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Abstract: Video quality assessment (VQA) is now a fast-growing field, maturing in the full reference
(FR) case, yet challenging in the exploding no reference (NR) case. In this paper, we investigate
some variants of the popular FR VMAF video quality assessment algorithm, using both support
vector regression and feedforward neural networks. We also extend it to the NR case, using different
features but similar learning, to develop a partially unified framework for VQA. When fully trained,
FR algorithms such as VMAF perform very well on test datasets, reaching a 90%+ match in the
popular correlation coefficients PCC and SRCC. However, for predicting performance in the wild, we
train/test them individually for each dataset. With an 80/20 train/test split, we still achieve about
90% performance on average in both PCC and SRCC, with up to 7–9% gains over VMAF, using an
improved motion feature and better regression. Moreover, we even obtain good performance (about
75%) if we ignore the reference, treating FR as NR, partly justifying our attempts at unification. In
the true NR case, typically with amateur user-generated data, we avail of many more features, but
still reduce complexity vs. recent algorithms VIDEVAL and RAPIQUE, while achieving performance
within 3–5% of them. Moreover, we develop a method to analyze the saliency of features, and
conclude that for both VIDEVAL and RAPIQUE, a small subset of their features provide the bulk of
the performance. We also touch upon the current best NR methods: MDT-VSFA, and PVQ which
reach above 80% performance. In short, we identify encouraging improvements in trainability in FR,
while constraining training complexity against leading methods in NR, elucidating the saliency of
features for feature selection.

Keywords: video compression; video quality assessment (VQA); image quality assessment; full
reference; no reference

1. Introduction

For humans, vision is our most powerful sense, and the visual cortex makes up 30%
of the cerebral cortex in the brain (8% for touch, and just 3% for hearing) [1]. Additionally,
visual stimulus is typically our most informative input. Developed over eons for detecting
predators (or prey) by registering movement, vision has since developed into our single
all-encompassing sense. It is not surprising that as our gadgets and networks have matured
in recent times, video makes up a staggering 80%+ of all internet traffic today, a fraction that
is still rising [2]. Video is now big business; it is highly processed and heavily monetized,
by subscription, advertisement, or other means, creating a $200B+ global market in video
services. Netflix itself takes up some 37% of network bandwidth, while YouTube serves
a staggering 5B streams/day (1B h/day). Due to the immense bandwidth of raw video,
a panoply of increasingly sophisticated compression algorithms have been developed,
from H.261 to H.266, now achieving up to a staggering 1000:1 compression ratio with
the latest H.266/VVC video codec [3]. Most of this video traffic is meant for human
consumption, although a growing fraction is now aimed at machine processing such as
machine vision (video coding for machines, VCM). Going forward, algorithm developers
are looking to neural networks to supply the next-level performance (and especially for
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VCM). The future for video coding looks neural, first at the component level, then end-to-
end. However, coding is only half the problem.

Due to the vast volumes of video created and served globally, this industry also needs
an array of objective metrics that are predictive of subjective human ratings. However, for
most of the past 40 years, the video coding research and development industry has been
using mean-squared error-based PSNR, the most basic FR VQA. Moreover, in the encoder,
an even simpler measure, the sum of absolute differences (SAD) is used instead of MSE,
simply to avoid multiplications! Puns aside, it is known that SAD correlates even less with
subjective scores than MSE. We predicted that this disconnect between the development
of video coding, and its important use cases will change going forward. In neuroscience,
it is also natural that learning techniques such as support vector machines and neural
networks would be useful in assessing the quality of video streams by objective methods
([4] even develops a VQA for VCM). As neural methods gain a footing in VQA, methods
such as architectural learning and overfitting management (such as dropouts) will be tested.
For now, we used the simplest methods.

A key difference between full reference (FR) vs no reference (NR) VQA domains
appears right at the source. Movie studios, broadcasters and subscription VOD services
such as Netflix/Amazon Prime use professional high-end capture and editing equipment
at very high rates, creating contribution-quality originals, while distributing lower rate
derived streams to consumers. In assessing the quality of their distribution streams, they
have the full reference original to compare with. Considerable advances in FR VQA have
culminated in algorithms such as VMAF from Netflix (introduced in 2016, and now updated
with additional features) [5], as well as a torrent of all-neural network methods, of which
we cite just one: C3DVQA [6]. These achieve 90%+ agreement with user ratings on test
databases after extensive training. C3DVQA is a complex all-NN design, with 2D CNNs
to extract spatial features, and 3D ones to extract spatio-temporal ones. VMAF uses well-
known fixed-function features, and a simple SVR regressor. At present, to limit the high
complexity of expensive feature extraction, we selected computationally feasible fixed-
function features, and applied efficient learning-based methods post feature extraction to
derive methods usable in the near-term. At present, PSNR, SSIM, and VMAF are the most
widely used FR VQAs, and we sought to stay in that lane. To highlight this, while many
authors typically report only inference time, we reported the full training/testing time post
feature extraction.

By contrast, the user-generated content served on prominent social media sites such
as on YouTube, Facebook, and TikTok is typically acquired by novice users with unstable
handheld smartphones (or GoPros), often in motion, and with little or no editing. These
social media services lack any pristine reference to compare to, and have had to develop
ad hoc methods to monitor the volumes of video emanating from their servers in a chal-
lenging no reference (NR) or blind VQA setting. This field relies on intrinsic qualities
of the video to develop a measure. For this, they have in part focused on the perceived
Gaussianity of natural scene statistics (NSS) and on evaluating how video distortions alter
those statistics, both spatially and temporally, to create a measure of quality. An entire
cottage industry has thus sprung up to create both FR and NR VQA measures, which can
adequately meet the needs for stream selection and monitoring. In sum, what separates the
professional FR and user-generated NR worlds is the markedly different quality of capture
(in terms of sensors, stability, noise, blur, etc.). This is also reflected in the databases we
work with; see Figures 1–5.

Even with the wide gulf between these domains, in this paper, we attempted a partial
synthesis of some trends in FR and NR VQAs, to formulate what we call FastVDO Quality
(FVQ). It incorporated some lessons from the FR VMAF, the NSS-based assessment concepts
in the NR VIIDEO [7], SLEEQ [8], VIDEVAL [9], and RAPIQUE [10], and our own research
over the past several years in using learning-based methods in VQA, to create a method that
can be applied to both cases. We also mentioned the following two groups of best-in-class
NR algorithms: VSFA [11] and MDTVSFA [12], as well as PAQ2PIQ [13] and PVQ [14],
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both of which reached beyond the 80% performance barrier. PVQ uses both 2D frame-level
features as well as 3D clip-level features, a characteristic shared by C3DVQA, but makes
novel use a neural time-series classifier (InceptionTime [15]) to regress a quality score.
But at least from at a high level, most of these algorithms still fit into the framework of
extracting spatio-temporal features, and using a learning-based regressor to obtain a score,
as in Figure 1. This method isn’t meant to be novel so much as a distillation of various
trends in FR and NR VQA.

Another key difference between the FR and NR cases now is in the feature extraction
phase. FR requires just a handful of features to capture the quality difference between
the pristine and distorted videos with high fidelity, reaching over 90%, while NR requires
a vast array of features, often in the thousands, just to break above 80%. This raises the
challenge of whether a compact set of features can also suffice in the NR case. Our novel
feature saliency measure may prove useful in that search.

Figure 1. Outline of FastVDO Quality (FVQ) calculation. Two videos were input, either original
and processed (FR case), or processed and blurred-processed (NR case); 2D and 3D features were
extracted, which may be a fixed function or based on learning methods; and predicted quality scores
were regressed, using a learning method such as SVR or a neural network (NN). While at a very high
level, this framework broadly encompasses the leading algorithms in both FR and NR cases.
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Figure 2. Simulation results for FVQ for full-reference (FR) testing, compared to the well-known
VMAF algorithm. In our tests, for a fair comparison, we trained/tested on each dataset, splitting
the data randomly 80/20 for SVR, 85/15 for NN, and repeating the test 50 times. Our results show
that we outperformed VMAF on these test datasets with both SVR and NN. We believe the gains
derive from both a better motion feature than VMAF, as well as better regression. While VMAF also
regresses using an SVR, we obtained gains by using improved hyperparameters (no search), as well as
with moderate search. Using a modern GPU, our computationally fastest regressor engine was an NN
(e.g., a simple 6-80-64-1 fully connected feedforward network, with Relu activation, and RMSProp
optimization), which achieves excellent results.

Figure 3. Simulations in the full reference databases, but ignoring the reference videos (full-as-no-ref).
It is encouraging to see that even by working without the reference, but otherwise using the same
framework (including the same feature types and regressor engines), we were able to obtain quite
useful results. This partly validates our attempts at a unified framework for VQA. We remark that
this approach may be applied even if the reference is not at hand, and can simplify the workflow more
generally. We note that this application is still in the context of the high-quality FR data. By contrast,
it is much more difficult to obtain good performance in the true no reference case.

Figure 4. Simulation results in no reference testing, using several large no reference user generated
content databases. Comparisons are to a state-of-the-art VIDEVAL algorithm, where we used
the same 60 features, but a different regressor (a fixed NN architecture) and where we reduced
complexity by avoiding any hyperparameter search. For the last row, we used 60 VIDEVAL features,
and 120 RAPIQUE features (total of 180) to obtain our best results with the NN regressor, and no
parameter search. The main value of our approach was to expedite training processing in modern
GPU-enabled compute architectures. In our tests, the combined training and testing for 50 cycles ran
at least 20X faster than the SVR with full parameter search in a Google Colab tensorflow computation.
We also hope to be able to reach state-of-the-art results in the near future, by combining additional
powerful and salient features in the regression.

The rest of this paper is organized as follows. For completeness, Section 2 provides a
quick review of VQAs, their uses, and performance metrics such as correlation coefficients.
Section 3 begins our development of variants of the VMAF algorithm, while providing some
performance comparisons to other known VQAs. Section 4 provides some background on
NR VQAs, which we aimed to incorporate together in one framework. Section 5 describes
our attempted unification of the trends in FR and NR cases, provides some performance
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results in both cases, and develops our novel saliency measure. In application, we found
success in the FR case, advancing the state-of-the-art (Sota), while in NR we did not achieve
Sota, but at least elucidated the saliency of features in an attempt to reduce the required
number of features. Section 6 provides some brief concluding remarks.

Our contributions in this paper are as follows: (a) improved motion feature; (b)
improved SVR with and without hyperparameters for high-performance FR VQA; (c)
novel use of neural network regression for both FR and NR; (d) aggregation of diverse NR
features and novel feature saliency criterion; and (e) reduced parametric regression with
SVR and NN. This paper is principally based on our Arxiv paper [16].

2. Review of VQAs and Their Uses

For completeness, we provided a rudimentary intro to VQAs. For both FR and NR
cases, the aim of a VQA is not to predict individual ratings but rather a mean opinion
score (MOS) among human viewers with high correlation, as measured using correlation
coefficients. For random variables X and Y, the Pearson linear Correlation Coefficient (PCC)
and the Spearman Rank order Correlation Coefficient (SRCC) are given by:

PCC(X, Y) = (E[(X− µX)(Y− µY)]/(σXσY)),

SRCC = PCC(rk(X), rk(Y)),

where rk(X) = rank order o f X.

(1)

Note that these measures could also be calculated at the frame, or even at the block-
level if desired (but challenging to capture user ratings). While we mainly work with
video-level measures, for encoder optimization one needs deeper analysis; see the encoder
optimization discussion below. PCC measures direct correlation, while SRCC only mea-
sures the rank order; yet it is more directly useful in live application to stream selection.
As mentioned, for now SAD and MSE are the most used VQAs in encoders, despite poor
correlation; see [3]. With increasing processing power, more powerful VQAs will eventually
penetrate encoders too.

If a VQA algorithm achieves high scores for both PCC and SRCC in test databases, we
envision at least three separate, increasingly larger but more demanding applications. First,
the VQA can be used in stream selection (i.e., sending the best quality video), which is
an elementary, typically offline application, used in post compression. This is perhaps the
most prevalent problem faced by streamers such as Netflix, Hulu and Amazon: to identify,
among multiple encodings, which stream will optimize viewer appreciation. In reality, this
task is further complicated by the variation in instantaneous channel bandwidth, as well
as transmission issues such as dropped packets, rebufferings, etc. We mainly focused on
assessing the quality loss due to compression and placed considerations of transmission
(these are generic anyway) to the side. If a VQA has a high SRCC to subjective scores,
then for a given bandwidth limitation, the stream below the bandwidth limit with the
highest SRCC score should be selected. A related task is video quality monitoring, i.e., to
measure the predicted quality of outgoing streams. For this, both PCC and SRCC were
used. Selection and monitoring are the main applications in use today.

Next, a VQA can be used in receiver video restoration (i.e., restoration for best visual
quality). Such a VQA could, for example, be combined with deep learning methods trained
on blocks of video frames on the original video, which can provide effective restoration
on the same blocks in compressed and other distorted videos [3,17,18]. This is a large
and powerful emerging application, especially when performed offline. Finally, it could
also be used for video encoder optimization to decide how best to encode a video with
a given code (i.e., encode for best visual quality). Currently, the complexity of the VQAs
in discussion is too high for this application to be realized, but with advances in both
algorithms and compute densities, this can also become mainstream.

While stream selection (at server) and restoration (at receiver) can require real-time
performance, and thus pose complexity constraints, the encoding application is by far the
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most challenging; therefore, we first focused on this application. The issue is that all modern
encoders rely on the use of rate-distortion optimization (RDO) [19] to make decisions, based
on an interplay between distortion D, and the rate R, to optimize the Lagrangian (where λ
is a constant called a Lagrange multiplier). Given any number of independent parameters
to optimize (e.g., various pixel quantizers), these are jointly optimized when the slopes of
negative distortion over the rate are all equal [20].

L = D + λR = ∑
i

Di + λRi;

δL = 0 => δLi = 0

=⇒ λ = −Di/Ri, a constant.

(2)

In general, the RDO analysis is more complicated, but still essential. In coding a 4K
or 8K video, a modern encoder such as VVC may make millions of RDO decisions per
second, on everything from mode selection and motion estimation to quantization and
filtering decisions. These are typically performed at the block-level, so are computationally
costly. Furthermore, since many video applications require real-time encoding (e.g., the
transmission of live events in news or sports), usually performed in hardware, severe
constraints are placed on the way RDO is actually computed. Now, in rate-distortion
analysis, the rate R is straightforward in terms of how many bits it takes to encode the
data (though even this is estimated to save cycles, not computed). However, what to use
for the distortion D, comparing a coded M × N block B to the reference version, is more
open. Typically, the simple mean squared error (MSE) or L2-norm is used to represent the
block-based spatial error E(k,spat). As mentioned, this is further simplified to just the Sum
of Absolute Differences (SAD, or L1-norm).

Ek,spat = SAD =
M,N

∑
i,j=1
|Bre f ,i,j − Bcoded,i,j|

= ||Fre f − Fcoded||, the L1 norm.

(3)

Due to complexity, VQAs are currently used post encoding to measure video quality
for stream selection. If a more effective (and computable) measure of distortion could be
used in the encoder loop, it would lead to better encoding to begin with in terms of video
quality. For applications such as subscription streaming services, which have both time
and server cycles available per title, this can begin to be useful. Similar ideas can also apply
in video restoration.

3. FVMAF: VMAF + Improved Motion

If an original (e.g., unprocessed) video sequence is a set of frames F(k), k = 0,. . . ,K,
the popular and excellent VMAF [5] algorithm uses two known IQAs, namely Visual
Information Fidelity (VIF) and Detail Loss Measure (DLM), as well as the Sum of Absolute
Frame Difference (SAFD) as a motion feature (Netflix calls this Mean of Co-located Pixel
Difference), where the L1-norm is used. Herein, we refer to this feature as M for motion,
which is used along with four scale-based VIF features, and DLM (six in total). Table 1
provides some exemplary performance results of VMAF against various known VQAs,
showing its excellent performance when well trained. Table 2 provides some performance
results in both FR and NR cases, again for benchmarking purposes.

SAFD =
K

∑
k=1
||F(k)− F(k− 1)||. (Actually use

K−1

∑
k=1

min (||F(k)− F(k− 1)||, ||F(k + 1)− F(k)||))
(4)
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Recently, this list of features was expanded to eleven, with two motion features (one
taking the min above, the other not), DLM (called ADM) and four additional DLM features
at the same scales (0–3) as the four scaled VIF features. To this list, FastVDO adds one or two
more motion features, described below. Note that the Netflix motion features, computed
only on the original video, contain no information about the loss of motion fidelity in
the compressed or processed video. Nevertheless, as it does carry motion information,
it performs well in predicting visual quality when fully trained, on test data such as the
Netflix dataset [5]. Further enhancements of VMAF were reported in [21], which improved
temporal information, but increased complexity. However, as we witnessed in our tests,
where we trained VMAF from scratch, it performs well below the 90% level (see Figure 2),
with the BVIHD dataset [22] proving to be especially challenging ( 76% in both PCC and
SRCC). It proved challenging for our variants as well.

Table 1. Some results from [21] on Netflix data, indicating VMAF and VQM-VFD perform well on
Netflix databases.

Metric PSNR PSNR-hvs SSIM MS-SSIM VQM-VFD VMAF0.6.1 ST-VMAF

Perf. 0.705 0.819 0.788 0.741 0.931 0.928 0.927

Table 2. Example performance of known VQAs in (a) the FR case by FastVDO, with no pretrained
models; and in (b) the NR case, with UT-Google [10], using heavily trained models. While the FR
case achieved useful levels of correlation with viewer ratings, the state of NR was more challenging.
Recent advances have led to progress. Our FVQ achieved strong results in FR without pre-training;
see Figure 2.

FV-Nflx2 UT-YTugc

FR-VQA PCC SRCC NR-VQA PCC SRCC

PSNR 0.6982 0.6912 V-BLIINDS 0.559 0.5551

MS-SSIM 0.7304 0.7118 TLVQM 0.6693 0.659

SSIM 0.7334 0.7123 VIDEVAL 0.7787 0.7733

VMAF 0.8659 0.8432 RAPIQUE 0.7591 0.7684

Relative to VMAF, we aimed to improve on both the quality of motion representation,
as well as on the learning-based regressor engine. Specifically, for original video frames
F(k), k = 0,. . . ,K, and processed (distorted) video frames G(k), k = 0,. . . ,K, since the temporal
frame difference precisely corresponded to motion (all changes to pixels), we developed
temporal motion-based metrics using the difference of frame differences (Equation (5)).
Let us call this feature DM for differential motion. We retained the VIF and DLM features
too. Like VMAF, we were able to use a range of features, from the base six (DM, DLM,
VIF0-VIF3), up to a max of thirteen, where we added two variants of DM to the eleven
current features of VMAF. We called our version of these features the FVMAF features.
Importantly, we advanced the learning-based regressor engine to include feedforward
neural networks (NNs), besides the SVR. One advantage of NN regression is that even
without a computationally expensive hyperparameter search, it can provide excellent
results. Our general framework is demonstrated in Figure 2.

DM = ||(F(k)− F(k− 1))− (G(k)− G(k− 1))||,
the L1 norm (but can be L2, Lp, Entropy, etc).

(5)

We see that this is the simplest form of motion error analysis in the FR case, and there
were analogs in the NR case. This can be generalized by analyzing motion flow in a local
group of frames around at time t, say frames F(k), G(k), with k = t − L, t − L + 1, ..., t, t + 1,
..., t + L, and L > 0. Moreover, one can capture motion information either by fixed function
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optical flow analysis, or by using 3D convolutional neural networks, such as ResNet3D [23],
as both C3DVQA and PVQ do. The trend is in fact to use learning-based methods for both
feature extraction and regression, leading to an all learning-based VQA, in both FR and NR.

Figure 5. Example images from the following three databases under test: (left) BVI-HD [22]; (center)
NFLX-II [5]; and (right) YouTube UGC [24]. The BVI-HD and NFLX-II databases have originals
of high-quality, stable videos. The huge YouTube UGC dataset has mostly modest quality, user-
generated videos, but with its wide variety, it even has 4K HDR clips.

4. No Reference (NR) VQAs

Historically, FR VQAs have been mainly used as image quality assessments (IQAs),
applied per frame and averaged. PSNR and SSIM are common examples. This can also
be completed in the NR context, e.g., NIQE IQA [25]. The first completely blind NR VQA
was released in 2016, namely the Video Intrinsic Integrity and Distortion Evaluation Oracle
(VIIDEO) [7], based on NIQE IQA. This is an explicit, purely algorithmic approach without
any prior training. It relies on a theorized statistical feature of natural images [26], captured
as Natural Scene Statistics (NSS), and measured in the temporal domain. Analyzing frame
differences, in local patches, they normalized the patch pixels by subtracting the mean,
dividing by the standard deviation, modelling the resulting patch pixel data as a generalized
Gaussian distribution, and estimating its shape parameters. Natural (undistorted) images
have Gaussian statistics, while the distortions alter the shape parameter, which then leads
to a distortion measure. An important fact is that this NR VQA already beats the common
MSE, an FR VQA. Figure 5 provides example images from FR datasets BVIHD [22], NFLX-
2 [5], and the NR dataset YouTube UGC [24]. A follow-on NR VQA called SLEEQ [8] was
developed in 2018, which developed the NSS concept further. Meanwhile, [27] from 2018
repurposes image classifiers such as Inception to create a NR IQA, while [28] asks whether
VQA is even a regression or a classification problem.

To summarizee the trends in this field, first note that as there was no original reference
to compare to, they created a “self-referenced” comparator by blurring the compressed (or
processed) video with a Gaussian blur, whose standard deviation then acted as a design
parameter. The compressed and blurred compressed videos were then compared in patches,
in both spatial and temporal domains, to create individual spatio-temporal distortion
measures, which were then combined. As the recent paper [29] indicates, the performance
of leading NR VQAs highlights significant challenges; see Table 2.

Given these limitations, a comprehensive analysis of the proposed methods was
undertaken in 2020 in [9] for the NR case. In the analysis, the authors reviewed a vast array
of NR algorithms, which they viewed as merely providing features to process. They began
with no less than 763 features, then downselected to 60 features using the learning methods
of support vector machines (SVM) and Random Forests. These 60 features were then
aggregated using a highly optimized support vector regressor (SVR) with hyperparameters
optimization to achieve performance, just under the 80% level in NR VQA [9]. While
impressive, its complexity is high (though recently reduced in [30]), something both this
paper and RAPIQUE [10] aimed to address. RAPIQUE uses a mixture of fixed-function
and neural net based features, creating a huge 3884-dimensional feature vector, yet offered
some speed gains over VIDEVAL due to the nested structure of features. Similarly, CNN-
TLVQM [31] also used a mix of fixed-function and CNN-based features for the NR case,
and reported strong results. Additionally, this trend is also in line with MDTVSFA [12] and
PVQ [14]. We noted that both PVQ and MDTVSFA currently exceeded 80% performance
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on test sets, setting the current record. Meanwhile, a recent report from Moscow State
University [32] even reported an achievement of over 90% correlation to human ratings,
on par with the best FR algorithms, a result that remains to be confirmed by other labs.

5. FVQ: First Steps toward a Unified VQA

Combining insights from both the FR and NR cases, as exemplified by VMAF and
SLEEQ, we arrived at a partial synthesis; see Figure 1. In FR, we compared a processed
video to the original; in NR, we compared it to a blurred processed video. In both cases, we
input two videos, extracted spatio-temporal (that is, 2D and 3D) features, passed them to
a regressor engine, and obtained a quality score. The feature extractor and the regressor
can both use learning-based methods such as SVRs and neural nets. Purely for complexity
reasons, we currently prefer fixed-function feature extractors, but note that CNN-based
features are quite popular [10–12,14], and also used them. Note that not only VMAF and
FVMAF algorithms fit into the general FVQ framework of Figure 1, but very broadly, so do
C3DVQA and PVQ. One small difference is that C3DVQA computes 2D and 3D features
serially, while PVQ does so in parallel; see Figure 6. However, at least at a high level, there
remain some similarities. Moreover, we demonstrated that if the FR case was treated as an
NR case, our approach still yielded quite usable predictions, with roughly 75% prediction
accuracy, partially justifying our attempted synthesis. While the similarities between FR
and NR currently do not persist at finer levels of detail, this viewpoint can at least suggest
next steps in research. Meanwhile, we remark that MDTVSFA computes only 2D features,
but the 3D analysis was performed at the quality score level, which is unusual and differs
from our framework.

Figure 6. Example comparison of FR C3DVQA and NR PVQ algorithms. While these still roughly fit
into our framework, suggesting there is at least some potential to bring FR and NR on the same or
similar footing, they still differed in detail, tampering any over enthusiasm.

Given the variety of approaches to extracting features, features can also be mixed and
matched at will to optimize performance; and if desired, we can always add the output
score of any NR algorithm as an additional feature in any NR or FR VQA. To that end, we
developed a simple Feature Saliency measure, which can help pick the most useful features
to employ.

5.1. Feature Saliency and Selection

For high-quality FR databases, our FVMAF features were nearly the same as for VMAF
(but with a substituted motion feature, DM). We can also apply these same type of features
in NR testing. However, for challenging user generated content (UGC), our FVMAF
features proved highly inadequate. So, we utilized the powerful features from [9,10]; see
Figures 4, 7 and 8, and Table 3. We selected a subset of features using a simple Feature
Saliency measure described here. We ordered the features according to a novel combined
correlation coefficient measure S(f) (Equation (6)), and typically selected a subset of the top
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ranked features. For example, out of the 3884 RAPIQUE features, we selected only 200; see
Table 3. Here α = 0.5 by default, but this can be modified to favor PCC or SRCC.

S( f ) = α ∗ |PCC|+ (1− α) ∗ |SRCC|; α = 0.5 by de f ault. (6)

Table 3. Row 1: Features from (a) VIDEVAL and (b) RAPIQUE, for the AllCombined NR dataset, in
original order. Row 2: Same features in descending Saliency order. Row 3: Prediction performance
under a FastVDO parameter-free neural network regressor, over 50 runs, using the first N Saliency-
ordered features. Row 4: Saliency ordering of mixed VIDEVAL/RAPIQUE features, and correlation
coefficients PCC and SRCC using the Saliency-ordered features. Our best results are with all 60 VIDE-
VAL and the top 120 RAPIQUE features, reported in the last row of Figure 4. While our approach did
not achieve state-of-the-art performance, we did clarify that just a few of the most salient features
from each algorithm provided most of the predictive performance.

Nr. a b

1

2

3

4
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Figure 7. (left) Correlation coefficients PCC and SRCC of VMAF features to user ratings on the
NFLX-II data; (center) Correlation coefficients of VIDEVAL features on the YouTube UGC data; and
(right) the mean of PCC and SRCC for the top 25 features from the RAPIQUE feature set (from
3884 features). All VMAF features appeared useful, and were used (Figure 2); in Figure 4, we used all
60 VIDEVAL features.

Figure 8. Screenshot of the FVQ application, capable of training and testing (or both, with random
split), and computing VMAF as well as FVSVR and FVNN VQA scores, with parameter selection.

5.2. Regression

For regression, we used both SVRs and simple feedforward fully-connected NNs.
For the SVR, we conducted a limited hyperparameter search for the parameters known as
C, gamma, epsilon. For the neural net, we used a very simple fully connected feedforward
network; as an example, with six features, we used a 6-80-64-1 network, with Relu activa-
tion, RMSProp optimizer, and Tensorflow 2.4.1, to aggregate the features (we occasionally
used sigmoid activation in the last layer); see Figure 9. Post feature extraction, the example
total train/test simulation time for 1k sims of SVR was only 10 s to run (no-GPU) in FR,
while 50 sims of NN took 127 s on a laptop (i7-10750, 16 GB RAM, RTX 2070 GPU). In NR,
our SVR inference time with our reduced parameter search required only 4 s; while the
post parameter search only lasted 0.01 s.

For direct comparisons in trainability, we used the same train and test regimen as our
comparators, and trained from scratch. In the FR case, when comparing with VMAF, we
used essentially the same features and SVR settings as VMAF; however, we changed the
motion feature, and improved some hyperparameters. Our fixed SVR parameters were (C,
eps, gam) = (1000, 1, 0.1), while for moderate search, we searched (C, eps, gam) in the ranges
([10, 100, 900, 1000], [0.01, 0.05, 0.1, 0.5, 1], [0.0001, 0.001, 0.01, 0.1, 1]). In the NR case, we
used the 60 VIDEVAL features, the same SVR framework and hyperparameter set, or else a
no parameter search neural network. We also tested around 100 of the RAPIQUE features
with subsets (out of 3884). Our results in the FR case indicated that both our SVR and NN
methods outperformed VMAF (Figure 2). Additionally, even when ignoring the reference
on FR data, we obtained useful results with the same type of features and regressors,
partially validating our unified approach (Figure 3). In the NR case with challenging UGC
datasets, even when compared to the fully trained VIDEVAL or RAPIQUE algorithms, our
correlation scores were competitive, while greatly reducing the hyperparameter search
complexity during training (Figure 4 and Table 3). In fact, with both SVR and short
NN, since today’s TPUs can process FFNNs in real-time on at least a 1080p30 resolution,
the main complexity in execution now lies in the feature extraction phase. Thus, limiting
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the expensive feature extraction part is critical to live usability. For FR, we mainly used
just six features; for NR, we tested with 10-400 features, drawn from VIDEVAL, RAPIQUE,
or both. To date, we have not tested features from MDTVSFA or PVQ in our framework.

Figure 9. Generic diagram of a fully connected feedforward neural network. In our application,
an example of such a network for the FR case may have 6 Input nodes, 80 nodes in Hidden Layer
1, 64 nodes in Hidden Layer 2, and 1 Output node. We often use ReLu activation and RMSProp
for optimization, and sigmoid activation at the Output layer. In the NR case, the number of Inputs,
and thus the size of the network, are substantially larger. Diagram constructed using [33,34].

5.3. Results and Discussion

Figures 2 and 3 present our main results for the FR case. In FR, we used features
identical to the VMAF features but with an improved motion feature, and use improved
regression using a parametric SVR, or a neural network. We obtained results across several
datasets that exceed VMAF in both PCC and SRCC by roughly 5%, and up to 15%, which is
a substantial gain. Achieving roughly 90% across datasets for both PCC and SRCC, with no
prior training, this technology appeared to mature. (However, one dataset, BVIHD, proved
to be highly challenging for both VMAF and our methods.) Moreover, gains were achieved
with no increase in training/testing complexity with either the SVR with fixed parameters,
or the NN with no parameter search. With moderate search using the SVR, we were able to
obtain some further gains; see Figure 2. Finally, even if we ignored the reference videos and
viewed these datasets as NR, we still obtained useful results, again using a no-parameter
NN regressor. It is this finding that partially validated our attempted synthesis of FR and
NR in one framework; see Figure 3. However, this is still simulated NR in the high-quality
domain of professional video.

In the true NR case of UGC data, our FVMAF features were inadequate, and we
must leverage the impressive work in VIDEVAL and RAPIQUE in developing powerful
features. Faced with thousands of features, we worked to reduce the feature sets, while
still obtaining results close to these SoTa algorithms. In particular, we elucidated the
contribution of individual features using a novel saliency measure. In this paper, we mainly
focused on compression and scaling loss, leaving aside generic transmission errors for now
as they are less relevant with HTTP streaming. See Figure 4 and Table 3.

To assist in this research, we built a GUI-based application called FVQ, capable of
executing both FR methods as VMAF and FVMAF, as well as NR methods such as RAPIQUE
(which we have converted to python); Figure 8 provides a screenshot.

5.4. Focus on the No Reference Case

Good progress was made on the FR case, but much work remains for the growing NR
case due to its challenges. Computationally, we noted that the FR VMAF features are few,
fixed-function, integerized, multi-threaded, and fast; the VIDEVAL features are not, nor are
the RAPIQUE features, which while many, are somewhat faster. However, both algorithms
are currently only at the research level in Matlab (as is CNN-TLVQM). However, there
has recently been a significant increase in the speed of VIDEVAL (VIDEVAL_light [30]) by
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downsampling feature extraction in space and time, with marginal loss. Much work is still
needed in the NR case to achieve both the performance and execution speeds needed in
live applications, but we will continue to make useful progress on that front, similar in
spirit to RAPIQUE [10].

Meanwhile, we focused on the potential performance that can be achieved using
the powerful features from VIDEVAL and RAPIQUE, but also our novel feature selection
method prior to regression, if we choose to eliminate hyperparameter search during training.
We see from Table 3 that for the AllCombined NR dataset with 3165 videos, just a few
of the most salient features provided most of the predictive performance, via SVR or
NN. Two advantages of the NN method are that (a) it is fast on a modern GPU, and (b)
it does not require hyperparameter search during training, significantly enhancing the
potential for live application. We see from Figure 4 and Table 3 that, either using the
60 VIDEVAL features, or 100–200 mixed VIDEVAL and RAPIQUE features, we can reach
within 3% of these algorithms on the AllCombined dataset, using a fixed architecture neural
network, without any parameter search or parametric curve-fitted prediction. Our best
NR result for the AllCombined dataset was obtained using all 60 VIDEVAL features, and
120 top RAPIQUE features (total of 180), obtaining PCC/SRCC of 0.766/0.764; see Figure 7.
Moreover, the 50 cycles of training/testing in our neural network ran at least 20X faster than
the SVR in a Google Colab tensorflow simulation environment. Additionally, our saliency
analysis helped to elucidate which features were the most informative. To achieve new state-
of-the-art performance in NR going forward, our plan is to incorporate additional powerful
features (such as from [31]), use more extensive parametric search and use curve-fitting
for SVR prediction (as in VIDEVAL and RAPIQUE), or use the power of NN regression
more fully.

6. Conclusions

We investigated an approach to assessing video quality in both FR and NR cases using
a generic framework, consisting of taking two input videos, i.e., original and processed
or processed and blurred-processed, evaluating a variety of (fixed or learned) features
on these videos, and regressing these using an SVR or a feedforward NN to obtain a
score. In the FR case, taking inspiration from the excellent and well-established VMAF
algorithm, we worked to create enhanced variations, using modifications of the feature set
as well as the regressor, with improvements in the motion feature as well as a parametric
SVR or an NN regressor. In the NR case, we developed on algorithms such as SLEEQ
as well as VIDEVAL. While not achieving SoTa, we reduced the training complexity by
eliminating hyperparameter search as well as reducing the number of features, yet achieved
performance of close to VIDEVAL and RAPIQUE on the AllCombined dataset, and not far
from that of the latest SoTa algorithms MDTVSFA and PVQ. In Figure 2, we suggested a
path to at least partially unifying the FR and NR cases. While at a high level the example FR
and NR algorithms in Figure 6 remained consistent with our general picture, they differed
in detail, so that actual unification remains a problem. Much more research remains to
be conducted to achieve either true unification, or a new state-of-the-art algorithm in
performance for NR applications.
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