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Abstract: Accurate prediction of dam inflows is essential for effective water resource management and
dam operation. In this study, we developed a multi-inflow prediction ensemble (MPE) model for dam
inflow prediction using auto-sklearn (AS). The MPE model is designed to combine ensemble models
for high and low inflow prediction and improve dam inflow prediction accuracy. We investigated
the impact of datasets assigned to flow regimes on the ensemble composition and compared the
performance of the MPE model to an AS-based ensemble model developed using a conventional
approach. Our findings showed that the MPE model outperformed the conventional model in
predicting dam inflows during flood and nonflood periods, reducing the root mean square error
(RMSE) and mean absolute error (MAE) by 22.1% and 24.9% for low inflows, and increasing the
coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) by 21.9% and 35.8%, respectively.
These results suggest that the MPE model has the potential to improve water resource management
and dam operation, benefiting both the environment and society. Overall, the methodology of this
study is expected to contribute to the development of a robust ensemble model for dam inflow
prediction in regions with high climate variability.

Keywords: dam inflow prediction; ensemble; auto-sklearn; combined approach; multi-inflow
prediction ensemble

1. Introduction

The real-time management of water resources in arid and semiarid regions is facing
a significant challenge due to the frequent occurrence of floods and droughts caused
by climate change [1–3]. To address these challenges, many countries have constructed
and operated multipurpose dams to stabilize the water supply and control floods [4].
However, the increased variability in the inflow to dams due to changes in climate and
land use directly impacts the water level calculation and dam operation [5]. This can cause
significant downstream damage from uncontrolled discharge during flood seasons, and
make it difficult to ensure the minimum water supplies essential for water quality and
aquatic environments during dry seasons [6]. Hence, accurate prediction of dam inflow is
critical for effective water resource management and dam operations.

There are two major approaches to modeling studies for dam (or reservoir) inflow
prediction: physical or conceptual models [7–11] and data-driven machine learning (ML)
models [12–16]. Physical models are effective in simulating hydrologic processes but
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require in-depth knowledge and calibration [17], while conceptual models have lower data
requirements and computational complexity but may be limited by the lack of detailed
physical information. Recently, ML models have become more popular for dam inflow
prediction due to their simplicity, low data requirements, and robustness [18]. ML models
can quickly capture the complexity of dam inflow time-series data without extensive prior
knowledge [19]. In addition, many studies have successfully utilized ensemble methods to
improve the accuracy of dam inflow predictions [20–23]. Ensemble modeling is a process
in which an ML model combines the predictive capabilities of individual base models
unique to the model to generate generalized predictions, allowing for capturing various
aspects of the data and providing high prediction performance. However, developing
effective ensembles requires a deep understanding of model selection, combination, and
hyperparameter optimization. These tasks are often laborious and time-consuming, and
there is a risk of human error that can affect the reliability and validity of model predictions.

Automated machine learning (AutoML) can be used as an alternative for developing
ensemble models. AutoML can automatically generate various ML models and effectively
create an ensemble model by combining them to perform more accurate predictions [24].
It can reduce the risk of human error and increase the reliability of the ensemble model’s
predicted values. Its greatest advantage is that it helps save time and effort in selecting ML
models and optimizing them without requiring specialized domain knowledge. According
to several studies, AutoML can effectively generate satisfactory results for various types
of datasets [25–28]. Despite the success of AutoML in generating satisfactory results for
various types of datasets, its performance in dam inflow prediction has not been evaluated.

The dam inflow is greatly influenced by various factors such as precipitation, veg-
etation, soil, and human activities. In particular, the pattern of dam inflow in regions
with high climate variability can show significant differences between rainy and nonrainy
seasons [29]. The complex and nonlinear characteristics of data can affect not only the data
preprocessing methods of AutoML but also the selection of ensemble models and hyperpa-
rameter combinations. Therefore, the development of ensemble models that consider the
characteristics of the flow regime is necessary for the accurate prediction of dam inflow.
Hong et al. [30] showed that an ensemble of ML models that consider the characteristics
of high and low inflow data can improve the limitations of flow regime and rainfall on
inflow prediction compared to using a single ML model. Moon et al. [31] developed a flow
regime-based ANFIS dam inflow prediction (FADIP) model, which is based on the adap-
tive neuro-fuzzy inference system (ANFIS), and compared it with an ANFIS dam inflow
prediction (ADIP) model. Their results showed that FADIP outperformed ADIP in accuracy
throughout the entire period, especially in predicting dam inflow during the normal and
low flow seasons. Furthermore, appropriate dataset construction for hydrological flow
regimes can alleviate the issue of data imbalance and prediction model generalization by
contributing to the learning of various aspects of the data. Zhang et al. [32] demonstrated
that a multiclass dataset construction for dam inflow strategies according to different flow
regimes can effectively handle high-dimensional data and improve the overall prediction
accuracy of ensemble models. Choi et al. [33] demonstrated that applying seasonal division
and normalization to dam inflow training data can contribute to reducing errors caused by
data deviation and improving the learning accuracy of the multilayer perceptron (MLP)
model. However, the impact of datasets assigned to flow regimes on the ensemble compo-
sition based on AutoML for dam inflow prediction and its effect on improving ensemble
model performance have not been quantified.

Therefore, this study aims to evaluate the performance of an automated machine
learning (AutoML) approach for developing a multi-inflow prediction ensemble (MPE)
model for dam inflow prediction, which has not been previously evaluated in previous
studies. The novelty of this study is that the MPE model trains independent ensemble
models for high and low inflow prediction based on auto-sklearn (AS) and combines their
predictions, taking into account the characteristics of the hydrological flow regime.
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The hypothesis is that the MPE model combining the AS-based approach outperforms
the conventional AS-based ensemble model by effectively capturing the complex and
nonlinear characteristics of dam inflow time-series data in both flood and nonflood periods.

The main objectives of this study are to develop the MPE model, evaluate its perfor-
mance by comparing it to a conventional AS-based ensemble model, quantify the impact
of datasets assigned to flow regimes on the ensemble composition based on AutoML and
provide insight into developing an AS-based robust ensemble model for predicting dam in-
flow. The methodology of this study is expected to contribute to sustainable water resource
management and dam operations in regions with high climate variability.

2. Materials and Methods
2.1. Description of the Study Area

The Soyang River Dam (SRD) in South Korea, located between 37◦40′ to 38◦30′ N
and 127◦40′ to 128◦40′ E, is a crucial structure that plays a key role in controlling floods
and droughts in the downstream area (Figure 1). The SRD has a 70 km2 reservoir area
and supplies an average of 1.213 million m3 of water annually for residential, industrial,
and irrigation use in the capital area. The 2703 km2 basin has an elevation range of
80–1693 m and is primarily composed of forest (89.5%), with smaller portions of agricultural
land (5.7%), water (2.4%), and other lands (2.4%) [30]. The SRD is challenged by the large
monthly variations in mean annual precipitation and dam inflow due to the Asian monsoon
climate, making it difficult to manage water resources in downstream areas and establish
an effective operational strategy (Figure 2). This situation is further complicated by the
potential for frequent floods and droughts caused by seasonal fluctuations in precipitation
due to climate change [34].
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2.2. Data Collection

The flow into a dam can be influenced by various factors, including precipitation,
temperature, evapotranspiration, land use, and anthropogenic activities [35]. However, it
can be challenging to establish a relationship between these factors and the dam inflow. In
addition, using all of these factors as input data for ML models can lead to difficulties in
data preprocessing and collection. Mao et al. [36] found that dam inflow (i.e., streamflow)
depends more strongly on variation in precipitation than temperature and evapotranspira-
tion. In addition, Hong et al. [30] took into account the effect of prior weather conditions
when predicting daily dam inflow using ML models by using weather and inflow data
from the past one and two days. In this study, precipitation (Chuncheon and Injae stations)
and SRD inflow data for 40 years (1980–2019) were obtained from the Korea Meteorological
Administration (https://data.kma.go.kr, accessed on 31 March 2023) and Water Resources
Management Information System (https://www.wamis.go.kr, accessed on 31 March 2023),
respectively. The precipitation on the current day (Pt) and the precipitation (Pt−1 and Pt−2)
and inflow data (It−1 and It−2) one and two days earlier were used as input for AS models
to predict dam inflow (It). The heat map in Figure 3 shows the correlation for each input
factor. The precipitation one day earlier (Pt−1) is most strongly correlated with the inflow
on the day, followed by It−1, Pt−1, Pt−2, and It−2. Based on these input factors, the models
were trained and validated using 35 years of data (1980–2015), and their predictive ability
was tested using three years of data (2016–2019). Table 1 shows the details of the dataset
used in the study.

Table 1. Dataset used to develop AS ensemble model.

Model Input Variables Target Variable Period

Training and validation
dataset (n =13,148)

It−1, It−2
Pt, Pt−1, Pt−2

It 1980–2015

Test dataset (n = 1461) It−1, It−2
Pt, Pt−1, Pt−2

It 2016–2019

t: time (day) index.

https://data.kma.go.kr
https://www.wamis.go.kr
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2.3. Auto-Sklearn

AS is an AutoML framework based on the scikit-learn library that automates the
process of finding the optimal ML pipeline for solving classification and regression prob-
lems within a limited time frame. The framework includes a total of 15 models, 14 feature
preprocessing methods, and 4 data preprocessing methods.

To create an ensemble model, AS utilizes three techniques: meta-learning, Bayesian
optimization, and ensemble selection. The meta-learning process in AS uses information
from 140 pretrained reference datasets from OpenML to determine the best combination of
models and hyperparameters for a given dataset [28]. During this process, the algorithm
generates initial good hyperparameter configurations based on previous runs. By starting
from these promising configurations, which have shown good performance on similar
datasets, the efficiency of hyperparameter optimization can be significantly improved,
resulting in a more accurate model [37].

After the meta-learning process, Bayesian optimization is applied to further refine
the hyperparameters of top-performing models identified during meta-learning. This
optimization algorithm, which uses Bayesian theory and a Gaussian process, is more
efficient in finding the optimal hyperparameters by reducing the number of unnecessary
configurations [38]. Finally, AS employs an ensemble selection technique [39] to create the
final ensemble model, which is a combination of the top-performing models with varying
weights, as determined by comparing their accuracy. The workflow of AS is illustrated in
Figure 4.

2.4. MPE Model Development Using Split Datasets

Figure 5 illustrates the development of the MPE model using a combined approach
with an AS. The combined approach trains two ensemble models using datasets separated
by high and low inflow conditions, and the dam inflow is predicted by integrating the
results. In contrast, the conventional approach trains an ensemble model using the whole
training dataset and evaluates its performance on the test set.
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In this study, to build the MPE model, the whole training dataset was divided into
high and low inflow datasets using a high-inflow reference value of 100 m3/s, as suggested
by Hong et al. [30]. Then, input factors highly correlated with inflow (i.e., precipitation on
the day (Pt), precipitation from one day earlier (Pt−1), and inflow from one day earlier (It−1)
were selected to determine the high-inflow reference value for the test set. The average
and median values of these three factors for high-inflow (≥100 m3/s) in the whole training
dataset were used to determine the high-inflow reference values. The reference values
for Pt and Pt−1 were found to be 15.3 and 18.2 mm, respectively, based on the average
value. The reference value for It−1, which showed a large deviation, was determined to be
197.4 m3/s using the median value.

These values are used to determine whether the MPE model will use an ensemble
model for unique prediction or an ensemble model for low-flow prediction when given
new input data for predicting dam inflow in the MPE model. In other words, the MPE
model predicts the dam inflow by using the high-inflow prediction model if any of the
three reference values (Pt, Pt−1, and It−1) are met in the test set; otherwise, the low-
inflow prediction model is used. In both the conventional and combined approaches, the
time_left_for_this_task and per_run_time_limit parameters of AS were set to 1 h and 360 s,
respectively. The AS-based ensemble models developed through these two approaches were
validated using 10-fold cross-validation, and their predictive performance was compared
on the test set.

2.5. Performance Evaluation Metrics

In this study, we used the coefficient of determination (R2), Nash–Sutcliffe efficiency
(NSE), root mean square errors (RMSE), and mean absolute error (MAE) to evaluate the
predictive performance of the ensemble models developed through both the conventional
and combined approaches. These statistical metrics are widely accepted for evaluating the
accuracy of hydrological models [40]. The expressions were as follows:

R2 =

[
∑n

i=1

(
Xi −

−
X
)(

Yi −
−
Y
)]2

∑n
i=1

(
Xi −

−
X
)2

∑n
i=1

(
Yi −

−
Y
)2 (1)

NSE = 1− ∑n
i=1(Xi −Yi)

2

∑n
i=1

(
Xi −

−
X
)2 (2)

RMSE =

√
∑n

i=1(Xi −Yi)
2

n
(3)

MAE =
∑n

i=1|Xi −Yi|
n

(4)

where n is the number of data samples in the time series. Xi and Yi are the ith observed

and predicted dam inflow values, and
−
X and

−
Y are the averages of Xi and Yi, respectively.

R2 measures the strength of the linear relationship between observed and predicted
values. It ranges from 0 to 1, a value of 1 indicates a perfect positive correlation. NSE is a
normalized metric that measures the relative magnitude of the residual variance compared
to the variance of the observations [41]. NSE values range from −∞ to 1, with a value of 1
being optimal. The RMSE and MAE are commonly used to measure the prediction errors
of regression ML models. These metrics can be used together to determine the variation of
the errors in a set of model predictions. The RMSE is always larger than or equal to the
MAE, and the greater the difference between them, the greater the variance in individual
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errors in the sample [42]. The values of both metrics range from 0 to ∞, with values closer
to 0 indicating better predictive performance.

3. Results and Discussion
3.1. Ensemble Modeling with Conventional and Combined Approaches for Inflow Prediction

Table 2 presents the results of the ensemble models constructed with conventional
and combined approaches in AS. In Table 2, the weight indicates the importance of each
model in the ensemble. The conventional approach comprised three models: multilayer
perceptron (MLP), automatic relevance determination (ARD) regression, and gradient
boosting (GB). The results showed that even when the same type of models are included in
the ensemble configuration, their weights can be assigned differently based on data and
feature preprocessing methods, as well as hyperparameters.

Table 2. Ensemble results of AS using conventional and combined approaches.

Model Dataset Weight Data Preprocessing
Method

Feature
Preprocessing

Method
Hyperparameters Model Type

Conventional
model All data

0.20

encoding = ‘one_
hot_encoding’,

imputation = ‘mean’,
rescaling = ‘standardize’

extra_trees_
preproc_for_regression

activation = ‘relu’, alpha = 6.03 × 10−7

early_stop = ‘valid’, hidden_layer
_depth = 3, learning_rate_init = 0.0001,

n_iter_no_change = 32,
num_nodes_per_layer = 100,

solver = ‘adam’

MLP

0.04

encoding = ‘one_
hot_encoding’,

imputation = ‘median’,
rescaling = ‘minmax’

polynomial

activation = ‘relu’, alpha = 6.11 × 10−5,
early_stop = ‘valid’, hidden_

layer_depth = 3, learning_rate_
init = 0.0002, n_iter_no_change = 32,

num_nodes_per_layer = 101,
solver = ‘adam’

MLP

0.38 imputation = ‘mean’ polynomial

n_iter = 300, tol = 0.0091,
alpha_1 = 4.70 × 10−5, alpha_2 = 0.0006,

lambda_1 = 7.58 × 10−10,
lambda_2= 3.92 × 10−8,
threshold_lambda= 4052

ARD regression

0.26

encoding = ‘one_
hot_encoding’,

imputation = ‘median’,
rescaling = ‘standardize’

polynomial

max_depth = ‘none’,
max_leaf_nodes = 28, min_samples_

leaf = 6, n_iter_no_change = 5,
learning_rate = 0.1329, l2_

regularization = 8.22 × 10−10,
early_stop = ‘valid’

GB

0.04
encoding = ‘one_

hot_encoding’,
imputation = ‘mean’

polynomial

max_depth = ‘none’, max_
leaf_nodes = 31, min_samples_leaf = 25,

n_iter_no_change = 7,
learning_rate = 0.1239, l2_

regularization = 6.08 × 10−10,
early_stop = ‘train’

GB

0.08

encoding = ‘one_
hot_encoding’,

imputation = ‘median’,
rescaling = ‘minmax’

polynomial

max_depth = ‘none’,
max_leaf_nodes = 26, min_samples_

leaf = 6, n_iter_no_change = 20,
validation_fraction = 0.08,
learning_rate = 0.1530, l2_

regularization = 0.013,
early_stop = ‘valid’

GB

MPE model High-
inflow

0.46
imputation= ‘most_

frequent’,
rescaling = ‘minmax’

polynomial

max_depth = ‘none’,
max_features = 0.979, max_leaf_

nodes = ‘none’, min_samples_leaf = 1,
min_samples_split = 4

Extra-trees

0.40

encoding = ‘one_
hot_encoding’,

imputation = ‘mean’,
rescaling = ‘standardize’

extra_trees_preproc
_for_regression

activation = ‘relu’, alpha = 6.03 × 10−7,
early_stop = ‘valid’, hidden_layer_

depth = 3, learning_rate_init = 0.0001,
n_iter_no_change = 32,

num_nodes_per_layer = 100,
solver = ‘adam’

MLP

0.10

encoding = ‘one_
hot_encoding’,

imputation = ‘mean’,
rescaling = ‘minmax’

fast_ica
kernel = ‘rbf’, degree = 3, gamma = 0.201,

tol = 0.021, C = 194.03, epsilon = 0.001,
max_iter = −1

SVR

0.04

encoding = ‘one_
hot_encoding’,

imputation = ‘most_
frequent’, rescaling =

‘robust_scaler’

select_rates_regression

n_iter = 300, tol = 0.0007,
alpha_1 = 2.76 × 10−5,
alpha_2= 9.50 × 10−7,

lambda_1 = 6.51 × 10−9,
lambda_2 = 4.24 × 10−7,

threshold_lambda = 78,251.5,
fit_intercept = ‘ture’

ARD regression
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Table 2. Cont.

Model Dataset Weight Data Preprocessing
Method

Feature
Preprocessing

Method
Hyperparameters Model Type

Low-
inflow

0.76
imputation = ‘most_

frequent’,
rescaling = ‘minmax’

fast_ica
kernel = ‘rbf’, degree = 2, gamma = 0.032,
tol = 0.0034, C = 7277.3, epsilon = 0.001,

max_iter = −1
SVR

0.06

encoding = ‘one_
hot_encoding’,

imputation = ‘median’,
rescaling = ‘minmax’

polynomial

activation = ‘relu’, alpha = 6.11 × 10−5,
early_stop = ‘valid’, hidden_layer_

depth = 3, learning_rate_init = 0.0003,
n_iter_no_change = 32,

num_nodes_per_layer = 101,
solver = ‘adam’

MLP

0.06 imputation = ‘mean’ polynomial

n_iter= 300, tol = 0.0091, alpha_1 = 4.70 ×
10−5, alpha_2 = 0.0006, lambda_1 = 7.58
× 10−10, lambda_2 = 3.92 × 10−8,

threshold_lambda = 4052,
fit_intercept = ‘ture’

ARD regression

0.04
imputation = ‘mean’,
rescaling = ‘power_

transformer’
euclidean n_estimator = 140, learning_rate = 0.2841,

loss = ‘exponential’, max_depth = 8 Adaboost

0.08

encoding = ‘one_
hot_encoding’,

imputation = ‘mean’,
rescaling = ‘standardize’

no_preprocessing

max_depth = ‘none’, max_leaf_nodes = 9,
min_samples_leaf = 2, n_iter_no_

change = 20, learning_rate = 0.0913,
l2_regularization = 0.0057,

early_stop = ‘train’

GB

The ensemble model for high-inflow prediction consisted of extremely randomized
trees (extra-trees), MLP, support vector regression (SVR), and ARD regression models. The
extra-trees and MLP models had a significant impact, with weights of 0.46 and 0.40, respec-
tively, demonstrating the models’ effectiveness in the training data and their significant
contribution to accurate predictions. As a tree-based ensemble model, extra-trees builds
multiple decision trees on randomly sampled subsets of data, displaying a high proficiency
for capturing complex relationships. It is recognized for its reduction in variance and
bias, as well as its computational efficiency and ability to handle noisy and nonlinear
data [43]. The MLP can solve complex nonlinear relationships and is commonly used for
high-dimensional problems. As demonstrated by Hong et al. [30], the MLP predicts high
inflow more accurately than other models, such as the random forest and GB models. These
results indicate that the high-inflow prediction ensemble model can effectively handle the
complex and high-dimensional data structure, resulting in accurate predictions. In contrast,
the low-inflow prediction ensemble model consisted of five models, with the SVR having
the highest weight of 0.76. This highlights the effectiveness of SVR in accurately predicting
low inflow compared to other models. The SVR has been widely and successfully ap-
plied in several studies for river flow prediction [44–46]. Furthermore, research conducted
by Adamowski [47] and Yuan and Forshay [48] found that the SVR effectively captures
nonlinear features of low flow, such as baseflow and groundwater. Sahoo et al. [49] also
demonstrated the satisfactory performance of SVR in predicting monthly low flow for the
Mahanadi river basin.

The study results confirmed the effectiveness of using separate training datasets for
high inflow and low inflow in achieving a suitable ensemble configuration that reflects
the unique characteristics of each dataset. In this study, the time_left_for_this_task and
per_run_time_limit parameters, which determine the time budget in meta-learning for
developing high-inflow and low-inflow prediction ensemble models, were set to the same
value. The time budget in AS refers to the maximum time allowed for fitting and evaluating
ML models for a specific dataset and may vary based on the dataset’s characteristics [50].
The time budget parameters can be adjusted by the user according to the size and complex-
ity of the dataset, and available computational resources. Determining an optimal time
budget that considers the characteristics of different datasets will be necessary for gener-
ating accurate and efficient ensemble results in the future. Furthermore, understanding
the contribution of each model to the final prediction can be difficult, which may limit
the interpretability of the AS-based ensemble model. Therefore, future research should
evaluate the applicability of various analysis techniques such as SHAP (SHapley Additive
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exPlanations) [51] and LIME (Local Interpretable Model-Agnostic Explanations) [52] to
increase the interpretability of the ensemble model.

3.2. Comparison of Dam Inflow Prediction Performance

Figure 6 compares the time series of the predicted dam inflow with the observed
values for the conventional and MPE models during the training and testing periods. Both
models showed a reasonable prediction performance similar to previous studies [30,31,33]
on dam inflow prediction using ML and deep learning (Table 3). However, the conventional
model had limitations in predicting low inflow below 10 m3/s compared to the MPE model.
This suggests that conventional AS-based ensemble models trained on the entire dataset
may have been underfitted, resulting in an inaccurate capture of the characteristics of
low-inflow data.
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Table 3. Comparison of performance of both models on training and test data.

Model
Training Period (1985–2015) Test Period (2016–2019)

R2 NSE RMSE MAE R2 NSE RMSE MAE

Conventional model 0.91 0.90 70.74 19.51 0.86 0.85 67.18 17.21

MPE model 0.95 0.94 55.48 14.01 0.88 0.87 63.93 15.29

Figure 7b shows that the MPE model outperforms the conventional model for low-
inflow values (<100 m3/s), while there is no significant difference between the models for
high-inflow data (Figure 7a). Table 4 summarizes the performance of the two AS-based
ensemble models for each test dataset. The MPE model improves RMSE and MAE by
4.2% and 1.6%, respectively, and increases R2 and NSE by 2.5% and 35.8%, respectively,
for low-inflow data. For high-inflow data, it reduces RMSE and MAE by 22.1% and 24.9%,
respectively, and increases R2 and NSE by 21.9% and 35.8%, respectively.
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Table 4. Comparison of performance of both models on separate test data.

Period Model Inflow
Condition R2 NSE RMSE MAE

Training

Conventional
model

≥100 m3/s 0.89 0.88 190.21 89.99
<100 m3/s 0.62 0.48 16.26 8.79

MPE model
≥100 m3/s 0.93 0.93 149.76 65.65
<100 m3/s 0.79 0.73 11.69 6.15

Testing

Conventional
model

≥100 m3/s 0.80 0.80 210.76 103.13
<100 m3/s 0.64 0.53 13.91 7.92

MPE model
≥100 m3/s 0.82 0.82 201.91 101.50
<100 m3/s 0.78 0.72 10.84 5.95

This improved performance can be attributed to the MPE model’s combined approach,
where models are trained separately for high-inflow and low-inflow datasets, allowing
for the optimization of the models using the Bayesian optimization algorithm in AS. In
contrast, conventional model approaches trained on the entire dataset are less likely to be
optimized for each flow regime, leading to poor predictive ability and low-flow regimes.
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This highlights the importance of optimizing models for different flow regimes, especially
low-flow regimes, to improve their predictive ability.

It is noteworthy that the prediction performance of the AS-based ensemble models
for dam inflow does not show a significant difference compared to other standalone and
combined ML models. The performance of an ML model for a specific dataset can also
be improved by the efforts of experts, rather than relying on meta-learning-based AS [53].
This means that AS cannot guarantee the development of the optimal prediction model
for a given dataset. Furthermore, Tanaka et al. [54] found that the accuracy of an AS-based
ensemble model in predicting the number of defects in software modules was comparable
to that of an RF model. Shi et al. [53] also showed that the AS-based ensemble model had
high performance in predicting concrete compressive strength, but there was no significant
difference between its performance and that of an independent model built by an expert.
However, their studies commonly demonstrated that even without extensive knowledge
of ML, AS can still be utilized to construct a robust ensemble model with satisfactory
predictive performance.

The development of a robust ensemble model is time- and labor-intensive and can
be difficult for nonexperts. From these perspectives, AS is considered useful in efficiently
developing robust ensemble models objectively and rationally, minimizing user subjectivity,
and without manual processes such as preprocessing, hyperparameter optimization, and
model combination. The ensemble model, based on the combined approach in this study
is expected to improve the model prediction’s accuracy by resolving the imbalance of the
given dataset.

3.3. Comparison of AS-Based Ensemble Models for Dam Inflow Prediction Using FDC Analysis

The flow duration curve (FDC) is a cumulative frequency plot that displays the percent-
age of time-specified discharges that were equaled or exceeded during a given period [55].
The FDC is generally divided into five zones, representing different hydrologic conditions
of a stream: high flow (0–10%), moist conditions (10–40%), mid-range flow (40–60%), dry
conditions (60–90%), and low flow (90–100%). This can help identify sustainable water
resource management plans. In this study, AS-based ensemble models were developed
using conventional and combined approaches to predict dam inflow, and their performance
was evaluated using FDC.

Figure 8 shows the FDCs for the dam inflow test dataset predicted by the MPE and
conventional models. The AS-based ensemble models had good agreement with the
observed values (<40% exceedance probability), while the conventional model performed
poorly towards the lower portion of FDCs. As shown in Table 5, the MPE model performed
better for the intervals below the mid-range flow range and yielded low-inflow data more
accurately than the conventional model for all seasons (Figure 9). These results suggest
that, although both ensemble models predicted the high inflow in the flood period with
satisfactory performance, the combined approach is needed to capture the low-inflow
behavior in the nonflood period well.

Table 5. Comparison of performance of both models for flow regimes.

Model Metric High Flow Moist
Conditions

Mid–Range
Flow

Dry
Conditions Low Flow

Conventional
model

R2 0.97 0.99 0.99 0.97 0.97
NSE 0.97 0.97 0.76 −0.43 −19.90

RMSE 78.67 2.93 1.50 2.93 5.40
MAE 28.08 2.14 1.41 2.77 5.37

MPE model

R2 0.96 1.00 0.99 0.98 0.97
NSE 0.96 0.97 0.95 0.95 0.41

RMSE 90.96 3.04 0.68 0.52 0.91
MAE 34.53 2.13 0.56 0.42 0.88
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More specifically, Figure 10 compares the observed and predicted low inflow values
using the models for each season (>60% exceedance probability), showing that the MPE
model had higher R2 and NSE than the conventional model, reducing RMSE and MAE
by 58.8–88.5% and 54.1–89.9%, respectively (Table 6). This indicates that the integration
of ensemble models for high and low flows is necessary to produce accurate dam inflow
prediction data that takes into account the seasonal characteristics of floods and dry periods.
Through the above results, we confirm that the MPE model is suitable for generating
seasonal low-inflow data for decision-making in dam operation, especially in the SRD basin,
where 61% (756.7 mm) of rainfall occurs from June to August due to the Asian monsoon.
The water level of a dam can be affected by various factors, including evapotranspiration,
topography, and groundwater; however, it is directly affected by the inflow from the
watershed upstream of the dam [56]. Climate change may cause changes in streamflow
regimes, leading to flow variability and extreme seasonality [57,58]. Hence, the MPE model
can provide accurate and consistent dam inflow prediction results for both flood and
nonflood seasons, allowing for appropriate hydrological manipulations to ensure water
storage and prepare for potential flood damage in downstream regions.
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Table 6. Comparison of performance of both models for seasonal low inflows.

Model Metric Spring
(Mar–May)

Summer
(Jun–Aug)

Autumn
(Sep–Nov) Winter (Dec–Feb)

Conventional
model

R2 0.95 0.97 0.97 0.93
NSE 0.65 0.03 0.68 −9.20

RMSE 2.76 4.54 2.38 4.80
MAE 2.24 4.43 1.81 4.74

MPE model

R2 0.97 0.99 0.99 0.96
NSE 0.95 0.93 0.95 0.86

RMSE 1.02 1.26 0.98 0.55
MAE 0.85 1.16 0.83 0.48

4. Conclusions

In this study, we aimed to develop a robust and efficient AS-based ensemble model
for predicting multi-inflow in dam reservoirs. Our approach involved the development of
the MPE model, which combined two types of datasets for high and low inflow conditions
to predict multi-inflow. Our results show that the MPE model outperforms a conventional
model in predicting both high and low inflow conditions, demonstrating the effectiveness
of our ensemble approach in addressing the imbalance between high and low inflow obser-
vations in the dataset. Additionally, the MPE model was found to capture the characteristics
of each flow regime and make more accurate predictions for each condition.

Our study contributes to the field of water resource management by providing a
reliable method for predicting dam inflow that can inform better decision-making and
planning for flood and nonflood periods. Our findings highlight the importance of using
an ensemble approach to overcome the challenges associated with predicting multi-inflow
and suggest that the AS-based ensemble model can be used as a tool by nonexperts without
domain knowledge related to ML.

Although our study presents promising results, it is not without limitations. For
instance, the study only used data from a single dam reservoir and may not generalize to
other regions with different hydrological conditions. Furthermore, although we demon-
strated the effectiveness of our ensemble approach, more research is needed to evaluate
the robustness of the model in the face of uncertainty and other potential factors that may
affect its predictive performance.

Future research could explore the potential impact of model uncertainty analysis on
the predictive performance of the MPE model and its ability to make reliable predictions for
various inflow conditions. Additionally, improving the library for AS to generate integrated
prediction results using various ensemble models trained according to data standards set by
the user could eliminate the need for manual separation of datasets and enable nonexperts
to use AS-based ensemble model development.

Overall, our study underscores the scientific value added to the field of water resource
management by providing a reliable method for predicting dam inflow using an ensemble
approach. Our results have important implications for policymakers and decision-makers,
highlighting the need to invest in the development of robust and efficient AS-based ensem-
ble models for predicting multi-inflow in dam reservoirs.
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