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Abstract: Protein crystallization plays a crucial role in the food and pharmaceutical industries,
enhancing product quality and efficiency by improving purity and controlled particle characteristics.
This study focused on the crystallization of the versatile protein papain, extracted from papaya.
Antisolvent crystallization was performed. This method is cost-effective and is a simple and energy-
efficient approach. Beyond protein crystal production, the antisolvent crystallization process serves
as a method for encapsulating active pharmaceutical ingredients (APIs). The study investigated
organic solvents like ethanol, acetone, and acetonitrile as potential antisolvents. Additionally, the
impact of variables such as the solvent-to-antisolvent (S:AS) volume ratio and papain concentration
on particle size, particle size distribution, zeta potential, crystallization yield, and residual activity of
papain crystals were examined. Ethanol emerged as the optimal antisolvent, reducing the solubility of
papain and preserving papain’s crystalline structure with minimal activity loss. Optimal conditions
were identified at a 1:4 S:AS volume ratio and a papain concentration of 30 mg/mL, resulting in
nanosized spherical crystals with a high yield and preserved activity. This research underscored the
crucial role of thoughtful parameter selection in antisolvent crystallization to achieve specific particle
characteristics while maintaining the functionality of the crystallized substance.

Keywords: papain; antisolvent crystallization; particle size; papain activity; crystallization yield;
zeta potential

1. Introduction

Papain is an enzyme extracted from papaya (Carica papaya) and is primarily found
in papaya latex, such as in leaves, stems, and raw fruits [1]. It is a versatile enzyme
consisting of a 212-amino acid peptide chain [2]. Its applications are diverse: it serves as a
meat tenderizer, aids in dairy production, acts as a gentle exfoliant in cosmetics, removes
tough stains in detergents, and adjusts and conditions leather in the leather processing
industry [3]. Moreover, papain contributes to the process of wound healing [4], possesses
anti-inflammatory activity [5], can be an antibacterial agent [6], and shows potential as an
antioxidant [7]. It aids in digestion [8] and exhibits promising potential for use in cancer
therapy [9–11]. Its versatility extends across various industries, establishing it as a valuable
and enduring resource.

Protein crystallization plays a crucial role in various industries, with widespread
significance in the cosmetic, food, and biopharmaceutical industries [12–14]. This process
yields numerous benefits that profoundly affect the quality and efficiency of protein-derived
products. One of its primary functions is to enhance protein purity by selectively removing
unwanted impurities [14]. Furthermore, protein crystallization enables meticulous control
over particle size and morphology, influencing the overall quality and functionality of
the obtained proteins [15]. Protein crystals, characterized by improved solubility, become
versatile for applications across industries, ranging from pharmaceuticals to biotechnology.
Moreover, protein crystallization contributes to the stability and robustness of the crystal
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product [12,14], leading to minimized costs and maximized overall efficiency during storage
and transportation processes. These multifaceted advantages of protein crystallization
extend beyond mere separation, playing a vital role in shaping the characteristics that
define the utility of proteins in diverse industrial applications.

Crystallization is a widely employed method for separation and purification in the
production of fine particles and for product design. Various techniques, such as the use of
antisolvents, evaporation, cooling, and reaction, are utilized to induce crystallization [16].
Antisolvent crystallization, which involves the addition of a dissolving agent (called an
antisolvent) to reduce the solubility of the solute in the solvent, is a particularly simple,
low-energy, and cost-effective method, making it a viable alternative to energy-intensive
evaporation and cooling processes. In addition, its application can be employed without
compromising thermally sensitive materials or the biological activity of drugs. There-
fore, antisolvent crystallization is commonly used in the crystallization of pharmaceutical
compounds for practical applications [17].

The antisolvent crystallization process is a highly effective method for producing drug
particles ranging from the micro- to nano-size [18]. The primary role of the antisolvent is to
reduce the solubility of a solute in the solution, facilitating rapid crystallization. The anti-
solvent rapidly induces a high level of supersaturation, resulting in an elevated nucleation
rate. This increased nucleation rate leads to the development of small particles [19]. The
careful selection of suitable antisolvents is critical in this process. Additionally, key process
variables such as the temperature, type of antisolvent, solution concentration, injection
rate, stirring speed, ultrasound, and the method of mixing the antisolvent with the solution
have a significant impact on the size distribution, particle size, morphology, growth rate,
and stability of crystals [18,20].

In addition to being used to produce protein crystals, antisolvent crystallization can
also be used as a method for encapsulating proteins, active pharmaceutical ingredients
(APIs), food, etc. The encapsulation serves to protect substances from unfavorable en-
vironmental conditions, increasing protein stability, and aid in drug delivery within the
body to reach specific targets and control release. This approach is characterized by its
simplicity, rapidity, and ease of operation, eliminating the need for prolonged shear or high
stirring rates, sonication, or very high temperatures. Furthermore, it demonstrates high
encapsulation efficiency and low power consumption, making it an efficient and practical
method for a variety of applications [21]. Antisolvents used for encapsulation are not only
liquids but also gases. There are two types of liquid-based methods: the one-step method,
which works well for hydrophobic proteins, and the two-step method, which works well
for hydrophilic proteins [22].

The purification process is a crucial step in the extraction of papain from papaya
latex, and one employed purification method is antisolvent crystallization [1,23]. Moreover,
this crystallization technique plays a role in the papain encapsulation process through a
two-step antisolvent method. The first step involves the crystallization of papain, followed
by the second step, where the crystallized papain is encapsulated [22,24]. Therefore, in this
paper, the antisolvent crystallization of papain was investigated. Organic solvents such
as ethanol, acetone, and acetonitrile were used as antisolvents. Additionally, the various
variables that significantly impact papain crystallization, such as solvent-to-antisolvent
volume ratio and papain concentration, were also investigated. The evaluation of these
parameters was conducted through the analysis of particle size, particle size distribution,
zeta potential, crystallization yield, and papain activity, aiming to identify the optimal
conditions for papain crystallization.

2. Materials and Methods
2.1. Materials

Papain powder (GRM058, Mw = 23 kDa) and L-cysteine hydrochloride monohydrate
(GRM046) were purchased from Himedia (Nashik, India). Ethanol was purchased from
Duksan (Ansan, Republic of Korea). Acetone and acetonitrile were purchased from Carlo
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Erba (Val-de-Reuil, France). α-N-benzoyl-L-arginine ethyl ester hydrochloride (BAEE)
was purchased from Alfa Aesar (Heysham, UK). Nα-benzoyl-DL-arginine 4-nitroanilide
(BAPNA) was purchased from Sigma-Aldrich (Saint-Louis, Switzerland). Dimethyl sul-
foxide (DMSO) and ethylenediaminetetraacetic acid (EDTA) were purchased from RCl
Labscan Limited (Bangkok, Thailand). Deionized water was used for preparing the so-
lutions. All chemicals and reagents used were of analytical grade and used without any
further purification.

2.2. Solubility Measurement

The solubility of papain in water/antisolvent mixtures at mass fractions of antisolvent
of 0, 0.2, 0.4, 0.5, 0.6, and 0.8 was determined by using the gravimetric method as described
by Kongsamai et al. [25] and Qureshi et al. [26]. Briefly, an excess amount of solid papain
was added into 10 g of the binary solvent mixture in a jacket crystallizer with temperature
control at 298.15 K by circulating water from a thermostat water bath at a stirring rate of
700 rpm. The suspension equilibrated for at least 24 h. Then, suspension was centrifuged
at 8000 rpm for 10 min. The supernatant was kept in a vial, which was then weighed
at room temperature. Water and antisolvent were then removed by evaporation of the
solution at 378.15 K in hot air oven. The residue solid was weighed until a constant weight
was achieved. This investigation was used to consider such parameters as optimal and
various mass fractions of antisolvent for selecting suitable solvent-to-antisolvent volume
ratio ranges in the effect study.

2.3. Crystallization Experiment

The experimental setup for papain crystallization is illustrated in Figure 1, comprising a
jacket crystallizer, a thermostat water bath for temperature control, a burette for antisolvent
injection, and a magnetic stirrer. The antisolvent was added to the papain solution at a flow
rate of 1.22 ± 0.052 mL/s via a burette with free flow, and the magnetic stirrer operated at
500 rpm to agitate a mixture of papain solution and antisolvent. A constant temperature of
298.15 K was maintained and regulated by circulating water from a thermostat water bath.
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In the papain crystallization experiment, the papain solution was prepared by dis-
solving papain in deionized water at varying concentrations. Subsequently, 10 mL of the
papain solution was placed in the jacket crystallizer (Figure 1). The antisolvent was then
added to the papain solution. During this stage, the formation of solid particulates and
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subsequent precipitation were noted. Following the addition of the antisolvent, continuous
stirring was maintained for 5 min at a temperature of 298.15 K.

The effects of different process variables were investigated, including antisolvent
types (acetone, acetonitrile, and ethanol), the solvent/antisolvent (S:AS) volume ratio (1:1,
1:2, 1:4, 1:6, and 1:8), and the papain concentration (10, 15, 20, 25, 30, and 35 mg/mL).
Subsequently, the resulting suspension underwent analysis to determine particle size, size
distribution, polydispersity index, and zeta potential. Following centrifugation of the
suspension, the papain particles were separated from the remaining solution. The papain
particles were then characterized to determine the enzyme activity and morphology, while
the supernatant was utilized to determine the crystallization yield. This comprehensive
approach allowed for a detailed understanding of the effects of different process variables
on the crystallization of papain.

2.4. Crystallization Yield

The papain suspension was subjected to centrifugation at 8000 rpm for 10 min (BKC-
TH16RII, BIOBASE, Jinan, China). Subsequently, the supernatant was collected, and its
absorbance was measured at a wavelength of 278 nm via UV-visible spectroscopy (DR6000,
Hach, Ames, IA, USA) to determine the concentration of remaining papain. A prepared
calibration curve (Figure 2) at the same wavelength was used to quantify the papain
concentration in the supernatant. By determining the amount of papain in the supernatant,
the yield of nanoparticle formation could be calculated using the following equation:

Crystallization Yield (%) =
W1 − W2

W1
× 100% (1)

where W1 is the amount of total papain added and W2 is the amount of dissolved papain
remaining in the supernatant after centrifugation.
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2.5. Residual Activity

The evaluation of enzyme activity, based on Arnon Ruth’s methodology (1970) [27,28],
involved the utilization of two distinct substrates: α-N-benzoyl-L-arginine ethyl ester
hydrochloride (BAEE) and Nα-benzoyl-DL-arginine 4-nitroanilide (BAPNA). The pH-stat
method at 298.15 K was employed for the BAEE substrate. The reaction mixture comprised
7 mL of substrate solution (0.08 M BAEE), 1 mL of activators (0.05 M Cysteine and 0.02 M
EDTA pH 6.2), and 1 mL of NaCl (3 M) at pH 6.3. Subsequently, 1 mL of either free-
papain solution or papain samples solution was added, and the pH was monitored until
it reached 6.2. To sustain the pH at 6.2, 20 mM NaOH was introduced, and the time
taken for the consumption of 50 µL of 20 mM NaOH was recorded, repeating the process
for approximately 5–10 min. For the BAPNA substrate, 1 mL of free-papain solution
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(1 mg/mL) or papain samples solution was placed into test tubes. A precisely measured
5 mL of the substrate solution (43.5 mg of BAPNA in 1 mL of dimethyl-sulfoxide and the
volume was adjusted to 100 mL with 0.05 M Tris buffer, pH 7.5, containing 0.005 M cysteine
and 0.002 M EDTA) was added. Following a 25 min incubation at 298.15 K, the enzymatic
reaction was terminated by adding 1 mL of 30% acetic acid. The quantification of liberated
p-nitroaniline was then conducted via spectrophotometric analysis at 410 nm (SP-UV 200,
Spectrum Instruments). Notably, control tubes without enzyme addition demonstrated the
absence of self-hydrolysis.

Units and specific activity: The enzymatic activity of papain was quantified based on
substrate hydrolysis. BAPNA activity is defined as the enzyme hydrolyzing 1 micromole
of substrate per minute (E = 8800). This is calculated using the following equation:

BAPNA units =
A410nm

t
× 3 × 1000

8800
(2)

where A410nm is absorbance at 410 nm; t is the time in minutes, which is the duration of the
enzymatic reaction; and 8800 M−1 cm−1 is the p-nitroanilide molar extinction coefficient at
410 nm.

For the BAPNA substrate, one unit of enzyme activity represents the hydrolysis of
1 micromole of BAEE per minute at 298.15 K. Specific activity is expressed as units per
milligram of protein.

2.6. Particle Characterization

Particle size, polydispersity index (PDI), and particle size distribution were determined
using dynamic light scattering (DLS) with a Zetasizer (Nano ZS, Malvern Instruments,
Worcestershire, UK). Papain particles were directly measured as a suspension in their
water/antisolvent mixture. The analysis took place at a scattering angle of 173◦ in a
temperature-regulated cell at 298.15 K. All analyses were conducted on samples appro-
priately diluted with a water/antisolvent mixture (50 times). For each sample, the mean
diameter ± standard deviation of three determinations was established. Particle size dis-
tribution is indicated by PDI values ranging from 0 to 1, where a smaller PDI suggests
a narrower size distribution. The zeta potential of the particles in the water/antisolvent
mixture was determined in a U-shaped cuvette. All measurements were carried out at
298.15 K in triplicates.

Crystal morphology examination was performed through scanning electron microscopy
(SEM) and a microscope. SEM and FE-SEM analysis were executed using the JEOL JSM-
6010LV and JEOL JSM-7800F models. The sample underwent a coating process under
vacuum conditions through cathodic sputtering with gold and was observed under an
accelerating voltage of 10 kV and 3 kV.

3. Results and Discussion
3.1. The Effect of Antisolvent Types

The selection of antisolvent in the crystallization process of papain is a highly crucial
step due to its impact on the characteristics of the resulting crystals and the activity of
papain. Choosing a suitable antisolvent is essential for controlling the size and morphology
of the crystals, as well as ensuring the purity of the obtained papain. Additionally, the
choice of antisolvent influences the efficiency and safety of the manufacturing process.
Therefore, selecting the appropriate type of antisolvent is the first thing that should be
considered. The solubility of papain in water at 298.15 K revealed that papain exhibits high
solubility, gradually dissolving until the solution becomes highly viscous. Consequently,
water was selected as the solvent for papain crystallization, and three organic solvents,
acetone, acetonitrile, and ethanol, were chosen for the antisolvent test. These organic
solvents are known for their ability to induce crystallization of proteins, offering a way to
effectively separate papain from the solution. In the experiment, antisolvent was added to
the papain solution at a papain concentration of 25 mg/mL and a solvent-to-antisolvent



ChemEngineering 2024, 8, 4 6 of 12

volume ratio of 1:4 using a burette with free flow, followed by stirring for 5 min at 298.15 K.
Results indicated that acetonitrile exhibited the highest yield in crystallizing papain from
water, followed by acetone and ethanol, respectively (Table 1). From Figure 3b, it is evident
that acetonitrile induces a change in color in the crystallized papain, turning it discolored.
Furthermore, the crystals become sticky and adhere to the walls of the container, which
indicates that the activity could not be determined. As a result, acetone and ethanol are
better choices as antisolvents than acetonitrile. Although acetone resulted in more papain
crystallization yield than ethanol, it led to sticky crystals with lower residual activity
(Table 1). Therefore, ethanol is deemed more suitable for this process compared to the
other solvents mentioned because it gives a high crystallization yield and can preserve the
enzymatic activity effectively. Additionally, considering environmental impact, ethanol, as
an organic solvent, is also more suitable compared to the other solvents mentioned [29].

Table 1. Residual activity of papain precipitate 1 and crystallization yield (%) at different antisolvent
types *.

Antisolvent Crystallization Yield (%) Residual Activity (%)

Acetonitrile 98.67 ± 1.15 N/A **
Acetone 89.33 ± 2.31 25.16 ± 5.47
Ethanol 80.10 ± 9.33 82.47 ± 7.00

* Papain concentration: 25 mg/mL; volume ratio of solvent to antisolvent: 1:4. ** Cannot find the value. 1 Using
amidase method (Nα-benzoyl-DL-arginine 4-nitroanilide (BAPNA) to subtract).
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3.2. The Effect of Solvent-to-Antisolvent Volume Ratios

The experiment investigated the solubility of papain in a water and ethanol mixture
(Figure 4), it was observed that an increase in the ethanol content resulted in reduced papain
solubility. This confirms that ethanol, as an antisolvent, can reduce the solubility of papain
in solution and can be used in an antisolvent crystallization process effectively. However, at
mass fractions of 0 and 0.2, solubility was difficult to determine as the papain continued to
dissolve, yielding an undesirable viscous and sticky solution. Hence, antisolvent addition
at these ratios was considered unsuitable for papain crystallization. Commencing from a
mass fraction of 0.4, solubility could be determined, leading the study to focus on mass
fractions from 0.4 and above. A mass fraction of 0.4 corresponds to an approximate 1:1
volume ratio of water to ethanol. Various solvent-to-antisolvent volume ratios—1:1, 1:2,
1:4, 1:6, and 1:8—were investigated, representing different added amounts of ethanol to
encourage papain crystallization from the solution.
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The preparation of papain particles involved adding varying volumes of ethanol
(acting as the antisolvent) to the papain solution (with a concentration of 25 mg/mL) using
a burette with free flow. After the antisolvent addition was completed, continuous stirring
was sustained for 5 min at a temperature of 298.15 K. The visual analysis of Figure 5b clearly
indicates that varying solvent-to-antisolvent ratios lead to distinctions in the suspended
solutions. This change in turbidity is likely attributed to differences in particle number,
particle size, and size distribution. Figure 5a,b illustrate that at ratios ranging from 1:1 to 1:4,
particles present a uniform dispersion in the suspended solution, devoid of any apparent
agglomeration. However, at ratios of 1:6 and 1:8, noticeable particle aggregation occurred,
which is confirmed by Figure 5b, and more than one peak was found in Figure 5a, with
a small peak indicating the presence of aggregation (larger size). This is likely due to the
initial rapid supersaturation of the molecule induced by rapid molecular dehydration under
a large solvent-to-antisolvent (S:AS) ratio. In Figure 5d, the S:AS volume ratio influences
the zeta potential, that is, as the S:AS volume ratio increases (1:1 to 1:8), the zeta potential
also increases (10.8 to 40.1 mV). The zeta potential values are indicative of good colloidal
stability in particles. In general, a zeta potential with a magnitude greater than or equal to
±30 mV is considered suitable for maintaining colloidal stability [30,31]. It is evident that
the zeta potential values for ratios of 1:1 and 1:2 are lower than the range associated with
stable suspensions. From a ratio of 1:4 onwards, the suspension exhibited higher stability,
as indicated by zeta potential values within the stable range. The relationship between
the volume of ethanol used and the crystallization yield is evident. With an increase in
ethanol volume (from 1:1 to 1:8), the crystallization yield also rises, ranging from 29.33%
to 81.83%. Within the ratio range of 1:4 to 1:8, which maintains a stable suspension, the
crystallization yield remains consistently high, hovering around 70–80%. The particle sizes
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obtained at ratios of 1:1, 1:2, 1:4, 1:6, and 1:8 were in the nanoparticle range, with average
sizes of 365.4 nm, 320 nm, 204 nm, 240.3 nm, and 288.3 nm, respectively. Notably, the
PDI values, indicative of particle size distribution, were at their lowest (PDI = 0.075) at a
ratio of 1:4 (Figure 5c), corresponding with the results shown in Figure 5a. This implies
that at a ratio of 1:4, the particle size distribution is narrower and more uniform than at
other ratios (Figure 5a,c). Consequently, it can be concluded that papain nanoparticles can
be produced using the minimum amount of ethanol at a ratio of 1:4, providing the most
suitable conditions for the desired particle characteristics.
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3.3. The Effect of Papain Concentration

The concentration of papain is critical in the solution crystallization process. The effect
of the concentrations of papain solutions on the particle size, particle size distribution,
zeta potential, and crystallization yield were investigated by using six different papain
concentrations. Ethanol was added as an antisolvent at a volume ratio of 1:4 S:AS (solvent-
to-antisolvent) to papain solutions with different concentrations (10, 15, 20, 25, 30 and
35 mg/mL) using a burette with free flow at a temperature of 298.15 K. From Figure 6a,
it can be observed that an increase in the concentration of papain leads to a significant
increase in the average particle size, ranging from 170.3 nm to 184.4 nm, 194.5 nm, 204.0 nm,
207.6 nm, and 211.4 nm, at concentrations of 10, 15, 20, 25, 30, and 35 mg/mL, respec-
tively. This correlation between papain concentration and particle size is in line with the
explanation provided earlier. The heightened viscosity resulting from the increased papain
concentration interferes with the effective diffusion between the solvent and antisolvent.
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This disruption in diffusion leads to non-uniform supersaturation, subsequently slowing
down the nucleation rate and promoting particle aggregation, ultimately resulting in larger
particle sizes [20].
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However, regarding particle size distribution (Figure 6a,c), it is evident that at every
concentration, there is a narrow size distribution (i.e., low PDI), and these values are
within a closely aligned range. This implies that variations in papain concentration do not
significantly impact the particle size distribution.

As for crystallization yield, in the initial concentration range of 10–15 mg/mL, an
increase in concentration resulted in an increase in yield (63.81 to 79.29%). However, in the
concentration range from 15 mg/mL and above, the obtained yield values were relatively
constant, hovering around 80%.

Regarding zeta potential (Figure 6b), the concentration of papain influences an increase
in zeta potential in the range of 10–30 mg/mL (−9.8 to 35.1 mV) and a decrease at 35 mg/mL
(15.9 mV). These values indicate the stability of the formed colloids, as an increase in zeta
potential leads to reduced attraction between particles, resulting in lower aggregation [30,31].
Therefore, the concentration of 30 mg/mL appears to be the optimal condition where the
suspension exhibits the highest stability, as indicated by the highest zeta potential value
(35.1 mV). Moreover, this concentration is also the point where the residual activity is highest
(Table 2).
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Table 2. Residual activity of papain precipitate at different papain concentrations (25–35 mg/mL) 1.

Concentration (mg/mL) Residual Activity (%)

25 89.68 ± 0.57
30 100 ± 6.55
35 90.87 ± 2.66

1 Using titration of the rate of hydrolysis of α-N-benzoyl-L-arginine ethyl ester hydrochloride (BAEE) method.

The optimal conditions (a papain concentration of 30 mg/mL and a solvent-to-
antisolvent ratio of 1:4) are further illustrated in Figure 7, showing the morphology of
papain particles using Field Emission Scanning Electron Microscopy (FE-SEM). The FE-SEM
images reveal that papain particles have a spherical shape, and aggregated papain does not
exhibit distinct shapes, while the commercially purchased papain particle (unprocessed)
produce crystals with irregular shapes. Figure 7b,c provide additional confirmation that
antisolvent crystallization under optimal conditions results in the formation of nanocrys-
tals [18]. Moreover, in comparison with the commercially purchased papain particle
(unprocessed), antisolvent crystallization in this study demonstrates an improvement in
crystal quality, as the obtained crystals exhibit a perfect spherical shape and retain their
enzymatic activity. The use of nanosized spherical crystals with a high yield and preserved
activity holds significant implications for practical applications in various industries, par-
ticularly in the food and pharmaceutical sectors. The nanosized spherical crystals can
enhance the bioavailability, stability, shelf life, and controlled release properties of drug and
food products. The high yield and preserved activity imply efficient resource utilization,
potentially contributing to cost-effectiveness in production processes.
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4. Conclusions

In this study, the impact of various parameters on the antisolvent crystallization
process for preparing papain particles were explored. The different types of antisolvent,
solvent-to-antisolvent (S:AS) volume ratios, and papain concentrations were investigated
on the crystallization of papain. After careful examination, the optimal conditions were
using ethanol as the antisolvent, maintaining an S:AS volume ratio of 1:4 and having
a papain concentration of 30 mg/mL. Under these conditions, the precipitated papain
was obtained without compromising its activity. The papain crystals obtained under
the identified optimal conditions exhibited a spherical shape with an average size of
207.6 nm, and the crystallization yield was approximately 80%. These results underscore
the significance of carefully choosing the right parameters in antisolvent crystallization
to achieve the intended particle characteristics while preserving the functionality of the
precipitated substances. In general, this research represents only the beginning of an
itinerary required for papain crystallization for their validation as a potent tool before
scaling-up and encapsulation studies.
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