caldecrin inhibits RANKL-stimulated os-
teoclast differentiation of BMMs and bone resorption mediated by mature osteoclasts.
Additionally, caldecrin inhibits osteoclast differentiation stimulated by LPS and inflam-
matory M1 macrophage polarization stimulated by LPS and IFNγ through the TREM-2
pathway. Furthermore, caldecrin ameliorates the symptoms of several diseases, including
osteoporosis, RA, and muscular dystrophy. Thus, caldecrin is a protease with chymotryp-
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tic hydrolysis activity and non-proteolytic functions, which modulate physiological and
pathological bone metabolism and inflammation via the TREM2 pathway.
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