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Abstract: Climate change is a significant environmental challenge that affects water resources,
agriculture, health, and other aspects of human life. Bivariate modeling is a statistical method used to
analyze the relationship between variables such as rainfall and temperature. The Pearson correlation
coefficient, Kendall’s tau, or Spearman’s rank correlation are some measures used for bivariate
modeling. However, copula functions can describe the dependence structure between two or more
variables and can be effectively used to describe the relationship between rainfall and temperature.
Despite the literature on bivariate modeling of rainfalls and temperature being extensive, finding
flexible and sophisticated bivariate models is sometimes difficult. In this paper, we use rotated copula
functions that can arrange any type of dependence that is empirically detected, especially negative
dependence. The methodology is applied to an Italian municipality’s bivariate daily time series of
rainfall and temperature. The estimated rotated copula is significant and, therefore, can be used for
simulating the effects of extreme events.
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1. Introduction

Climate change is one of the most significant environmental challenges that the world
faces today [1–3]. Changes in temperature and precipitation patterns can profoundly impact
water resources, agriculture, health, and many other aspects of human life [4]. Therefore, it
is essential to have an understanding of the relationship between rainfall and temperature
and how these variables interact with each other, taking into account the changing pattern
over time [5,6]. This is where bivariate modelling comes in.

Bivariate modeling is a statistical method used to analyze the relationship between
two variables. In the context of rainfall and temperature, bivariate modelling can be used to
examine the relationship between rainfall and temperature patterns and how these patterns
interact with each other. The results of bivariate modelling can help to provide insights
into the causes of climate change, as well as provide information on how these changes are
affecting different regions of the world [7].

There are several different types of bivariate measures that can be used to analyze
the relationship between rainfall and temperature [7]. One of the most commonly used
is the Pearson correlation coefficient which measures the strength and direction of the
linear relationship between two variables. It ranges from −1 (perfect negative correlation),
through 0 (no correlation), to 1 (perfect positive correlation). Alternative measures are
Kendall’s tau or Spearman’s rank correlation [8]. Kendall’s tau measures the strength
and direction of the association between two variables. It is used for both continuous
and ordinal data and is non-parametric, so it does not assume a specific distribution or
linearity. Spearman’s rank correlation is another measure of the strength and direction of
the monotonic relationship between two variables. Like Kendall’s tau, it is appropriate for
both continuous and ordinal data and does not assume linearity.
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A popular bivariate model that is often used to analyze the relationship between
rainfall and temperature is regression analysis. This model can be used to determine the
effect of one variable on another. For example, in the case of rainfall and temperature,
regression analysis can be used to determine the effect of temperature on rainfall patterns.
This information can then be used to make predictions about future precipitation patterns
based on changes in temperature [9].

Bivariate modelling can also be used to examine the spatial patterns of rainfall and
temperature [10]. For example, spatial analysis can be used to identify areas where rainfall
and temperature patterns are particularly pronounced, as well as to identify areas where
these patterns are more muted. This information can be used to develop strategies for
managing water resources in regions that are particularly sensitive to changes in rainfall
and temperature patterns, see [11,12].

Therefore, bivariate modelling is a powerful tool that can be used to understand the
relationship between rainfall and temperature and how these variables interact with each
other [13]. The results of bivariate modeling can provide valuable information on the causes
of climate change, as well as provide insights into how these changes are affecting different
regions of the world. This information is essential for developing effective strategies for
managing water resources, agriculture, health, and many other aspects of human life in a
changing climate [14]. However, it is also true that the linear regression model may appear
too restrictive for the description of complex relationships between variables, in particular
when the assumption of variability is implausible. For that reason, finding flexible and
sophisticated bivariate models can be very helpful.

Copula functions are statistical models that describe the dependence structure between
two or more variables and can be effectively used to describe the relationship between
rainfall and temperature [15]. They are sometimes used in climate research to model the
relationships between different meteorological variables.

In the case of rainfall and temperature, copula functions can be used to describe the
joint distribution of these variables. This joint distribution represents the probability of
observing specific combinations of rainfall and temperature values. By modeling this
joint distribution, copula functions can provide insights into the relationship between
rainfall and temperature, including the strength and direction of the relationship and any
non-linear or non-monotonic relationships that may exist.

The literature on bivariate modeling of rainfalls and temperature is extensive, with a
wide range of studies exploring the relationship between these two variables and how they
interact with each other.

One of the main focuses in the literature is on using statistical models to describe
the relationship between rainfall and temperature. Refs. [16,17] modeled monthly rainfall
using a Markov chain approach. Ref. [18] introduced some types of mixed distributions
for describing daily rainfall amounts. Ref. [19] compared generalized extreme value,
generalized Pareto, and generalized logistic for annual rainfall data. The use of copula
functions to model the relationship between precipitation and temperature was pursued
in [20–24]. The studies demonstrate the benefits of using copulas in this context, including
the ability to capture non-linear and non-monotonic relationships between the variables.
Further studies using copula functions [25,26].

In this paper, we pursue a critical copula approach, limiting the selection process to the
copula functions that can arrange the type of dependence (positive or negative) empirically
detected. In particular, in presence of negative dependence, extended copula functions
obtained as rotations of specific copulas are considered.

The paper is organized as follows. Section 2 shows a review of the copula functions,
defines the rotated copula functions, and introduces a generalized measure of tail depen-
dence. Section 3 presents the data, lists the steps of the statistical analysis, and comments
on the results. Section 4 concludes.
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2. Materials and Methods
2.1. Copula Functions

A bivariate copula C is a function of two variables U1 and U2 each defined in [0,1]
such that:

1. The range of the copula C(u 1, u2) is in the unit interval [0,1];
2. C(u 1, u2) = 0 if any ui = 0 for i = 1, 2;
3. C(1 , u2) = u2 and C(u1, 1) = u1.

The Sklar’s theorem shows the relationship between a bivariate copula function C
and a bivariate distribution. Let X1 and X2 be two random variables and let F(x1, x2) =
P(X1 ≤ x1, X2 ≤ x2) be the joint distribution function with marginals F(x1) and F(x2).
Then, there exists a bivariate copula function such that F(x1, x2) = C(F(x1), F(x2)). There-
fore, defined ui = F(xi),

C(u 1 , u2) = F(x1, x2)

The theory of copula functions can be found in [15,27]. Comprehensive reviews of
copula function applications can be found in [28–30].

There are several different types of copula functions that can be used to model the
relationship between rainfall and temperature. Some of the most commonly used copula
functions include the Gaussian copula, Student’s t-copula, Clayton copula, and Gumbel
copula. The choice of copula function will depend on the nature of the relationship between
rainfall and temperature, as well as the available data.

Moreover, the statistical analysis of the joint occurrence of extreme events is often
strategic and crucial in climate change applications. Copulas have also the property to
encounter the so-called tail dependence, that is, the association between extreme values.

However, it is worthwhile to specify two points:

1. not all the copulas admit tail dependence in a flexible way (e.g., the most popular
multivariate distribution, the Gaussian distribution, does not admit tail dependence,
while the Student’s t copula admits symmetric tail dependence in the two tails);

2. The most popular copula functions admit tail dependence as the association between
extreme values in the same tail (extremely low-extremely low, or extremely high-
extremely high) in a direct relationship framework.

In this study, we analyze the relationship between rainfall and temperature using
a copula approach, taking into account a generalized definition of tail dependence and
enlarging the number of candidate copula functions, also including the rotated copula to
possibly capture every type of tail dependence.

2.2. Tail Dependence

Let Fi(xi) be the marginal distribution functions of the random variable Xi (i = 1, 2).
The lower tail dependence (LTD) coefficient, λL, is defined as the limit of the condi-

tional probability when q tends towards one, and when the distribution function of the
random variable X2 des not exceed 1 − q, given that the corresponding function for X1
does not exceed 1 − q,

λL = lim
q→1−

P(U2 ≤ (1− q)|U1 ≤ (1− q))

For λL ∈ (0, 1], X1 and X2 are asymptotically dependent in the lower tail. If λL is null,
X1 and X2 are asymptotically independent.

The upper tail dependence (LTD) coefficient, λU , is defined as the limit when q tends
towards one if the conditional probability that the distribution function of the random
variable X2 is greater than q, given that the corresponding function for X1 is greater than q,

λU = lim
q→1−

P(U2 > q|U1 > q)
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For λU ∈ (0, 1], X1 and X2 are asymptotically dependent in the upper tail.
For a more general measure of tail dependence, let us consider the measure of total

tail dependence of a bivariate vector (X1,X2) [31]

Λ =

[
λLL λLU
λUL λUU

]
where

λLL = lim
q→1−

P(U2 ≤ (1− q)|U1 ≤ (1− q))

λLU = lim
q→1−

P(U2 > q|U1 ≤ (1− q))

λUL = lim
q→1−

P(U2 ≤ (1− q)|U1 > q)

λUU = lim
q→1−

P(U2 > q|U1 > q)

It is straightforward to show that

Λ = lim
q→1−

[ C(1−q,1−q)
1−q

1−q−C(1−q,q)
1−q

1−q−C(q,1−q)
1−q

1−2q+C(q,q)
1−q

]

While there are many copulas that can capture λLL and λUU , to capture negative
dependence, that is, not null λLU or λUL, we need to use some specific forms of copulas,
that is, rotated copulas.

There are three rotated forms, 90 degrees, 180 degrees, and 270 degrees. When rotating
a copula by 180 degrees, one obtains the corresponding survival copula. Rotation by 90
and 270 degrees allows for the modeling of negative dependence.

The rotated copulas by 90 and 270 degrees are given by

C90(u1, u2) = u2 − C(1− u1, u2)
C270(u1, u2) = u1 − C(u1, 1− u2)

Four scatter plots of simulated data from a non-rotated and rotated Clayton copulas
with the parameter |θ|= 1.5 are drawn in Figure 1. The scatter plots correspond to four
different combinations of associations between extreme values, that is, low–low (top left),
high–low (top right), high–high (bottom left) and low–high (bottom right).
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Once the copula function has been selected, it can be estimated using maximum
likelihood estimation or other estimation techniques. The fitted copula function can then
be used to make predictions about future combinations of rainfall and temperature values,
as well as to estimate the probability of extreme events, such as droughts or heatwaves.

2.3. Data

We analyzed the data on rainfall and temperature for the municipality of Agerola (in
the province of Naples; Italy), which us characterized by an altitude of 620 m. The data are
recorded with a daily frequency by the Centro Funzionale Multirischi of the Protezione
Civile in Campania (Italy), and are publicly available.

The number of weather stations, their location, and other useful information can
be obtained from the website of Centro Funzionale Multirischi (http://centrofunzionale.
regione.campania.it/ accessed on 7 June 2023), which is, however, in the Italian language.
The location of the station in Agerola can be seen in Figure 2.
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We have analyzed the daily frequency in the period 2008–2022 for a total of 5477 ob-
servations.

The variables are:

- Rainfall (in mm);
- Maximum temperature (in Celsius);
- Minimum temperature (in Celsius);
- Median temperature (in Celsius).

From the Pearson correlation matrix in Table 1 it is clear that the three variables
measuring the temperature are highly correlated. For that reason, we focus on one of these:
Maximum temperature.

Table 1. Pearson correlation matrix.

Year Rainfall Maximum
Temp.

Minimum
Temp.

Median
Temp.

Rainfall 1 −0.289 −0.213 −0.241

Maximum temp. −0.289 1 0.953 0.985

Minimum temp. −0.213 0.953 1 0.986

Median temp. −0.241 0.985 0.986 1

http://centrofunzionale.regione.campania.it/
http://centrofunzionale.regione.campania.it/


Hydrology 2023, 10, 236 6 of 13

The descriptive statistics for the variables Rainfall and Maximum temperature are
reported in Tables 2 and 3. The comparison between median and mean strongly suggests a
high positive asymmetry for the distribution of the variable Rainfall, which is characterized
by more than half of the observations being equal to 0. The variable Maximum temperature
exbihits a substantial symmetry.

Table 2. Descriptive statistics for the variable Rainfall.

Year Min Median Mean Max Stand Dev

2008 0 0 4.950 98.600 11.701

2009 0 0 6.635 87.800 14.598

2010 0 0.200 7.092 124.800 15.088

2011 0 0 3.548 100.200 10.404

2012 0 0 5.082 92.400 12.615

2013 0 0 6.070 89.000 13.732

2014 0 0 5.445 104.400 12.754

2015 0 0 4.501 81.800 11.913

2016 0 0 4.463 61.800 10.470

2017 0 0 3.404 94.000 10.788

2018 0 0 4.816 73.200 10.569

2019 0 0 5.400 133.80 13.777

2020 0 0 3.476 57.400 9.421

2021 0 0 5.437 80.800 13.255

2022 0 0 4.424 133.00 14.432

Table 3. Descriptive statistics for the variable Maximum temperature.

Year Min Median Mean Max Stand Dev

2008 −1.30 16.45 17.07 33.30 8.089

2009 0.70 16.50 17.16 33.10 8.210

2010 −1.30 16.00 16.69 33.10 8.029

2011 2.30 17.50 17.69 33.50 7.781

2012 0.30 17.60 17.82 35.10 8.445

2013 0.20 18.20 17.56 34.50 7.847

2014 −1.50 17.40 17.44 30.50 6.797

2015 −0.80 17.90 18.42 35.20 8.254

2016 1.50 17.40 17.78 31.70 7.347

2017 −3.20 17.80 18.02 37.20 8.351

2018 0.20 17.60 17.33 30.60 7.486

2019 −1.60 15.80 17.18 33.50 8.066

2020 2.70 16.10 17.32 32.50 7.130

2021 −0.40 16.80 17.42 34.70 8.015

2022 2.50 17.40 17.98 34.20 8.022

Figure 3 shows box-plots for the two variables in the even years from 2008 to 2022,
month-by-month. The circles are observations outside of the whiskers of the box-plot,
that is, observations lower than Q1 − 1.5·IQ or larger than Q3 + 1.5·IQ, where Q1 and Q3
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denote, respectively, the first and third quartile, while IQ = Q3 − Q1 is the interquartile
range. In practice these observations are potentially outliers. Keeping the same scale on the
y-axis, we note in the most recent year (2022) the high number of outliers and their size
which are definitively larger. In 2022 we observe six observations over 60 mm, and two of
them over 100, which is never observed in the previous years.
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3. Results and Discussion

This study aims to derive a bivariate model for daily temperature and daily rainfall
processes which can be used to simulate and predict temperature and rainfall variations
where the dependence structure is measured using copula. The relevant issue is to find a
good model for the dependence structure, which is able to capture the tail(s) dependence(s).

Our bivariate model is derived by coupling the marginals of temperature and rainfall
distribution to a joint probability distribution for temperature and rainfall processes.

The scatter plot between Maximum temperature and Rainfall (Figure 4) suggest a
negative relationship, which is confirmed by the correlation coefficient, which is equal to
−0.259 and significantly different from zero (the p-value is approximately null). However,
before defining a statistical model, we filter the two series for possible autocorrelation
and/or seasonality.
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The filtering model for the variable Rainfall (Rt) is the ARMA(2,1) model which
minimizes the AIC, taking into account that negative values are not allowed

Rt = max(0; µ + ϕ1(Rt−1 − µ) + ϕ2(Rt−2 − µ) + εt + θ1εt−1)

The estimates are reported in Table 4. The p-values of the Ljung–Box statistics with
m = 1, 5, 10, 20, 30 are, respectively, 0.87, 0.09, 0.20, 0.07, 0.14. In Figure 5 we report the
original time series and the fitted values.
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Table 4. Estimate of the ARMA(2,1) model for the variable Rainfall.

Year Estimate St. Error p-Value

µ 4.488 0.581 0.000

ϕ1 1.189 0.038 0.000

ϕ2 −0.220 0.026 0.000

θ1 −0.919 0.031 0.000
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For the variable Maximum temperature (MTt), we have identified the ARMA(2,2) model,

MTt = µ + ϕ1(MT t−1 − µ
)
+ϕ2(MT t−2 − µ

)
+ εt + θ1εt−1 + θ2εt−2

The estimates are reported in Table 5. The p-values of the Ljung–Box statistics with
m = 1, 5, 10, 20, 30 are, respectively, 0.97, 0.99, 0.99, 0.99, 0.76. In Figure 6 we report the
original time series and the fitted values.

Table 5. Estimate of the ARMA(2,2) model for the variable Maximum temperature.

Year Estimate St. Error p-Value

µ 17.569 2.317 0.000

ϕ1 1.500 0.048 0.000

ϕ2 −0.504 0.047 0.000

θ1 −0.749 0.050 0.000

θ2 −0.079 0.031 0.011
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The bivariate modelling is estimated between the two filtered time series (the residuals
of the two models), representing the unpredictable components of Rainfall and Maximum
temperature, denoted by f Rt and f MTt. In Figure 7 we show a scatter plot of the filtered
variables and the estimated regression line with a significant negative slope (the p-value is
approxiamtely null).
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However, to have a joint distribution function that takes into account extreme values,
we use a copula function, C(u1, u2), where u1 denotes the distribution function of Rainfall
and u2 denotes the distribution function of Maximum temperature. The selection of the
copula function is limited to the copulas allowing for a negative dependence. There
were 10 candidate copulas: Gaussian, Student’s t, rotated (90 and 270 degress) Clayton,
rotated (90 and 270 degress) Gumbel, rotated (90 and 270 degress) BB1 and rotated (90 and
270 degress) BB7 copula. Both Gaussian and Student’s t copulas belong to the so-called
family of elliptical copulas and are characterized by the correlation coefficient−1 ≤ r ≤ +1.
The Clayton, Gumbel, BB1, and BB7 copulas are Archimedean copulas which only admit
positive dependence in the original formulation, and for this reason, are estimated in the
rotated extensions allowing for negative dependence.

The estimated distribution functions of the two variables are obtained as empirical
distribution functions, F̂f R(r) = P̂( f Rt ≤ r) and F̂f MT(mt) = P̂( f MTt ≤ mt).

The AIC criterion suggests the rotated 270 degress Clayton copula with the θ = −0.304 pa-
rameter and a standard error equal to 0.028, which involves the parameter θ being highly
significant (see Table 6). As a result, τ = −0.13 (with a p-value less than 0.01). Moreover, the
rotated 270 degress Clayton copula with θ = −0.304 implies the following tail dependence
coefficient: λLU = 0.09 and λLL = λUU = λUL = 0. Finally, the contour plot of the estimated
copula is reported in Figure 8, while the bivariate copula density can be visualized in Figure 9.

Table 6. Estimate of the copula.

Parameter Estimate St. Error p-Value

θ −0.304 0.028 0.000
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Figure 9. Bivariate density function of the estimated rotated 270 degrees Clayton copula.

To show the possible use of the results, we have simulated M values for F̂fR for some
specific values of F̂fMT. We have assumed that F̂fMT = (0.001, 0.005, 0.01, 0.05, 0.10, 0.50).
Figure 10 reports six histograms for the simulated values with M = 1000. In the top-left
and top-right panels, we drew the histograms for the M simulated values of F̂fR when the
variable Maximum temperature has assumed an extremely low value (the 0.1th percentile,
that is F̂fMT = 0.001, at the left and 0.5th percentile that is F̂fMT = 0.005, at the right). Given
that the estimated rotated 270 degrees Clayton copula show λLU > 0, we find a peak in
correspondence with low values of F̂fMt, that is in correspondence with low percentiles of
Maximum temperature. The middle-left and middle-right panels report histograms for
when F̂fMT = 0.01 and F̂fMT = 0.05, showing the occurrence of high percentiles of values in
the top decile of Rainfall, though this feature is less pronounced for F̂fMT = 0.05. Finally, in
the two histograms in the bottom part of the histogram, the prevalence of the high values
of Rainfall reduces; in particular, when F̂fMT = 0.50. When we consider the median value
of the Maximum temperature, the histogram is approximately uniform; therefore, there is
no dependence with the percentile of Rainfall.
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with the 0.1st percentile (top left), 0.5th percentile (top right), 1st percentile (middle left), 5th
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filtered variable Maximum temperature.

From a practical point of view, one can be interested in the simulated values of the
variable Rainfall. This implies that we can “translate” the simulated percentiles into
values for Rainfall. To this end, we have to simulate from the statistical model that we
have estimated for the variable Rainfall, ARMA(2,1). First, we transform the simulated
percentiles of the filtered series (residual) into residuals, using the inverse normal function.
Then, we simulate M values from the statistical model ARMA(2,1) with innovations given
by the generated residuals. Finally, we build the histograms (Figure 11) for the positive
values to show the results, discarding the negative values provided by the simulation.
It is evident that the smaller the percentile of the simulation, the further to the right the
distribution of the generated values for Rainfall. In particular, we can observe that very
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high values around 80 can be reached only starting from the lowest percentile of fMT and
that the peak around zero is observed starting from the highest percentile (50th) of fMT.
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These examples show the high flexibility of the copula tool which allows us to plan
many different simulation studies to take under control a variety of different situations.

4. Conclusions

This article discusses the extension of the copula-based technique, which has traditionally
been used in financial research, to model the joint probability distribution of temperature
and rainfall. This is especially significant in the current climate change context, in which
accurate weather modeling is crucial for agricultural production. Copulas provide a versatile
and robust means of representing multivariate distributions, overcoming the limitations of
traditional techniques such as joint normality. The use of copula functions can aid in better
risk management for agricultural planning by more accurately simulating weather events.
However, it is essential to select a copula function that matches the type of dependence
(negative or positive) detected in the data. In cases where a negative relationship exists, a
rotated copula can replace the traditional copula. In summary, copula functions are a useful
tool for modeling the relationship between rainfall and temperature, offering valuable insights
into the dependence structure between these variables and providing a basis for predicting
future conditions in a changing climate. However, the essential condition is a reasoned choice
of the copula, not limited to the most widely used copula functions, but made by including
the most appropriate extensions among the candidate functions.
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