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Abstract: In an attempt to evaluate the separation of certain impurities that arise in some stages of the
production of cyclohexanone, this work analyzed the possibility of removing five of these substances
via rectification. Due to the scarcity of experimental vapor–liquid equilibrium data for most of the
solutions in the effluent of the global process, prior knowledge of their behavior is required. In
this work, two predictive models, UNIFAC and COSMO-RS, were used to determine a priori the
possibility of obtaining, by distillation, the individual components of seven of the binaries formed by
the combination of these five compounds. Since both procedures described quasi-ideal behavior for
all the chosen solutions, the results are considered as an approximation, owing to the special nature
of the studied systems. The results and characteristics of each system are discussed separately.
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1. Introduction

Annually, around 5000 MT of ε-caprolactam, a monomer of nylon-6, is produced
worldwide [1]. Owing to the industrial importance of nylon, especially in the textile in-
dustry, different routes have been developed for producing ε-caprolactam in an attempt
to reduce the production costs. One of the most commonly used production routes, sum-
marized in Figure 1, consists of converting cyclohexanone into its oxime using a reaction
with hydroxylamine or via amoximation (see Figure 1), which is then transformed into
caprolactam via Beckmann transposition. This monomer is used to manufacture nylon-6,
the fibers of which depend on the impurities present in the caprolactam product; these
impurities can arise from the method by which the cyclohexanone is produced, forming in
different stages leading to caprolactam and being able to contaminate the final product.
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cess; however, it is interesting to know how they can affect the quality of the caprolactam 

produced. The scarcity of experimental information for these compounds limits the 

Figure 1. ε-caprolactam produced from cyclohexanone via the oxime by a reaction with hydroxy-
lamine and Beckmann transposition.

For example, the oxidation of cyclohexane in the liquid phase generates a product
mainly composed of cyclohexanol and cyclohexanone and numerous impurities, including
fatty acids, esters, ethers, aldehydes and ketones, which are both linear and cyclic and bear
variable numbers of carbon atoms [2].
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Figure 2 indicates the different stages in the production of cyclohexanone using
cyclohexane as a raw material. These are grouped into three parts, or sections, each
involving different chemical engineering processes, which are briefly described.
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Figure 2. Simplified diagram representing the production stages of cyclohexanone, indicating some
of the compounds participating in each stream. In blue, the five compounds whose separation is
proposed in this work are presented.

Section I: The oxidation of cyclohexane is carried out in a gas–liquid reactor using
cobalt salt as a catalyst. Subsequently, the oxidation products are treated in a saponification
unit to remove fatty acids and other soluble compounds in the aqueous phase.

Section II: The unreacted cyclohexane, stream B, is recovered in a set of operations and
returned to the oxidation unit.

Section III includes the purification train of cyclohexanone and a cyclohexanol dehy-
drogenation reaction. In this section, cyclohexanol is dehydrogenated to produce cyclohex-
anone, where the light and heavy impurities produced by oxidation or in the dehydrogena-
tion stage are removed.

The flow-diagram of the process includes the majority of compounds to be separated,
cyclohexanone (1) and cyclohexanol (2), as well as some of the derivatives:
2-methylcyclohexanone (3), 2-cyclohexenol (4) and 3-cyclohexenol (5). These latter im-
purities can react in the oximation and transposition stages, affecting the quality of the
caprolactam. Here, we discuss how these impurities could affect the purification of cyclo-
hexanone and the possibility of dragging them out of the product stream resulting from
sections II and III. It is necessary to describe the vapor–liquid equilibria (VLE) between
the compounds involved, as this will affect the unitary operations in these sections of the
process. Hence, three of the ten possible binaries that can be formed were considered less
relevant and were excluded from the VLE study. These correspond to 2-cyclohexenol+3-
cyclohexenol, due to the chemical similarity of both compounds that gives rise to ideal
solutions with similar boiling points, and also the binaries of 2-methylcyclohexanone with
the two cyclohexenols mentioned.

The impurities accompanying cyclohexanone do not form part of any industrial pro-
cess; however, it is interesting to know how they can affect the quality of the caprolactam
produced. The scarcity of experimental information for these compounds limits the achieve-
ment of our goals. In fact, the only experimental data for cyclohexanone+cyclohexanol
and cyclohexanone + 2-methylcyclohexanone systems were measured under vacuum
conditions [3]. For this reason, predictive models for the properties involved in the simula-
tion/design of the fractionation operation are required. In this work, Joback’s method [4]
was employed to estimate the thermophysical properties of the above-mentioned com-
pounds, while the VLE behavior of the corresponding binaries was also investigated and
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evaluated at atmospheric pressure. For the latter, the Group Contribution Method (GCM)
and UNIFAC (UNIQUAC Functional-group Activity Coefficients), Dortmund’s version [5]
were used, which are commonly employed for preliminary calculations in chemical en-
gineering and are basic tools in simulation processes with Aspen-Plus© [6]. In addition,
the estimates with UNIFAC were compared with those determined using the COSMO-RS
(Conductor-like Screening Model for Real Solvents) [7,8], which circumvented the limitation
of the GCMs to distinguish between positional isomers, as occurred with the cyclohexenols
derived.

The results of the VLE estimations for the binaries form the basis of the discussion on
possible strategies to extract the impurities found in cyclohexanone.

2. VLE, an Analysis Tool for Separation Processes

An adequate selection of the purification method was based on a previous characteri-
zation of the phase equilibria of the studied systems. In this case, knowledge of VLEs was
essential to design the separation process of the impurities generated during the produc-
tion of cyclohexanone. It is not always easy to separate one or more of the compounds
in homologous families (as in this case), as these constitute quasi-ideal solutions, and
distillation is often the only option available to achieve the desired separation, despite
the difficulties presented by some solutions. Before the practice, preliminary information
should be obtained using predictive methods on the suitability, or not, of carrying out the
experimentation and the possible problems that may arise.

For this, we briefly describe the thermodynamic basis of the models used to predict
the VLE of some of the binaries of the main process studied here. In the field of chemical
engineering, the set of canonical variables that describes a thermodynamic system, n-tupla
(p,T,n), is important, and should be calculated. The chemical potential µi (p,T,n) provides a
criterion for the equilibrium of several phases α, β, . . . ζ, depending on the identity.

µα
i (p, T, n) = µ

β
i (p, T, n) = . . . = µ

ζ
i (p, T, n) (1)

It is known that such an equation can also be written using fugacities. For this case, that
of VLE at low or moderate pressures (0.1 ≤ p < 1) MPa, the problem is addressed by the
gamma-phi approach, so called because the non-ideal liquid phase is formulated in relation
to the activity coefficient (γi) and the non-ideality of the vapor by the partial fugacity
coefficient, φ̂i.

xiγi fi = yiφ̂i p (2a)

xiγi po
i exp

[
Bi po

i
RT

]
exp

[
1

RT
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i

vL
i dp

]
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fi

= yi pexp

[
p

RT

(
Bii +

1
2∑

j
∑
k

yjyk(2δji − δjk)

)]
︸ ︷︷ ︸

φ̂i

(2b)

In Equation (2b), Bii is the second virial coefficient of the i-th compound, which is
calculated using generalized correlations or equations of state; δmn ≡ 2Bmn − Bmm − Bnn,
and indicates the non-ideality of the solution formed in the vapor phase; f i is the fugacity of
the i-th compound in the liquid phase, and pi

o is its vapor pressure. To solve this equation,
several properties must be known in advance, such as the critical constants, the molar
volumes, vi

L, and the pi
o of the pure compounds, among others, which were calculated

in this work, as shown in Appendix A using the GCMs of Joback [4,9] and Tochigi [10].
Moreover, to solve Equation (2), a suitable model for the activity coefficients must be
defined. This matter is addressed in the next section.

2.1. Methods to Estimate VLE

For the estimation of properties, especially VLE, a mathematical–thermodynamic
tool must be developed that allows a numerical assignment to some properties using
previously tested models. Knowledge of the physicochemical properties of some com-
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pounds/solutions is important for numerous situations, from basic research to complex
calculations, such as the process simulation, and even for the design of equipment. In
process engineering, a chemical engineer uses some of the tools developed in the field
of thermodynamics, such as GCMs, or UNIFAC/ASOG (Analytical Solutions of Groups),
which estimate phase equilibrium properties, among others. They can even predict the
VLEs of ternary or multicomponent systems from information generated with the binaries
of the species involved. These methods relate the properties with the structural features of
the compounds, giving acceptable results for the case of simple molecules. However, other
more sophisticated procedures using computational tools [11] or by other means, such as
molecular thermodynamics, consider microscopic aspects of the matter.

2.2. Activity Coefficient Models

The scarcity of real data of the systems of interest requires the obtainment of prelimi-
nary information of their VLEs. Two models were used to estimate the activity coefficients,
UNIFAC and COSMO-RS, applied to solve Equation (2). The version of UNIFA-DM by
Gmehling et al. [5] is an approximation to the local composition theory, where the activity
coefficients are formulated as:

ln γi = ln γc
i + ln γr

i (3)

Summing two contributions: the combinatorial and the residual, see Appendix B.
The former results from the surface and volume interactions among the species that make
up the solution and are independent of temperature. This term does not contribute to
the calculation of the p, T-derived quantities, such as the excess enthalpy (hE) or the heat
capacity (cp

E). The residual contribution is due to energy interactions, shown in Figure 3a,
and is temperature-dependent, yielding the greatest contribution to the original formulation
of the model.
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As already mentioned, there are some limitations in the predictions made with the
UNIFAC model for the products involved, especially in relation to isomeric compounds.
Hence, taking into account the chemical similarity of some of the compounds studied here,
the quantum-chemical model COSMO-RS was also used [7,8] for comparison purposes.
This model requires the COSMO solvation model to be solved [7] for each species in
solution, obtaining the polarization charge density (σ) on the molecular surface. In a second
phase of calculation, statistical thermodynamic methods are used to evaluate the chemical
potential for each pair of elements on the molecular surface (µS) (see Figure 3b), which have
a specific polarization charge density; that is, the potentials of each species in the solution.
This is shown in Equation (4), where pi(σ) is the function of the polarization charge density
of species i, and µi

c is the combinatorial contribution to the chemical potential [12].

µi(T, x) =
∫

Ω
pi(σ)µS(σ)dσ + µc

i (T, x) + RT ln xi (4)



ChemEngineering 2022, 6, 42 5 of 16

From this equation, the activity coefficients can be calculated using the following
thermodynamic equation:

γi = exp

[
µi(T, x)− µid

i (T, x)
RT

]
(5)

3. Results and Discussion

As stated in the introduction, seven binary systems formed by the components con-
stituting the effluent of the cyclohexanone production process are considered. These are:
(i) cyclohexanone + 2-methylcyclohexanone, (ii) cyclohexanone + cyclohexanol, (iii) cyclo-
hexanone + 2-cyclohexen-1-ol, (iv) cyclohexanone + 3-cyclohexen-1-ol, (v) 2-methylcyclo
hexanone + cyclohexanol, (vi) cyclohexanol + 2-cyclohexen-1-ol, and (vii) cyclohexanol +
3-cyclohexen-1-ol.

To assess the efficacy of the theories mentioned in Section 2, VLE data from the litera-
ture for systems (i) and (ii) measured under vacuum conditions are used for a preliminary
comparison.

3.1. Analysis of Experimental VLE Measured under Vacuum Conditions

Figures 4 and 5 show the equilibria for the cyclohexanone + 2-methylcyclohexanone
and cyclohexanone + cyclohexanol systems measured at 4.0 and 26.7 kPa, respectively [3].
The first shows ideal behavior and a relative volatility, αij = yixj/yjxi, very close to unity,
as deduced from the expression yi − xi. The UNIFAC-DM and COSMO-RS models also
display ideal behavior. However, they generate a systematic shift in the T-x,y diagram,
probably due to a problem with the vapor pressures measured. In the representation of
activity coefficients for this system at p = 4.0 kPa (see Figure 4b), it is interesting to observe
the high values obtained, which differ from those estimated by both theoretical models
(with values of γi ≈ 1). A similar observation applies to the comparison of excess Gibbs
function, gE. Analogies would apply to the VLE at 26.7 kPa, with estimates of γi close to
unity, shown in Figure 4d. In this case, the predictions and experimental data agree, with
the latter being almost randomly distributed around values close to unity. In summary,
both models produce similar estimates, both qualitatively and quantitatively.

UNIFAC adequately represents the VLE of the cyclohexanone + cyclohexanol system,
shown in Figure 5, although it exhibits higher values of the activity coefficient than for
the previous ketone/ketone system, and it also has quasi-ideal behavior. The effect of the
pressure on the relative volatility of the binary is significant. Comparing plots of y-x vs.
x at both pressures, the most significant difference at 4.0 kPa is twice that of the curve at
26.7 kPa. In conclusion, it can be established that both models are used to estimate and
study the VLE at atmospheric pressure, but, in addition, COSMO-RS differentiates the
systems that involve the two isomers of cyclohexenol. UNIFAC predicts the ketone/alcohol
system somewhat better, although this result cannot be extrapolated to the remaining five
studied systems.

However, if these systems have been chosen as a reference for the verification of theo-
retical methods, before tackling that goal, we ask ourselves whether the experimentation
of the VLEs used is, or is not, correct. The authors [3] argue that the data corresponding
to the two systems mentioned in this section are thermodynamically valid, as the con-
sistency is positive with two known methods, that of Frendenslund et al. [13], and that
of Van Ness [14]. However, here, we followed the methodology proposed in a previous
work [15], globally assessing the quality of the information displayed. In addition to the
aforementioned methods, a rigorous procedure [16] was applied, which raised some doubts
about the quality of the VLE data, especially due to the instabilities in the equilibrium
temperature. Only the binary cyclohexanone + cyclohexanol at 26.7 kPa seems to obey the
thermodynamic requirements. Despite this, the scarcity of data in the literature does not
offer other option to choose any of the other systems proposed in the study.
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3.2. VLE Estimations at p = 101.32 kPa

As mentioned, there are no data in the current literature for systems (i)–(vii), measured
at pressures close to atmospheric. Hence, the methods indicated in Section 2 were applied
to determine the approximate behavior of those set followed by an individual discussion of
each one.

(i) Cyclohexanone + 2-methylcyclohexanone: The estimation of the VLE with both theoret-
ical methods shows ideal behavior, as shown in the experiments under vacuum conditions.
Nonetheless, the increase in pressure estimates a decrease in the relative volatility of both
compounds, as can be seen in the graphs of T-x,y and (y−x) in Figure 6a,b, following the
tendency observed at pressures lower than atmospheric.

(ii) Cyclohexanone + cyclohexanol: For this binary, the pressure has a more signifi-
cant influence on the relative volatility of the compounds than in the previous case
(see Figure 6a,b). As the purification requirement of both compounds increases, the separa-
tion by rectification becomes more complex, requiring many stages. Although the changes
in relative volatility with composition, calculated with both models, are similar (see dia-
gram y−x vs. x1 in Figure 7a), the plot T-x,y shows significant differences when relating
composition to temperature, with featured effects on the simulation/design process of
the operation.
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(iii/iv) Cyclohexanone + (2 or 3)-cyclohexen-1-ol: The VLEs of cyclohexanone with
two cyclohexenol isomers are discussed together. The UNIFAC estimation shows ideal
behavior for both systems (see Figure 8), and those corresponding to the two isomers are
identical, as UNIFAC does not distinguish between them. However, the results generated
by COSMO-RS are different, as the model predicts a certain non-ideality in the liquid phase,
showing a negative deviation of the Raoult´s law and a light inflexion in the alcohol-rich
zone, according to the diagrams T-x,y and (y1 − x1) − x, shown in Figure 8c. This theory
slightly differentiates the behavior of the binary with each alcohol isomer. In summary, the
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estimation indicates that the rectification of this mixture, like the previous ones, is complex
due to the low relative volatility of its components and even more so due to the presence of
an azeotrope predicted using the quantum-chemical method.
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It is clear that the chosen model determines the design of the separation equipment.
That is, if the simulation is performed with the COSMO-RS model, the composition of
cyclohexanone in the residue stream will not be negligible due to the low relative volatility
of both components in the zone corresponding to x1→0. Moreover, this fact will also imply
the need for numerous stages in the stripping section of the column.
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(v) 2-methylcyclohexanone + cyclohexanol: The COSMO-RS estimation indicates that
the liquid phase behaves ideally. In addition, the fact that the boiling points of the pure
compounds differ by more than 3 ◦C makes the differences between the compositions
of the liquid and vapor phases close to zero. The UNIFAC model also predicts the ideal
behavior of the liquid phase, but with lower activity coefficients than those estimated using
COSMO-RS. These results provide VLE behavior of this system with a fold in the zone
rich in 2-methylcyclohexanone, generating a quasi-azeotrope at atmospheric pressure, as
shown in Figure 9a,b.
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(vi/vii) cyclohexanol + (2 or 3)-cyclohexen-1-ol: As expected, the systems composed
of pairs of cyclic alcohols constitute ideal solutions, shown in Figure 10, the behavior of
which is represented by both models. In the 2-methylcyclohexanone + cyclohexanol system,
the representation of the activity coefficients with UNIFAC gives rise to a more folded
T-x,y diagram than that generated by COSMO-RS, reflecting the difficulty of separating
cyclohexanol from its derived compounds.
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3.3. About the Possibilities of Distillation of the Systems Studied from the Results Obtained

Despite particular differences in the predictions of the VLEs using UNIFAC and
COSMO-RS, both predict the low relative volatility of the components of the solutions
considered, as shown in Figure 11. In all cases, the minimum and maximum values of this
parameter are close to the practical guideline limits, between 0.95/1.05 and 0.90/1.1 [17,18],
which advise on viable separation via simple rectification. However, the separation of
these binaries, or a stream involving a more complex system, requires the use of advanced
distillation operations to achieve greater efficiency in the purity of the final products.
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Since the pressure of the system conditions the relative volatility, distillation under
vacuum is one of the alternatives to be explored. In azeotropic or quasi-azeotropic systems,
a design with two columns operating at different pressures, in a pressure-swing operation,
should be considered.
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As showed previously, the VLEs of the systems studied here present negligible sensi-
tivity to the pressure changes, except for the cyclohexanone + cyclohexanol system. This
is also supported by the relationship between vapor pressure and temperature for these
compounds. Figure 12 represents that relationship using Antoine’s equation with reduced
coordinates, having estimated the parameters of that equation through Tochigi’s GCM [10]
(see Appendix A), as the experimental information was not found in the literature. It is
observed that the slopes of the representation log po

i,r vs. 1/Tr are similar for almost all the
compounds considered, and this negatively affects the change in relative volatility as the
pressure of the system varies, thus limiting the usefulness of this operational alternative.
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Other options to separate the studied systems are extractive distillation and/or distil-
lation via the saline effect. Both have the same purpose: to use an agent (entrainer) that
alters the activity coefficients of the liquid phase in order to increase the relative volatility
between the main components of the mixture. In the first case, the agent could be a solvent
with a high boiling point, while in the case of the saline effect, it is a soluble salt that remains
in a liquid stream throughout the column. However, both operations would increase the
cost of the overall process, as when an entrainer is used, at least one additional column
is required to purify the head and/or bottom effluents, while the saline effect requires an
evaporator or precipitator to remove salt from the bottom stream.

4. Conclusions

Because of their presence in some intermediate purification stages, a set of seven binary
systems were selected from the global production process of cyclohexanone. Due to the
scarcity of experimental VLE data, only two of them have been studied under vacuum [3],
so estimates were made for all of them to determine a priori the possibility of obtaining
the individual components via distillation. The VLE estimates at atmospheric pressure for
the cyclohexanone + 2-methylcyclohexanone and cyclohexanone + cyclohexanol systems
obtained with the COSMO-RS and UNIFAC-DM models provide information comparable
to the experimental one, reflecting quasi-ideal behavior, that is, with slight deviations in
the values of γ = 1, and folding in the T vs. x,y diagram.
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In other cases, such as those of cyclohexanone solutions with cyclohexenol isomers,
the two models predict different behaviors; even the quantum-chemical model establishes
differences for the two isomers, a fact that UNIFAC does not reflect. However, without the
corresponding experimentation, this cannot be confirmed. The discrepancy between both
models could be due to their instabilities, although both define the quasi-ideal behavior of
the studied solutions.

From a practical perspective, the work carried out to design the rectification operations
is only considered as an approximation due to the special and complex nature of the
equilibria studied, revealing the difficulty in separating these systems. As shown in
Figure 11, the maximum and minimum volatilities are simultaneously over the operation
limits suggested for only two systems, namely cyclohexanone + 2-methylcyclohexanone
and cyclohexanone + cyclohexanol, for the binaries that offer real information. Our findings
suggest a priori that extractive distillation appears to be the most suitable technique
compared to pressure-swing; however, the final decision will also depend on economic
criteria and other alternatives that could be found in the future.
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Appendix A Properties Estimation of the Pure Compounds

Joback’s method [4] is a reevaluation of Lydersan’s GCM [19] in which new groups
are incorporated and the contributions of each are reparametrized. That method provides
independent equations to predict critical properties (Tc, pc, vc) and other thermophysical
quantities separately, except for Tc, the estimation of which depends on the normal boiling
point, either obtained experimentally or estimated using the corresponding equation. The
expressions used are as follows:

Tb(K) = 198 + ∑k Nkτbk (A1)

Tc(K) = Tb

[
0.584 + 0.965

{
∑k Nkτck

}
−
{
∑k Nkτck

}2
]−1

(A2)

pc(bar) =
[
0.113 + 0.0032·Natoms −∑k Nkπck

]−2
(A3)

vc(cm3mol−1) = 17.5 + ∑k Nkνck (A4)

where Nk corresponds to the number of k-type groups in the molecule and τbk τck, πck,
νck and ∆hck correspond, respectively, to the normal boiling point, critical temperature,
critical pressure, critical volume and vaporization enthalpy. An extract of the group
parameters of Joback’s method is shown in Table A1 for the compounds studied. In
addition to the mentioned properties, the evaluation of the second virial coefficient by
Tsonopoulos’ correlations [20], required to characterize the non-ideality of the vapor phase,
requires the dipolar moments, µ, of the molecules. In the literature, µ-values were found
for cyclohexanone and 2-methylcyclohexanone [21,22] and for cyclohexanol [21,23]. The
remaining values were estimated using Gaussian 03W software [24] with the computational
technique B3LYP, belonging to the DFT (Density Functional Theory) and orbital 6–31 G(d)
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family of methods. Table A1 summarizes all the values calculated in this work and the data
found in the literature.

Table A1. Poperties of the pure compounds studied.

Tc
(K)

pc
(kPa)

vc
(dm3·mol−1) Zc

µ
(D) a b Tb

(K)

cyclohexanone

656.02 a

654.00 c

653.00 d

629.15 e

4379.60 a

4660.00 c

4000.00 d

3850.00 e

0.312 a

0.311 e

0.251

0.229 e

3.06 b,g

3.08 c

3.08 e

3.05 f

−0.0191 0.0000 428.72 a

428.80 c

428.84 d

428.90 e

2-methyl-cyclohexanone 670.64 a 3721.50 a 0.367 a 0.245 3.07 b

3.00 f −0.0150 0.0000 446.93 a

cyclohexanol

643.39 a

625.00 c

625.15 e

625.15 i

4521.18 a

3700.00 c

3749.00 e

3749.00 i

0.323 a

0.322 e

0.273 a

0.232 e

1.56 f

1.86 c
0.0878 0.0274 448.41 a

434.35 c

434.00 e

433.65 i

2-cyclohexen-1-ol (‡) 633.48 a 4533.30 a 0.319 a 0.275 a 1.47 f 0.0878 0.0259 444.03
437.00 h

a Joback [4,9] (Equations (A1)–(A4)); b [22]; c [25]; d [26]; e [23]; f B3LYP; 6–31 G(d); g [21]; h [27]; i [28]. (‡) in the
context of Joback, there is no distinction between positional isomers. These estimations are therefore identical for
3-cyclohexen-1-ol, except for the dipolar moment (µ = 1.3687 D) and consequently the parameter b of Tsonopoulos
(b = 0.0236).

Antoine’s constants for 2-cyclohexen-1-ol could not be found in the literature; these
were estimated by the GCM of Tochigi et al. [10]. Both the estimated constants and data
obtained from the literature are summarized in Table A2. Constants were calculated using
the following expressions:

A′ = log 101.32 +
B′

Tb/ K + C′ − 273.15
(A5a)

A′ = A0 + ∑k Nk Ak (A5b)

B′ = B0 + ∑k NkBk (A6)

C′ = C0 + ∑k NkCk (A7)

The original work by Tochigi et al. recommends using Equation (A5a) to calculate A’,
reserving Equation (A5b) for when experimental data for the normal boiling point of the
compound are not available.

Equations (A1)–(A3) are used to evaluate, together with the parameters of Antoine’s
equation (Table A2), the acentric factor by means of the equation:

ω = −1− log po
r |Tr=0.7 = −(1 + a) + b/(0.7− c) (A8)

where a, b and c are constants of Antoine’s equation in reduced form, deduced by Ortega
et al. [29].

a = A− log pc b = B
/

Tc c = C
/

Tc (A9)
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Table A2. Values for the parameters of Antoine’s equation to calculate the vapor pressures.

A B C Range T/K Ω Ref.

cyclohexanone
6.0832 (2.539)

6.5950
6.1066

1477.73 (2.283)
1832.20
1498.18

65.89
(0.1004)

28.95
63.25

318.15–428

270–430
345–458.34

0.256
[3]

[25]
[26]

2-methyl-cyclohexanone 6.1092 (2.539)
6.0736

1527.67 (2.278)
1495.61

65.27
(0.0973)
70.0874

338.76–436.94

318.15–437.45 0.256

[30]

[3]

cyclohexanol

6.0580
(2.402)
6.066

13.564 *
5.9290

1261.89
(1.961)
1258.75

2689.90 *
1199.10

122.36
(0.1902)
123.67
133.31
128.15

320–435

370–440

0.444 [31]
[26]
[25]

2-cyclohexen-1-ol 6.2100
(2.701)

1483.70
(2.342)

84.25
(0.1330) 0.528

Equations
(A7)–(A9)

* Constants adapted to Antoine’s expression expressed as its natural logarithm. Values between parenthesis
indicate Antoine’s constants expressed in reduced form, Equation (A9).

Appendix B UNIFAC Model

The terms corresponding to the combinatorial and residual contribution of the UNI-
FAC model for the activity coefficient, Equation (3), are below. The first term is a function
of the molecular volume and surface.

ln γc
i = ln

ϕi

xi
+ 1− ϕi

xi
− 5qi

(
ln

Φi

ϑi
+ 1− Φi

ϑi

)
(A10)

Surface fractions (ϑi) and volume (Φi) are normalizations of molecular surfaces (qi)
and volumes (ri), respectively.

Φi =
xi·ri

∑
j

xj·rj
, ri = ∑

k
ν
(i)
k Rk, ϕi =

xi·r3/4
i

∑
j

xj·r3/4
j

, ϑi =
xi·qi

∑
j

xj·qj
, qi = ∑

k
ν
(i)
k Qk (A11)

where Qm y Rm are the group surface and volume, respectively; vk
(i) is the number of

groups of type k in the i-th molecule. The parameters of the pure compounds of this work
are compiled in Table A3 The residual term is the difference between the group contribution
to the activity coefficient in the mixture, Γk, and in the pure compound, Γk

(i). This way,
boundary conditions for this property are enforced.

ln γr
i = ∑

k
ν
(i)
k

(
ln Γk − ln Γ (i)

k

)
(A12)

Each of the above terms correspond to the energy interactions between molecular
surface elements. Hence, these are a function of the group surface fractions in the solution,
Θm and the pairwise group interaction energy, ψmn.

ln Γk = Qk

1− ln

(
∑
m

Θmψmn

)
−∑

m

Θmψkm

∑
n

Θnψnm

 (A13)
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Θm is the result of a normalization of the group surfaces by the fraction of each group
in the solution, Xm.

Θm =
XmQm

∑
n

XnQn
, Xm =

∑
j

ν
j
mxj

∑
j

∑
n

ν
j
nxj

(A14)

The pairwise group interaction energy is a function of temperature and, according to
Gmheling’s modification of UNIFAC [5], is given by:

ψmn = exp
(
− amn + bmnT + cmnT2

T

)
(A15)

The binary interaction parameters in Equation (A15) are recorded in Table A4 for all
group combinations related to the pure components included in this work.

Table A3. UNIFAC groups—volume and surface parameters [5].

Groups id νk Rk Qk
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