
Citation: Mohia, Y.; Absi, R.; Lazri,

M.; Labadi, K.; Ouallouche, F.;

Ameur, S. Quantitative Estimation of

Rainfall from Remote Sensing Data

Using Machine Learning Regression

Models. Hydrology 2023, 10, 52.

https://doi.org/10.3390/

hydrology10020052

Academic Editor: Fabio Russo

Received: 24 December 2022

Revised: 9 February 2023

Accepted: 12 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Quantitative Estimation of Rainfall from Remote Sensing Data
Using Machine Learning Regression Models
Yacine Mohia 1,*, Rafik Absi 2 , Mourad Lazri 1 , Karim Labadi 2 , Fethi Ouallouche 1 and Soltane Ameur 1

1 Loboratoire d’Analyse et de Modélisation des Phénomènes Aléatoires, LAMPA, Faculté du Génie Electrique et
d’Informatique (FGEI), University Mouloud MAMMERI of Tizi Ouzou (UMMTO), Tizi Ouzou 15000, Algeria

2 ECAM-EPMI, LR2E-Lab, Laboratoire Quartz, 95092 Cergy Pontoise, France
* Correspondence: mohiayacine@yahoo.fr; Tel.: +213-770-429-239

Abstract: To estimate rainfall from remote sensing data, three machine learning-based regression
models, K-Nearest Neighbors Regression (K-NNR), Support Vector Regression (SVR), and Random
Forest Regression (RFR), were implemented using MSG (Meteosat Second Generation) satellite data.
Daytime and nighttime data from a rain gauge are used for model training and validation. To
optimize the results, the outputs of the three models are combined using the weighted average. The
combination of the three models (hereafter called Com-RSK) markedly improved the predictions.
Indeed, the MAE, MBE, RMSE and correlation coefficient went from 23.6 mm, 10.0 mm, 40.6 mm and
89% for the SVR to 20.7 mm, 5.5 mm, 37.4 mm, and 94% when the models were combined, respectively.
The Com-RSK is also compared to a few methods using the classification in the estimation, such
as the ECST Enhanced Convective Stratiform Technique (ECST), the MMultic technique, and the
Convective/Stratiform Rain Area Delineation Technique (CS-RADT). The Com-RSK show superior
performance compared to ECST, MMultic and CS-RADT methods.The Com-RSK is also compared
to the two products of satellite estimates, namely CMORPH and CHIRPS. The results indicate that
Com-RSK performs better than CMORPH and CHIRPS according to MBE, RMSE and CC (coefficient
correlation). A comparison with three types of satellite precipitation estimation products, such as
global product, regional product, and near real-time product, is performed. Overall, the methodology
developed here shows almost the same results as regional product methods and exhibits better results
than near real-time and global product methods.

Keywords: remote sensing; rainfall; MSG Satellite; SVR; RF; RR; regression

1. Introduction

In Algeria, the climate tends to become dry. The amount of precipitation has dropped
considerably, and measuring it using traditional means, such as ground radars and rain
gauges, remains insufficient for superior quantification. Moreover, the availability of in situ
data on large spatio-temporal scales is limited, and the required spatial domain coverage is
small. There are additional disadvantages too, such as the difficulties of collection, the gaps
in the recording of data and their subsequent interpolation, and the lack of digitization [1].
Thus, as an alternative solution, remote sensing data are used a great deal for the elaboration
of precipitation maps [2–7]. They are available on large spatio-temporal scales and are
collected continuously and regularly. This type of data covers large areas of the globe.

However, remote sensing data from geostationary weather satellites are not direct
measurements of precipitation totals. They provide information on the temperature of
cloud tops, on the optical and microphysical properties of clouds, and on the vertical
development of clouds. To link this information to precipitation rates, certain methods
are used [2,8–10]. Many of these method proceed by classifying remote sensing data into
precipitation intensities [11–13]. Recently, methods based on machine learning using classi-
fication models have been implemented, such as an artificial neural network [14], a support
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vector machine [15], a random forest [5], K-Nearest Neighbors [16], naive Bayes [4], or com-
binations among these models [3,10,17,18]. In addition, for the estimation of precipitation,
deep learning was used [19,20]. Indeed, deep learning based on deep neural networks
shown its effectiveness in detection of images and in object recognition [21]. Deep learn-
ing as a convolution neural network (CNN) treats a set of pixels (an object) that permits
detection and recognition of the object. In this treatment, convolution and pooling are
repeated before being connected to an MLP (multilayer perceptron). The MLP generates
the response (object detected) as output. With precipitation classification that is performed
at the pixel scale, deep learning using a CNN cannot be applied. In the case of the DNN
(deep neural network), the problem is the complexity and the volume of data required.
In the context of this study, the quantity of data provided by the MSG (Meteosat Second
Generation) is insufficient for the DNN implementation.

The results obtained showed the effectiveness of machine leaning, and the perfor-
mances reached significant levels. However, classification has dominated the applications,
and extremely few cases have used regression in precipitation estimates. However, machine
learning (ML) can be used effectively in classification and regression; itcanconsider a large
number of variables and complex interactions between variables.ML-based models are
able to learn from the data, and thus predict the output [22]. The significant difference
between classification and regression is that classification predicts a discrete class while
regression helps predict a continuous quantity. Sometimes there are overlaps between the
two mechanisms. For example, Castillo-Botón et al. [23] applied a set of machine learning
classification and regression methods for fog events predictions. These methods showed
that the unbalanced nature of the classification problem presents a difficulty for obtaining
important results. On the other hand, regression methods have the advantage of not requir-
ing any rebalancing to obtain accurate prediction results. Siirtola and Röning [24] made a
comparison between classification models and regression models for User-Independent
and Personal Stress Detection. According to the results found in this study, regression
models outperform classification models. Shuze Guo et al. [25], however, show that the
classification model is generally better than the model of the regression that they applied in
an urban tourism competitiveness evaluation system. Yet, the general tendency points out
that the choice between regression and classification lies above all in the type of variable to
be predicted—continuous or discrete.

In the context of rainfall quantification, as indicated previously, in recent years we
have witnessed a growing use of models based on machine learning in the classification
and estimation of precipitation intensities based on instantaneous data from satellite remote
sensing [17,26]. Target outputs represent interval classes. To estimate precipitation, a rain
rate is assigned to each of the classes. The estimation of precipitation in this case will depend
greatly on these classifications, and the results are not generally correlated with rainfall
data, especially on short-term scales [27]. Additionally, in classification in general, the pairs
of data are the instantaneous measurements of the meteorological radar and instantaneous
satellite observations. Poorly calibrated radar affects classifications and ratings. As for the
rain gauge data, the instantaneous measurement does not correspond to the immediate
satellite observation. This time lag can also affect classifications and estimates.

To remedy this, for a direct estimation of precipitation rates, regression is usually
recommended, especially since the estimation of precipitation gives quantitative predictions.
In the literature, very rarelyare case studies conducted for the estimation of precipitation
using regression [9]. With regression, the target output is a direct estimate of a rainfall
amount. To reduce the time lag, the rain gauge data over daytime and nighttime periods
are compared with the average of the satellite observations during the same period.

The objective of this paper is to estimate precipitation using regression models based
on machine learning from MSG (Meteosat Second Generation) data. These are K-Nearest
Neighbors regression (K-NNR), Support Vector Regression (SVR), and Random Forest
Regression (RFR). MSG data and rain gauge data pairs are matched for learning and
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validating regression models. This attempts to link remote sensing data from space to
rainfall totals.

The next sections of this study are organized as follows. In Section 2, the study region
and the type of data used are described. The methodology developed for the estimation
of precipitation is presented in Section 3. The applications of the models are presented in
Section 4.The conclusion and perspectives are the subjects of Section 5.

2. Study area and Data

We applied the regression models to establish the relationship between MSG satellite
data and rain gauge data. The study area covers the northern region of Algeria (See
Figure 1).
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Figure 1. Study area and distribution of rain gauges in Northern Algeria.

It is located between latitudes 33◦ and 37◦, longitudes −2◦ and 8◦. This region has
a Mediterranean climate. The rainy season runs from October to March, with maximum
rainfall from November to December. The average annual rainfall is between 300 mm and
400 mm. Some areas record a minimum of about 60 mm, while the maximum is observed in
the Djurdjura massif located in Kabylie and the Edough massif, where it exceeds 1500 mm.

In recent years, precipitation has become scarce and its estimation is essential for a
better quantification in order to meet all hydrological and agricultural needs. However,
with traditional means, this measurement remains incomplete. The Algerian National
Meteorological Organization has a few rain gauges spread over the territory that provide
occasional but reliable measurements. On the other hand, satellite observations from MSG
are available on a regular basis.

2.1. Rain Gauge Data

The reference data used in this study come from the 146 rain gauges distributed over
the study area. These rain gauges collect measurements on an hourly basis. We were
therefore able to build a database composed of day and night accumulations throughout
the study period. This day and/or night scale, represents the basis for learning the models
and their validation. These data are collected during two rainy seasons (2008/2009 and
2009/2010).
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2.2. MSG Data

The remote sensing data from space used to estimate precipitation come from an MSG
(Meteosat Second Generation) geostationary meteorological satellite. This satellite observes
the study area and provides data in the form of images in 12 channels from visible to
infrared. The acquisition frequency is 15 min with a spatial resolution for the study area
of 4 ×5 km2 (3 ×3 km2 at the sub-satellite point). Pixels coded on 10 bits are given in
numerical count. The brightness temperatures “T” (Kelvin) for the infrared channels and
the reflectance “Ref” for the visible channels [28] are calculated from the digital counts.
This information is implicitly linked to rainfall rates.

In this study, in order to better exploit the range of frequencies from MSG, among the
12 channels in the visible (VIS), near infrared (NIR), and infrared (IR) domains [28,29], we
have selected eight channels most closely related to precipitation, namely, VIS0.6, NIR 1.6,
IR3.9, WV6.2, WV7.3, IR8.7, IR10.8 and IR12.0 (Table 1).

Table 1. Channels and channels combinations with corresponding Range of values.

Channels and
Channels

Combinations
(Kelvin or µm)

Description
Range of Values

Clouds Characteristics

Daytime Nighttime

T10.8 (K) Brightness temperature
in IR10.8 207.2 k to 283.9 k 205.3 k to 282.4 k Vertical cloud extent and cloud

top temperature [11,30].

∆T10.8–12.0 (K)
Brightness temperature

difference between
IR10.8 and IR12.0

−0.3 k to 7.4 k −0.3 k to 7.1 k Existence of ice particles in the
clouds [30].

∆T8.7–10.8 (K)
Brightness temperature

difference between
IR8.7 and IR10.8

−4.6 k to 1.3 k −4.8 k to 1.7 k Existence of ice particles in
clouds [31].

∆T7.3–12.0 (K)
Brightness temperature

difference between
IR7.3 and IR12.0

−50.3 k to 6.6 k −52.0 k to 5.7 k Cloud top temperature and
Vertical cloud extension [11,32].

∆T6.2–10.8 (K)
Brightness temperature

difference between
IR6.2 and IR10.8

−50.1 k to 6.4 k −51.8 k to 5.1 k Vertical cloud extension, cloud
top temperature [2,11].

R0.6 (µm) Reflectance in VIS0.6 0.02 µm to 1 µm No used Cloud Particle Size and Cloud
Optical Thickness [5,30].

R1.6 (µm) Reflectance in NIR1.6 0.03 µm to 1 µm No used Cloud Particle Size and Cloud
Optical Thickness [5,30].

∆T3.9–7.3 (K)
Brightness temperature

difference between
IR3.9 and IR7.3

No used −4.9 k to 25 k Cloud Particle Size and Cloud
Optical Thickness [5,30].

∆T3.9–10.8 (K)
Brightness temperature

difference between
IR3.9 and IR10.8

No used −10.3 k to 15.1 k Cloud Particle Size and Cloud
Optical Thickness [5,30].

However, the visible channels (VIS0.6, NIR1.6) essential for obtaining information
on the optical and microphysical properties of clouds are not available during nighttime.
On the other hand, the IR3.9 channel, which is essential for characterizing precipitation,
cannot be used during daytime because it is highly sensitive to solar radiation that disturbs
infrared observations. Accordingly, we split the database into daytime data and nighttime
data (see Table 1).

From these selected channels, we formed combinations to have information about
the cloud optical and microphysical properties, the cloud top temperature, and the cloud
vertical extension. The list of channels and combination of channels used as well as their
availability are given in Table 1.
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2.3. Coincidence MSG Data/ Rain Gauge Data

Spatial co-localization between MSG data and rain gauge data is determined using the
conversion of GPS coordinates to pixel coordinates [29]. In addition, to have the maximum
of spatial coincidences, the average of the 5 × 5 pixels centered above the rain gauge was
used for all the channels and compared to the corresponding rain gauge.

As for temporal coincidences, for each rain gauge that recorded an accumulation
during the daytime (respectively during the nighttime), we compared the average of the
values observed by MSG during this same period.

3. Methodology

We implemented three regression models (SVR, RFR and K-NNR) based on machine
learning for the direct estimation of precipitation from satellite observations. First, the
different models are used separately, receiving at the input the spectral information from
the MSG satellites, generating at the output a prediction based on the regression. The
three individual predictions obtained are then combined using the weighted average. This
combination is hereinafter called Com-RSK (combination of RFR, SVR and K-NNR). The
plan of the methodology is given as follows:

• Mathematical description of the models
• Models learning and tuning
• Combination of three models

3.1. Mathematical Description of the Models
3.1.1. Support Vector Regression

Support Vector Machine (SVM) is a widely used algorithm and is among the most
reliable machine learning algorithms (Maroco et al., 2011). SVM can be used for classifi-
cation problems or regression problems, which in this case can be called SVR (Support
Vector Regression) with the incorporation of an ε-insensitive loss function [33]. In the latter
case, the target is a continuous response. As for SVMs, in nonlinear cases, SVR employs
kernels for better prediction [34]. The SVR minimizes an ε-insensitive loss function (see
Equations (1) and (3)):

Iε =

{
0

|yi − f (xi)|
(1)

If |yi − f (xi)| < ε, otherwise, for a linear function given by Equation (2):

f (x) = β0 − xt
i β (2)

where β is the coefficient calculated in regression, the loss function is:

n

∑
i=1

max
(
yi − xt

i β− β0 − ε, 0
)

(3)

where ε is the turning parameter and is expressed according the Equations (4) and (5)
minimize:

1
2
‖β‖2 (4)

subject to: {
yi − xt

i β− β0 ≤ ε,
−
(
yi − xt

i β− β0
)
≤ ε

(5)

In case all variables fall outside the error boundary, no solution is generated, hence slack
variables, γI and γI

* a are used to put the observations in the regression line (Equation (6))
yi − xt

i β− β0 ≤ ε + γ
−
(
yi − xt

i β− β0
)
≤ ε + γ∗i

γiγ
∗
i ≥ 0

(6)
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3.1.2. Random Forest Regression

The random forest (RF) model based on machine learning performs classification and
regression [35,36]. As with classification, the RF Regression model makes the decision from
a set of regression trees called bagging. This algorithm operates as follows:

• Creation of the first regression tree from a bootstrap sample taken at random from the
database and then returned.

• Creation of the other regression trees in the same way as the first step.
• The final decision is the arithmetic mean of the regression results given by all the

decision trees composing the random forest.

In the tuning, these are only two parameters to adjust for an optimal RFR, the number
of trees in the forest (n_tree) and the number of variables in the random subset at each node
(max_depth) [37]. These parameters are adjusted according to OOB (Out-of-Bag) Error which
must be minimal. The OOB error represents the error between the predictions obtained
by the model through the various trees on the data that have not been integrated into the
learning and the real measurements.

3.1.3. K-Nearest Neighbor Regression

The KNN model was developed for classification [38]. In recent decades, the KNN
has shown very interesting performances in nonparametric regression. The basic operation
process of KNN model can be summarized as follows:

• Construction of a learning database D composed of the inputs and the corresponding outputs.

For a new observation X whose output variable we want to predict, we proceed as follows:

• Calculate all the distances between this observation X and the other observations of
the data set D

• Select the K observations closest to X according to the distance
• Calculate the average of the K observations retained in the case of the regression.

3.2. Learning and Tuning Models

For the development of this regression, we compared the satellite spectral information
to the rainfall measurements collected by the rain gauges. The learning and validation
periods are given in Table 2.

Table 2. Periods of Learning, tuning and validation.

Rainy Season 2008/2009 Rainy Season 2009/2010

SVR Learning (70%) and tuning (30%) Validation
RFR Learning (70%) and tuning (30%) Validation

K-NNR Learning (70%) and tuning (30%) Validation

The acquisition of rain gauge measurements is obtained on an hourly time scale. To
reduce the time lag error between satellite observations and the amount of rainfall on
the ground on the one hand, and to exploit information on the optical and microphysical
properties of clouds provided from the visible and infrared channels of MSG on the other
hand, we designed two learning regressions. The first learning regression is performed
between the daytime spectral information and the corresponding rain gauge measurements,
while the second learning is performed between the nighttime spectral information and the
corresponding rain gauge measurements (see Figure 2).

To do this, the averages of the instantaneous input information of each parameter and
for each daytime and nighttime periods and the corresponding target output (raingauge
measurements) are used.The average of each input parameter is calculated by using the
Equation (7).

Xpara(i) =
∑n

t=1 Xpara(i)(t)
n

(7)
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where Xpara(i)(t) is the value (reflectance or brightness temperature) of parameter i(input
parameters) at time t. The n is the number of observations taken during daytime (respec-
tively night-time).
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3.2.1. Tuning of RFR

The optimization of the RFR (random forest regression) model consists in finding
the optimal values for the number of decision trees (n_tree) and the maximum tree depth
(max_depth). These values correspond to the smallest error of OOB. To do this, two-thirds
of the training data is used in building the RFR.

The remaining third, called OOB data, is used for testing by calculating the devia-
tions between the predicted value and the observed value represented by the OOB error
(Equation (8)).

EOOB =
1
|p| ∑i∈p

(h(n_treei, max_depthi)−Yi)
2 (8)

where p is the number of samples of OOB data, h(n_treei, max_depthi) is the prediction for
sample i for n_tree and max_depth and Y the actual measurement. This operation permits
selection of the optimal values for n_tree and max_depth. The optimization scheme of the
n_tree and max_depth is given by Figure 3.
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The results of these tests are shown in Figure 4 where we noted the best fit of RFR is
obtained with n_tree = 500 and max_depth = 6.
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3.2.2. Tuning ofK-NNR

In the case of K-NNR, we constructed the regression scheme shown in Figure 5.
The final predictor function in this regression is the average obtained from the K nearest
neighbors.
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To select the best K-NNR, we performed the regression on the tuning data by testing
two distances, namely the Euclidean distance (Equation (9)) and the Manhattan distance
(Equation (10)) while varying the value of K (number nearest neighbours).

De(x, y) =
√

∑n
j=1

(
xi − yj

)2 (9)

Dm(x, y) =
n

∑
j=1

∣∣xj − yj
∣∣ (10)
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We used R-squared (R2) which is a statistical measure to select the best combinations
(distance and value of k). The R-squared which is the squared correlation coefficient (CC)
is calculated by Equation (11)

R− squared =

 ∑
[(

Ei − E
)
∗
(

Mi −M
)]√

∑
(
Ei − E

)2 ∗∑
(

Mi −M
)2

2

(11)

where Ei and Mi are the ith estimation using the satellite method and measurement using
rain gauge, respectively.

The result on the tuning data for the two distances by varying the numbers K is shown
in Figure 6.
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According to these results, the best K-NNR (R-squared = 0.85) is obtained for the
Euclidean class with K = 10.

3.2.3. Tuning of SVR

For tuning of the SVR, we selected the best kernel function by performing tests.
Support vectors correspond to observations outside of the error boundary. In our case,
the data set has an obvious non-linearity. Therefore, in the regression used, the kernel
function is incorporated to highlight the regression space suitable for this nonlinearity.
Kernel functions facilitate assignment for nonlinear cases and speed up computation. These
cores allow creation of a window to influence the data. We tested four kernel functions
given by Equations (12)–(15).

Gaussian Kernel Exponential (GKE) : K(x, y) = e−(
‖x−y‖2

2σ2 ) (12)

Gaussian Kernel Radial Basis (GKRB) : K(x, y) = e−(γ‖x−y‖2) (13)

Sigmoid kernel (SK) : K(x, y) = tan h(γxTy + r) (14)

Polynomial kernel (PK) : K(x, y) = tan h(γxTy + r)
d

(15)

The parameter r is a constant that can be used to control the trade-off between training
data fit and margin size. Thus, the r-value, if large, gives low training error but results
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in overfitting. In contrast, a small value of r gives a high training error but results in
underfitting.

As for the K-NNR, we used R-squared (R2) to select the best kernel function. On the
tuning data, we applied SVR using the different kernel functions. The R-squared values
obtained for the different kernel functions are shown in Figure 7.
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The results from Figure 7 show that the best SVR is obtained with the Polynomial
kernel function with R-squared of 0.88.

3.2.4. Test of Input Parameters

After identifying the best RFR, SVR and K-NNR, we studied the sensitivity of the
regression framework to various input parameters. This also allows selecting the best
combination of input parameters. For each combination with 1, 2, 3, 4, 5, 6 or 7 input
parameters, we calculated the R-squared. Table 3 illustrates the ranges of R-squared values.

Table 3. R-squared for the different combination using SVR, RFR or K-NNR.

CombinedInput
Parameters

Number of
Combinations

SVR
R-Squared

RFR
R-Squared

K-NNR
R-Squared

1 7 0.13 to 0.35 0.12 to 0.33 0.10 to 0.31
2 21 0.17 to 0.38 0.14 to 0.38 0.14 to 0.35
3 35 0.26 to 0.43 0.23 to 0.42 0.20 to 0.40
4 35 0.34 to 0.56 0.33 to 0.52 0.34 to 0.52
5 21 0.48 to 0.69 0.47 to 0.70 0.47 to 0.67
6 7 0.64 to 0.74 0.63 to 0.73 0.60 to 0.70
7 1 0.88 0.86 0.85

The sensitivity of the regression framework to various input parameters was analyzed.
According to the results obtained from Table 3, the best correlation is observed when the
7 input parameters are combined for the three regression models. Thus, for the rest, all
results are determined using the combination of the seven input parameters.

3.3. Combination of Models

For improving the prediction results, we combined the three best variants of models
after tuning (Com-RSK). Contrary to the classification which uses the majority vote, the
most used combination in the regression is the average of the predictions. However, since
the levels of performance of the models are different, we opted for the weighted average to
achieve the combination. To do this, for each model, we calculated R-squared (R2), which
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is used as a weighting coefficient. R-squared (R2) can be used to evaluate the performance
of a regression model by measuring the level of the correlation. Thus, the three predictions
resulting respectively from the three regression models by considering the multispectral
parameters MSG and R-squared (R2) of each model are determined. The final prediction is
therefore calculated using the Equation (16):

PreFinal =
R2

SVR × PreSVR + R2
RFR × PreRFR + R2

K−NNR × PreK−NNR

R2
SVR + R2

RFR + R2
K−NNR

(16)

where Prex is the prediction result given by model X (SVR, RFR or K-NNR).
The overall scheme of the methodology developed to integrate the combination is

described in Figure 8. The model inputs correspond to the average of the k observations in
each spectral parameter for the daytime period or for the nighttime period for which we
compare the recorded accumulations by rain gauges at the same time.
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4. Application for Rainfall Estimation

We applied the three regression models for the estimation of precipitation at daytime
scale and nighttime scale as baseline estimation where the three models were trained. From
these basic estimates, we also determined the estimates on a daily, monthly and seasonal
scale by adding the basic estimates. In an attempt to improve the estimates, we combined
the different models. The MSG input data and the corresponding reference data (rain gauge
data) were collected during the 2009–2010 rainy season.

The different estimates were evaluated using the mean absolute error (MAE), mean
bias error (MBE, or bias) and Root Mean Square Error (RMSE), calculated using the
Equations (17), (18) and (19), respectively. The correlation between the regression estimates
and the rain gauge measurements was also analyzed using the correlation coefficient CC.

MAE =
1
N

N

∑
i=1
|Ei −Mi| (17)

MBE =
1
N

N

∑
i=1

(Ei −Mi) (18)
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RMSE =

√√√√ 1
N

N

∑
i=1

(Ei −Mi)
2 (19)

where Ei and Mi are the ith estimation using satellite method and measurement using
rain gauge, respectively. The N is the number of coincidences between the estimates and
measurements at the pixel scale.

4.1. Prediction Results

The results of the estimates obtained by the regression models confronted with the real
measurements (rain gauge) on the various scales, namely, daily, monthly, and seasonally
are given in Figures 9–11, respectively. The corresponding statistical evaluation values for
the three scales are also given in Tables 4–6, respectively. The average of the estimates for
each model for each scale obtained was also calculated.
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Table 4. Statistical parameters for the evaluation of the daily estimate.

Mean (mm) MAE (mm) MBE (mm) RMSE (mm) CC

SVR 18.8 1.3 5.2 3.0 0.72
K-NNR 20.3 2.5 6.7 5.3 0.62

RFR 19.7 1.9 6.1 3.6 0.69
Com-RSK 17.7 1.0 4.1 2.1 0.78
Optimal 13.6 0 0 0 1

Table 5. Statistical parameters for the evaluation of the monthly estimate.

Mean (mm) MAE (mm) MBE (mm) RMSE (mm) CC

SVR 84.0 7.3 8.1 14.1 0.85
K-NNR 86.1 8.7 10.2 17.3 0.72

RFR 85.1 8.2 9.2 16.9 0.74
Com-RSK 82.5 6.1 6.6 10.8 0.88
Optimal 75.9 0 0 0 1

Table 6. Statistical parameters for evaluating accumulation estimates for the entire rainy season.

Mean (mm) MAE (mm) MBE (mm) RMSE (mm) CC

SVR 242.9 23.6 10.0 40.6 0.89
K-NNR 249.2 28.3 16.3 43.5 0.87

RFR 247.1 26.1 14.2 41.6 0.88
Com-RSK 238.4 20.7 5.5 27.4 0.94
Optimal 232.9 0 0 0 1

Figure 9 shows the estimates for 24 h (from 10 January 2010 at 7 a.m. to 11 January
2010 at 7 a.m.) of successive rains, performed by the different models against the actual
measurements. It is a precipitation event composed mainly of stratiform rain. We also give
the estimates obtained by the combination of the different models (Com-RSK).

Figure 10 illustrates the results of estimates versus rain gauge measurements for the
month of January 2010 where stratiform and/or convective precipitation events occurred.

According to the Table 4, on a daily scale, the estimates, on the whole, are well
correlated with the actual measurements. This correlation is more important for the SVR
model where it reaches a value for the CC of 72% against 62% for K-NNR and 69% for
RFR. In terms of MAE, MBE and RMSE for an average of 13.6 mm, the SVR shows better
performance. Indeed, the values of MAE, MBE, and RMSE are 1.3 mm, 5.2 mm and 3.0 mm
for SVR against 1.9 mm, 6.1 mm, and 3.6 mm for RFR and 2.5 mm, 6.7 mm, and 5.3 mm
for K-NN, respectively. However, all models show an overestimation of precipitation. The
combination of the three models by the weighted average significantly improved the results.
The CC obtained returns to 78%, while MAE, MBE and RMSE indicate the values 1.0 mm,
4.1 mm and 2.1 mm, respectively.

The same trends with a slight improvement are observed for the monthly scale (see
Table 5) and seasonal scale (see Table 6). Indeed, for the monthly scale, the SVR always
shows superior performance compared to K-NNR and RFR. The CC indicates 85% for SVR
against 72% for K-NNR and 74% for RFR. For an average of 75.9 mm, the SVR still shows
the best values in terms of MAE, MBE and RMSE, 7.3 mm, 8.1 mm, and 14.1 mm for SVR
and 8.2 mm, 9.2 mm, and 16.9 mm for RFR and 8.7 mm, 10.2 mm, and 17.3 mm for K-NNR.
The overestimation was very slight contrary to the daily estimates presented above.

We also noted an improvement in these estimates when the models were combined.
The MAE, MBE, RMSE, and CC parameters all showed better values compared to the
individual use of the three models. As for the seasonal scale, the estimates are even
better illustrated by the different values of MAE, MBE, RMSE, and CC. The combination
shows very interesting performances compared to the separate use of the three models.
A balance was obtained in terms of underestimation and overestimation. Stratiform type
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precipitation has been overestimated. The presence of convective precipitation gave a more
balanced MBE.

4.2. Inter-Comparison

The elaborate regression method that combines three models was also compared to
certain methods using classification in their estimates. They are:

• The technique “Convective/Stratiform Rain Area Delimitation Technique (CS-RADT)”
developed by Lazri et al. [8] uses the thresholds for the classification of precipitation
into two types, convective and stratiform, from the spectral parameters of MSG. Then,
a rainfall rate is assigned to each precipitation type for the precipitation estimate.

• The ECST technique (Enhanced Convective stratiform technique) is elaborated by
Reudenbach et al. [39] from the CST (Convective stratiform technique) originally
presented by Adler and Negri [40]. The ECST is applied to extratropical regions and
includes water vapor channels to separate cirrus from convective clouds [41].

• The Multi-classifier model (MMultic), developed by Lazri et al. [17], is a technique
based on machine learning. The technique combines Support Vector Machine (SVM),
Artificial Neural Network (ANN), Weighted k-Nearest Neighbors (WkNN), Naive
Bayes (NB), Random Forest (RF), and the Kmeans++ algorithm. The classification
responses of the various models are then combined to generate a single optimized
decision. To estimate, a rain rate is assigned to each precipitation type.

These methods operate in two steps for the estimation of precipitation:the classification
of precipitation intensities and the determination of rain rates for each class. The results
of the estimates on the seasonal scale by the different methods compared with the actual
measurements are given in Figure 12.

The points of dispersion show that the fluctuations are highly important for the method
based on the classification compared to the method of regression developed. Visually, the
best correlation is observed for the Com-RSK, which combines the three regression models.
Indeed, the CC is 94% for the Com-RSK against 93% for the MMultic method, 87% for the
CS-RADT method and 81% for ECST (Table 7). The evaluation parameters MAE, MBE, and
RMSE are also calculated (see Table 7).

Table 7. Statistical parameters for evaluating accumulation estimates for the entire rainy season.

Mean (mm) MAE (mm) MBE (mm) RMSE (mm) CC

CS-RADT 251.2 34.6 18.3 52.9 0.87
ECST 254.0 37.2 22.1 55.8 0.81

MMultic 239.3 21.8 6.4 41.6 0.93
Com-RSK 238.4 20.7 5.5 27.4 0.94
Optimal 232.9 0 0 0 1

According to Table 7, all values point to the performance of the Com-RSK. They thus
confirm the superiority of the developed method of regression compared to the methods
based on classification. For the developed regression method, in terms of MAE (mm), MBE,
and RMSE (mm), we obtained 20.7 mm, 5.5 mm, and 27.4 mm versus 34.6 mm, 18.3 mm,
and 52.9 mm for CS-RADT, 37.2 mm, 22.1 mm, and 55.8 mm for ECST, respectively. In the
case of the MMultic method, we obtained 21.8 mm, 6.4 mm, and 41.6 mm, a performance
that is lower than the developed regression method, despite the combination of six machine
learning classifiers. This study showed the superiority of regression over classification
in precipitation estimates. It is thus shown that it is preferable to use regression for the
estimation of precipitation given the quantitative nature of the variable.

The spatial distribution of precipitation obtained by using Com-RSK over the North of
Algeria is determined, based on an entire rainy season (Figure 13). The distributions performed
by the methods MMultic, ECST and CS-RADT are also given. For a visual comparison, we
gave the rain gauge measurements by carrying out extrapolations and interpolation.
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The best correlation is observed for the estimates made by Com-RSK. The northeast
part records more precipitation indicated by all the methods as well as by the rain gauge
measurements. The south and northwest recorded low rainfall.

To better validate this study, we compared the developed method (Com-RSK) with two
satellite methods, Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)
and NOAA CPC Morphing Technique (CMORPH) applied to five regions in Algeria [42].The
five regions overlap with our study area. The correlation coefficient (CC), MBE (mm), and
the RMSE (mm) evaluation parameters are used to show the performance of the Com-RSK
on the three scales, daily, monthly, and annual. In Table 7, the intervals (minimum value
and maximum value) of the values of the parameters obtained by applying the two prod-
ucts CMORPH and CHIRPS for the five regions are presented. For comparison, the values
of evaluation parameters on the different scales for the Com-RSK are also shown in Table 8.

Table 8. Results of the evaluation parameters for CMORPH, CHIRPS and Com-RSK.

Daily Scale Monthly Scale Annual Scale

RMSE
(mm)

MBE
(mm) CC(%) RMSE

(mm)
MBE
(mm) CC(%) RMSE

(mm) MBE (mm) CC(%)

CMORPH 0.72/3.76 −8.37/5.88 15/27 6.34/21.83 −0.27/0.19 59/83 59.29/264.66 −151.45/102.99 82/90
CHIRPS 0.63/5.15 −2.51/3.91 42/58 3.93/21.48 −0.03/0.18 58/87 18.62/144.64 6/56.48 69/99

Com-RSK 2.1 4.1 78 10.8 6.6 88 37.4 5.5 94
Optimal 0 0 100 0 0 100 0 0 100
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The results presented are variable among the five regions with significant intervals.
Errors appear to be higher in regions that have experienced significant precipitation rates.
The Com-RSK shows interesting performances compared to the two satellite products,
especially for the northern regions of Algeria. For the annual scale, a record overestimation
(102.99 mm) is obtained in the case of the CMORPH product, while the CHIRPS product
shows an overestimation of 56.48 mm against 5.5 mm for the Com-RSK. The minimum
overestimation value obtained for the CHIRPS product is 6 mm which is less than 5.5 mm
(Com-RSK). In the case of the RMSE error, the interval is between 59.29 mm and 264.66 mm
for CMORPH and from 18.62 mm to 144.64 mm for CHIRPS against 37.4 mm for the
developed method. The CC highlights a good correlation between the results of the
developed method and rain gauge measurements compared to results from CMORPH
and CHIRPS.

Almost the same pattern of results is observed for the daily and monthly scales. A
single exception was noted in the case of the MBE for the monthly scale where the results
are better for CMORPH and CHIRPS compared to the Com-RSK. In terms of correlation,
the Com-RSK shows a notable superiority.

It should be noted that the few better results from CMORPH and CHIRPS are due to
the fact that more southern regions which recorded low precipitation rates indicate low
errors but cannot be considered for comparison with the Com-RSK because that is mainly
applied to the northern region whose rainfall is high compared to the south.

In addition, a comparison with some global satellite precipitation estimation products
was performed. This comparison shows the overall performance of the technique devel-
oped here compared to precipitation estimation products developed around the world.
Therefore, the Com-RSK method is compared to a set of Satellite products described and
applied by [43]. Three techniques were selected as Global products: the Satellite Mapping
of Precipitation method (GSMaP), the Global Precipitation Climatology Project method
(GPCP-1dd), and the Tropical Rainfall Measuring Mission method (TRMM-3B42).Three dif-
ferent satellite rainfall products, designed for applications over Africa or West Africa only,
are considered to be regional products: the Estimation of Precipitation by SATellites–Second
Generation method (EPSAT-SG), the Tropical Applications of Meteorology using the SATel-
lite method (TAMSAT) and the Rain Fall Estimation method (RFE-2.0).Two near-real-time
methods were selected: the Precipitation Estimation from Remotely Sensed Information
using the Artificial Neural Networks method (PERSIANN) and the GPI method (Geosta-
tionary Operational Environmental Satellite (GOES) Precipitation Index).From the results
presented by Jobard et al. [43], the regional products methods are superior in terms of
performance compared to the near-real-time and Global products methods. The values of
the statistical parameters for all these methods as well as for Com-RSK are given in Table 9.

Table 9. Statistical parameters for different methods for the seasonal period.

RMSE (mm) MBE (mm) CC (%) R-Squared (%)

GSMaP 24 −11 50 25
GPCP-1dd 23 7 60 36
TRMM-3B42 26 −4 46 21
EPSAT-SG 17 5 71 50
TAMSAT 20 3 63 23
RFE-2.0 19 0 51 26
PERSIANN 63 45 49 24
GPI 28 8 58 34
Com-RSK 27.4 5.5 94 88

According to the results presented in Table 8, the Com-RSK method presents correct
performances compared to all the satellite products. The CC shows an extremely high level
of correlation between the estimates and the rain gauge measurements for the Com-RSK
method with 94%, while for the regional products, it fluctuates between 51% and 71%. For
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the near-real-time and Global products methods, the CC fluctuates between 49% and 58%,
and between 46% and 60%, respectively.

In terms of the MBE, the Com-RSK method has the same characteristics as regional
products. The Global products methods tend to underestimate precipitation, while near-
real-time methods show a significant overestimation. In the case of the RMSE error, the
Com-RSK shows the same results as the Global products methods and presents better
results than near-real-time methods, but it is exceeded by the regional products methods.

4.3. Discussion

The study presented in this article focuses on a beneficial approach to rainfall estima-
tion through the use of remote sensing data capable of providing complete and continuous
coverage in space and time. For the African continent, the need for rainfall estimation has
increased in recent years due to climate change. However, the deployment of traditional
means of measuring precipitation in this part of the world is insufficient, while that mea-
surement is considered useful [44–46]. In this context, the methodology developed makes
it possible to estimate rainfall by exploiting the good spatio-temporal resolution of MSG
geostationary satellite data. Regression using machine learning-based models gave direct
estimates of rainfall. Contrary to the traditional means used for measuring precipitation,
this study generates maps of precipitation over a vast region covered by geostationary
satellites. The extrapolation of this regression to other regions can be planned. Regions in
Africa with the same climatic conditions as those from this study can directly benefit from
the model for rainfall estimation, such as regions in northern Africa with a Mediterranean
climate where climatic conditions are identical.

However, the uncertainties in current research come from the lack of sufficient ground
data for better calibration. Indeed, the few rain gauges used are sparse and can affect estimates.

5. Conclusions

Rainfall in the northern region of Algeria was estimated using regression from satellite
remote sensing data. Three regression models based on machine learning, such as KNNR,
SVR, and RFR, were applied. The learning and validation database is composed of pairs
of MSG data/rain gauge data and daytime/ nighttime scales. Thus, estimates on time
scales, such as daily, monthly, and seasonally were made using the three regression models.
Overall, the results obtained are remarkably interesting. Indeed, the estimates are well
correlated with the actual measurements from the rain gauges. The best predictions are
obtained by applying the SVR model. Indeed, the SVR outperformed all models showing
the lowest errors in terms of MAE, MBE and RMSE. As for the correlation coefficient, the
SVR showed the highest correlation.

In an attempt to improve the predictions, we combined the three models into a
single output using the weighted average. In all the tests and for the different scales,
we noted a clear improvement compared to the separate use of the three models. The
correlation is more important for Com-RSK with a correlation coefficient of 94%. We also
obtained the lowest values of MAE, MBE, and RMSE, which are 20.7 mm, 5.5 mm, and
37.4 mm, respectively. The Com-RSK was also compared to some machine learning-based
precipitation estimation techniques using classification. We conclude, within the framework
of this study, that the regression makes it possible to better estimate the precipitation.
The regression prediction results obtained outperform all results where classification is
applied for estimation. Regression gives direct estimates of precipitation amounts, while
classification selects intervals of precipitation intensities. In the same context, Com-RSK
is compared to the two products of satellite estimates (CMORPH and CHIRPS) applied
in the same study area. The Com-RSK has shown the best results in terms of MBE, RMSE,
and CC. To obtain a global vision with the method developed in this study, a comparison
among three types of precipitation estimation products, such as global product, regional
product, and near real time product was performed. On the whole, the Com-RSK shows
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almost the same results as the regional products methods and presents better results than
the near-real-time methods orthe global products methods.

It should be noted that the methodology developed in this study can be applied at any
time of the year in this study region or other regions with the same climate. For a region
with a different climate, the learning parameters must be updated to be adapted to the new
climate configuration. The choice of regression models based on machine learning must
be made objectively. Consequently, from our perspective on this study, it is interesting to
develop a strategy to select the quality and number of the most suitable regression models
for improvement in the estimation of precipitation.
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