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Abstract: Flood risk assessment is an important tool for urban planning, land development, and
hydrological analysis. The flood risks are very high in arid countries due to the nature of the
rainfall resulting from thunderstorms and the land cover, which comprises mostly very dry arid
soil. Several methods have been used to assess the flood risk, depending on various factors that
affect the likelihood of occurrence. However, the selection of these factors and the weight assigned
to them remain rather arbitrary. This study assesses the risk of flood occurrence in arid regions
based on land cover, soil type, precipitation, elevation, and flow accumulation. Thematic maps of the
aforementioned factors for the study area were prepared using GIS. The Fuzzy Analytic Hierarchy
Process (F-AHP) was used to calculate the likelihood of the flood occurrence, and land use was used
to assess the exposure impact. Using the likelihood map (i.e., probability) from the Fuzzy-AHP and
an exposure map, the flood risk was assessed. This method was applied to Qatar as a case study.
Results were compared with those produced by fuzzy logic. To explore the pairwise importance of
the F-AHP, equal weight analysis was performed. The resulting risk map shows that the majority
of urbanized areas in Qatar are within the high-risk zone, with some smaller parts within the very
high flood-risk area. The majority of the country is within the low-risk zone. Some areas, especially
land depressions, are located within the intermediate-risk category. Comparison of Fuzzy logic
and the F-AHP showed that both have similarities in the low-risk and differences in the high-risk
zones. This reveals that the F-AHP is probably more accurate than other methods as it accounts for
higher variability.

Keywords: flood risk; fuzzy analytic hierarchy process; fuzzy logic; Qatar

1. Introduction

Floods are natural hazards that can cause severe damage to communities and in-
frastructure. The situation is even worse in arid countries, where water resources are
limited [1–3]. Arid climates prevail in many regions around the world where there is very
little precipitation. However, when these dry regions receive rainfall, this can be very
intense and cause flash floods, which can cause severe damage [4]. Rainfall in dry areas
exhibits more spatial and temporal variability in terms of strength and duration [5]. Since
high-intensity storms often only affect a limited portion of the catchment when causing
floods in dry regions, these areas see far higher fluctuations in terms of floods from year to
year and from location to location than do other regions [6].

Unsuitable urbanization and global climate change are two key contributors to the
evolving nature of floods [7–9]. Globally, flood episodes are larger, occur more frequently
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and further afield [10]. In Morocco, for example, between 1995 and 2005, flood disasters sig-
nificantly impacted more than 232,896 persons and resulted in more than USD 295 million
in losses [10]. Over the past 20 years, there have been multiple devastating floods in the
Gulf Cooperation Council countries (GCC). Due to growing urbanization and the hazard
severity linked to climate change, the effects of floods on the Arabian Peninsula have
drastically escalated during the past two decades [11]. During these 20 years, Riyadh and
Jeddah, two of Saudi Arabia’s biggest cities, were often hit by flash floods, which resulted
in significant losses and expenses running into the billions of dollars [12,13]. A response
to these hazards and an increase in the region’s resilience are required in light of all these
disturbing developments, and appropriate policies must be developed. To lessen future
flood hazards, an integrated strategy to managing flood risk is needed, with an emphasis
on lowering the vulnerability of society as a whole [14]. Assessing flood exposure risk in
these areas is essential for effective flood management and disaster risk reduction [1].

Various methods and techniques have been used to assess flood hazards. The majority
of studies on flood risk rely on climate and hydrological factors that affect the flood
occurrence likelihood (i.e., [15–18]). Hydrological models are commonly used to predict
the extent of flooding and the potential impacts of floods on people and infrastructure.
These models use data such as rainfall, land use, soil characteristics, and other parameters
to simulate the behavior of water during a flood event. The outputs of these models can
be used to identify flood-prone areas and to assess the potential impacts of flooding on
buildings and infrastructure. While modeling in general is a powerful tool, it relies on
statistical data, and it fails to consider other important factors such as the exposure impact
and land use.

The Multi-Criteria Decision Analysis (MCDA) is a decision-making approach that
considers multiple criteria and objectives when assessing flood hazard risk. This method
involves identifying different flood risk factors, such as flood frequency, severity, and
duration, and then weighting them according to their relative importance. The MCDA
approach can help decision makers identify the most critical flood hazards and prioritize
actions to reduce flood risk. Geographical Information System (GIS) is another tool which
has been widely used for flood hazard risk assessment. It provides a comprehensive
approach to visualize and analyze flood-prone areas by including topography, land use,
and hydrologic data. The GIS approach to flood hazard assessment involves identifying
potential flood hazard zones and then overlaying them with other critical data, such as
population density, critical infrastructure, and transportation networks. This information
can then be used to develop effective flood mitigation strategies and emergency response
plans. The GIS approach in general uses various factors that contribute to flood occurrence
and utilizes thematic maps to estimate the flood risk (i.e., [19]). The challenge with these
methods is the weights assigned to each factor map and the combination of these.

The analytic hierarchic process (AHP) approach provides a precise way for measuring
the weights of choice criteria and is a systematic approach to multi-parameter analysis for
structuring, organizing, and evaluating complicated judgments [20]. The AHP has been
extensively used in various applications in water resources and hydrology, such as in the
delineation of recharge zones and flood risk assessment [21–24]. While it is a great tool, the
AHP can be subjective with ambiguity in the process because of its reliance on the expert’s
judgment. The Fuzzy Analytic Hierarchy Process (F-AHP) is a decision-making tool that
has been widely used to assess and prioritize factors that contribute to flood exposure
risk in arid areas [1,14,23]. The F-AHP is a combination of fuzzy logic and the Analytic
Hierarchy Process (AHP) [23]. Fuzzy logic is a mathematical tool to cope with imprecision
and uncertainty, while the AHP is a multi-criteria decision-making method that can be
used to evaluate and prioritize alternatives [22,24]. The F-AHP combines the benefits of
both methods to provide a more comprehensive and accurate assessment of flood exposure
risk [24]. The F-AHP is a very useful decision-making tool that can be used to assess and
prioritize factors that contribute to flood exposure risk in arid areas [20,22–24].
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The fuzzy variant of the AHP enables decision making in uncertain situations where
fuzzy numbers are used to represent the imprecise elements and criteria. Instead of using
precise numerical values for the comparison ratios, the F-AHP technique employs a fuzzy
judgment matrix with fuzzy numbers and produces crisp weights from consistent and
inconsistent fuzzy comparison matrices, which removes the need for extra aggregating and
ranking operations [23].

Previous studies have applied fuzzy logic to assess flood exposure risk in arid areas
by considering various factors such as topography, land use, and soil type (e.g., [1]). The
weight of each dataset was determined using the Analytical Hierarchy Process (AHP)
approach, and the pertinent weight values were afterwards multiplied to produce fuzzy
values. The quantitative approach makes use of qualitative analytical methods such as the
Analytical Hierarchy Process as well as soft computing methods such as fuzzy logic.

This study utilizes the exposure impact and the probability of occurrence to calculate
the flood risk. The probability of occurrence was calculated using two methods: the fuzzy
Analytic Hierarchy Process (F-AHP) and fuzzy logic. The results of the F-AHP and fuzzy
logic were compared using Qatar as a case study.

2. Materials and Methods

Risk is a negative event by definition, and it can be calculated using the cross-product
of the probability of an event and its impact [25]. It is defined as the probability of a negative
event with negative consequences [26]. The probability of occurrence is first calculated
based on several factors affecting flood occurrence, and the impact is calculated using land
use and land coverage.

The probability of flood occurrence depends on various hydrogeological factors. The
main factor in flood analysis is the flow accumulation (or parameters related to it), which
indicates areas where the surface runoff would go to in the case of precipitation [17,19,27].
Other important factors include land cover, soil type, elevation, surface runoff (or curve
number), and rainfall intensity [28].

Saaty was the first to propose the Analytic Hierarchy Process (AHP) as a means to
analyze and prioritize the multi-criteria decision-making process [29–31]. This method
enables a rational framework for looking into various criteria, pairing them, and allowing
the use of expert judgment to achieve a certain goal. The AHP provides a weight for each
criterion in the decision-making process. Since its release, numerous studies have utilized
the AHP approach for various decision-making problems such as water quality, ecology,
recharge analysis, and vulnerability assessment, to name a few [15,32–36].

While the AHP is a great tool for the decision-making process, it fails to account for
uncertainty in the many variables that are often required. As such, the F-AHP enables the
consideration of a wider range of values in the process.

Zadeh [37] proposed the use of Fuzzy Logic (FL) instead of the classical 0–1 Boolean
approach. This enables more flexibility when rating a certain factor or parameter. While
fuzzy logic aims at coping with uncertainty, the F-AHP aims at helping the decision-making
process when handling multi-criteria. The fuzzy logic uses a membership function for
uncertain parameters to represent the partial truth instead of the classical (0,1) or true
or false. On the other hand, the F-AHP uses a matrix of pairwise comparisons of each
criterion to enable decision making, similar to the classical AHP but with the difference
that it assigns weights to criteria and uses fuzzification instead of verbal appreciation.

This study utilizes the Fuzzy Analytic Hierarchy Process (F-AHP) approach to calculate
flood risk in Qatar, as shown in Figure 1. The factors that affect the probability of occurrence
of a flood are elevation, flow accumulation, precipitation, land cover, and soil type. Land
slope is implicitly considered in flow accumulation, which calculates the direction in which
flow occurs, following the topography. Soil type affects the runoff and infiltration as some
soils have a higher infiltration capacity than others (Table 1), whereas land cover affects
runoff. Precipitation is an important factor as it controls the amount of runoff over a period
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of time. As the precipitation increases, so does the probability of flash flood occurrence. In
general, higher ground is less likely to experience floods; as such, elevation is considered.

Figure 1. Stepwise methodology for fuzzy-AHP flood risk assessment.

Table 1. Classification of soil infiltration capacity.

Infiltration Capacity Class

<0.13 0.1
0.13 to <0.20 0.2
0.20 to <0.28 0.3
0.28 to <0.36 0.4
0.36 to <0.46 0.5
0.46 to <0.56 0.6
0.56 to <0.66 0.7
0.66 to <0.74 0.8
0.74 to <0.85 0.9

≥0.85 1.0

The main challenge is to assign proper weights for those factors as they have different
importance. For this reason, the F-AHP method was employed.

2.1. The Study Area

Qatar is one of the Gulf Cooperation Council (GCC) countries, located to the south-east
of the Arabian Peninsula and covering an area of around 11,500 km2 [38]. Qatar is bounded
by the Arabian Gulf from the east, north, and west. In the west, Qatar has a land border
only with Saudi Arabia (Figure 2). Qatar witnessed a huge development in infrastructure
over the last decade as part of preparations for the FIFA World Cup [39].

As is the case with most arid countries in the region, the climate and rainfall patterns
are very erratic, with rainfall occurring mainly between November and March [40]. Flash
floods are very common in arid areas, as the soil is very dry with no vegetation coverage,
which makes runoff significant and fast. The soil in Qatar remains dry and without
vegetation for most of the year, as the average annual rainfall is less than 80 mm. However,
several thunderstorms bringing heavy rain to Qatar have caused significant floods in the
urban areas of the capital Doha and its surroundings. On 20 October 2018, Doha received
rainfall of more than the annual average in less than two hours [41]. This storm resulted in
massive floods that blocked the main roads and caused significant damage to properties
and infrastructure. Groundwater recharge in Qatar has high variability which various
studies have estimated to be between 5 and 166 million m3 per year [40,42–50], and this
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reflects the high variability in rainfall. The population of Qatar was less than 40,000 prior
to 1960 and has increased to more than 2.5 million at present [51].

Figure 2. The study area.

Qatar’s topography is flat in general except in some areas in the middle of the country.
The terrain elevation is 40 m above mean sea level on average, and it reaches more than
100 m above mean sea level in some of the central parts (Figure 3). The terrain is charac-
terized by numerous land depressions that vary in size from a few meters to more than
one kilometer [40]. These land depressions are locally known as “roda”, and they play
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an important role in the surface recharge. During the rainy season, rainfall would runoff
and accumulate in these land depressions, bringing soil in, and making the depression
suitable for agriculture. In the context of flood analysis, these depressions have a high
likelihood of being flooded, but the risk is low due to the low exposure impact, as the next
section explains.

Figure 3. Topography map (left) and land depressions (right).

2.2. Flood Exposure Impact

As the flood effect has various effects on different land use, classification of the
exposure impact was performed using land use and coverage. Figure 4 shows the var-
ied land use and land coverage for the entire country of Qatar, using data from many
sources [46,50,52–54].

Flood impacts can be monetary, non-monetary or both, as they may affect individuals,
communities, and infrastructure. Consequences include the loss of life, destruction of
important infrastructure such as communication and power lines, damage to property,
loss of livestock, and damage to agricultural areas. Spreading of diseases is a possible
indirect consequence of floods. Other indirect consequences include the disruption to
transportation and communication lines, disruption to businesses, and disruptions to
normal living [55–58]. Using the land cover map (Figure 4), various land uses were
classified based on impact consequences and anticipated losses. Table 2 shows the impact
classes, which vary between 0.1 for the lowest impact and 1.0 for the highest. Obviously,
the residential areas (i.e., built-up areas) have the highest class (1.0), whereas the sabkhas
(i.e., salt flats) and bare lands have the lowest. Figure 5 shows the resulting raster map of
impact classification.
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Figure 4. Land use map for Qatar based on data compiled from various sources [46,50,52–54].

Table 2. Land use/cover impact classification.

Land Use/Cover Flood Impact

Sabkha (salt flat) 0.1
Bare land—dunes 0.2

Quarry 0.3
Roda—scrub 0.4
Forest—grass 0.5

Orchids 0.6
Farms–park–recreational 0.7

Military 0.8
Industrial—commercial 0.9

Built-up & residential areas 1.0
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Figure 5. Flood exposure impact map based on land use/cover.

2.3. Probability of Occurrence

As per the stepwise methodology (Figure 1), the probability of occurrence was cal-
culated using the F-AHP based on five parameters that play an important role in flood
likelihood. The use of the F-AHP enables more flexibility in accounting for uncertainty.
These parameters are the flow accumulation, elevation, precipitation, soil, and land use.
The following sections discuss each of these parameters.

2.3.1. Soil

Soil is an important factor in flood analysis, as various types of soil have various
infiltration capacities. Runoff normally occurs when the infiltration capacity is reached.
As such, the higher the infiltration capacity is, the lower the runoff. Figure 6 shows the
classified infiltration capacity map for Qatar based on data from Schlumberger Water
Services [46].

2.3.2. Land Cover

Land cover plays an important role in flood occurrence, as various types of coverage
enhance runoff more than others. Built-up areas and roads, for example, allow no recharge
and most of the rainfall would go toward runoff. Forest and farmland, in contrast, would
hinder the runoff through interception and infiltration into the soil. The land cover was
classified using the curve number method based on the United States Department of
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Agriculture [59] classification. The curve number is an empirical parameter used to predict
whether precipitation would infiltrate the soil or run on the surface, based on the land
cover [59]. The higher the curve number is, the higher the runoff. Table 3 shows the curve
number for various hydrologic conditions and soil group, based on data from the United
States Department of Agriculture [59].

Figure 6. Classified infiltration capacity based on data from Schlumberger Water Services [46].

Table 3. Runoff Curve numbers (CN) for arid and semi-arid regions [59].

Cover Type Hydrologic
Condition

Curve Number

A B C D

Herbaceous—mixture of grass, weeds, and low-growing
brush, with brush the minor element

Poor 80 87 93
Fair 74 81 89

Good 62 74 85

Oak–aspen–mountain brush mixture of oak brush, aspen,
mountain mahogany, bitter brush, maple, and other brush

Poor 66 74 79
Fair 48 57 63

Good 30 41 48
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Table 3. Cont.

Cover Type Hydrologic
Condition

Curve Number

A B C D

Pinyon–juniper—pinyon, juniper, or both;
grass understory.

Poor 75 85 89
Fair 58 73 80

Good 41 61 71

Sagebrush with grass understory
Poor 67 80 85
Fair 51 63 70

Good 35 47 55
Desert shrub—major plants include saltbush, greasewood,
creosote bush, black brush, bursage, palo verde, mesquite,

and cactus.

Poor 63 77 85
Fair 55 72 81

Good 49 68 79

The curve number map was classified between 0.1 and 1.0, as shown in Table 4 and
Figure 7. The classification was based on natural breaks, which maximizes the difference
between breaks.

Figure 7. Curve number (CN) map for Qatar based on [59].
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Table 4. Classification of curve-number map.

Curve Number Class

<50 0.1
50 to <55 0.2
55 to <63 0.3
63 to <64 0.4
64 to <66 0.5
66 to <72 0.6
72 to <77 0.7
77 to <85 0.8
85 to <98 0.9

≥98 1.0

2.3.3. Precipitation

Precipitation in arid countries like Qatar is little in quantity but very erratic in na-
ture [40]. It occurs only during the winter period between October and May and decreases
from north to south. The amount of precipitation varies between 55 mm in the south, and
105 mm in the north. The average mean annual rainfall is around 80 mm [40,46,47], with a
long-term average between 55.5–99 mm [60]. Thunderstorms are very common in Qatar,
and heavy rainfall can cause flash floods [41]. During a thunderstorm in October 2018, the
precipitation within two hours amounted to more than the annual average, resulting in a
large flood in Doha [41]. Table 5 and Figure 8 show the precipitation classes for Qatar.

Figure 8. Precipitation classes based on long-term average.
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Table 5. Classification of precipitation.

Precipitation Range (mm) Class

55–60.0 0.1
60.1–65.0 0.2
65.1–71.0 0.3
71.1–76.0 0.4
76.1–81.0 0.5
81.1–86.0 0.6
86.1–92.0 0.7
92.11–97.0 0.8
97.1–101.0 0.9

101.1–105.0 1.0

2.3.4. Flow Accumulation

The flow accumulation procedure identifies the areas where the surface runoff would
accumulate. This procedure is based on the digital elevation model to derive the slope,
flow direction, and areas of flow accumulation. The latter can be determined using a tool
in GIS, which calculates the value of the total water that may accumulate at any cell in
a raster map representing the area of study. The flow accumulation tool also assigns a
weight to each cell, and if not provided, it assigns an equal weight of one to each cell. Using
the spatial analyst tool in GIS, a map of flow accumulation was created using the flow
direction map. The latter was derived from the digital elevation model. Figure 9 depicts the
classified map of flow accumulation. There are two flow accumulation classes, which show
the areas of accumulation (class 1.0) and other areas with less accumulation (class < 1.0).
The classification of flow accumulation is shown in Table 6.

Figure 9. Flow accumulation classified map.
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Table 6. Classification of flow accumulation.

Flow Accumulation Class

0 0.1
0–2.0 0.2

2.1–2.8 0.3
2.9–4.7 0.4
4.8–8.4 0.5
8.5–14.1 0.6

14.2–22.8 0.7
22.9–35.9 0.8
36.0–58.0 0.9
58.1–102.5 1.0

2.3.5. Land Elevation

The terrain in Qatar is generally flat, as it varies from 0 m near the coastline to more
than 100 m in some areas inland, with an average elevation of around 40 m (Table 7). Many
land depressions occur in the country as a result of the collapse of karst limestone, creating
lower elevation areas where surface runoff would accumulate. These land depressions
are locally known as “roda” or “rawda”, and they are considered good for agriculture.
The size of the land depressions varies from a few meters to more than one kilometer in
diameter [40]. Figure 10 shows the classified elevation map of Qatar.

Figure 10. Classified elevation map.
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Table 7. Classification of land elevation.

Elevation Range (m) Class

−5.0–6.0 1
6.4–14.0 0.9

14.3–22.0 0.8
22.6–30.0 0.7
30.5–38.0 0.6
38.1–44.0 0.5
44.1–51.0 0.4
51.1–58.0 0.3
58.1–68.0 0.2
68.1–107.0 0.1

2.4. F-AHP and Triangular Fuzzy Number Design

The F-AHP process utilizes fuzzy theory with the classical AHP process that was
proposed by Saaty [29]. The AHP process is based on constructing a pairwise matrix
based on relative importance of criteria involved in decision making. The matrix then is
normalized to get the relative importance of each criterion. The criteria weights are used
for the decision-making process [61]. The original AHP approach can be combined with
fuzzy theory to account for partial truth or vagueness in criteria weighting.

Zadeh [37] was the first to propose fuzzy logic, which allows the use of partial truth
instead of deterministic values. While a deterministic decision can take a value of 0 or 1,
fuzzy logic allows variation between them to represent the “partial truth”. To represent the
partial truth, a membership function is required to represent the fuzziness of a system [61].
The membership function was produced using the triangular fuzzy numbers (TFNs), which
concern the replacement of crisp values in the original decision matrix. Each number in the
AHP decision matrix is replaced by three numbers, l, m and u, representing low, middle,
and upper values. Figure 11 shows an example of a TFN function denoted by E = (l, m, u),
which is defined as:

µ(x) =


0 (x < l)

x−l
m−l (l ≤ x < m)

0 (x ≥ u)
(1)

Figure 11. TFN function.

Saaty [31] identified the AHP scale of importance for each decision-making variable
(Table 8). The conversion from crisp numbers to fuzzy TFNs is carried out as illustrated in
Table 8 [31,62–64].
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Table 8. Scale and description based on the AHP and F-AHP.

Definition Intensity of Importance-
AHP F-AHP Reciprocal Fuzzy Scale

Equal importance 1 (1, 1, 1) (1, 1, 1)
Moderate importance of one over another 3 (2, 3, 4) (1/4, 1/3, 1/2)

Essential or strong importance of one over another 5 (4, 5, 6) (1/6, 1/5, 1/4)
Very strong importance 7 (6, 7, 8) (1/8, 1/7, 1/6)

Extreme importance 9 (8, 9, 10) (1/10, 1/9, 1/8)

Intermediate values between adjacent judgments

2 (1, 2, 3) (1/3, 1/2, 1)
4 (3, 4, 5) (1/5, 1/4, 1/3)
6 (5, 6, 7) (1/7, 1/6, 1/5)
8 (8, 9, 10) (1/10, 1/9, 1/8)

2.5. The F-AHP Matrix and Consistency Check

Based on the scale classification in Table 8, the fuzzy decision matrix of 5 × 5 pairs
was created using TFNs and the following criteria: flow accumulation, precipitation, land
cover, soil, and elevation.

The AHP matrix was first created based on the relative importance of each criterion,
as shown in Table 9. The results need to be normalized by dividing each value by the sum
of each column to produce a normalized sum of 1. The normalized values are shown in
brackets in Table 9, and the sum of each column must equal 1.0. The corresponding F-AHP
matrix is shown in Table 10.

Table 9. AHP matrix and normalized pairs (in brackets).

Criteria Flow Accumulation Elevation Precipitation Land Cover Soil

Flow accumulation 1 (0.500) 4 (0.522) 6 (0.563) 7 (0.355) 8 (0.375)
Elevation 1/4 (0.125) 1 (0.131) 1 (0.094) 3 (0.267) 3 (0.188)

Precipitation 1/6 (0.165) 1 (0.261) 1 (0.188)) 2 (0.267) 1 (0.125)
Land cover 1/7 (0.125) 1/3 (0.043) 1/2 (0.062) 1 (0.0.089) 1/2 (0.250)

Soil 1/8 (0.085) 1/3 (0.043) 1 (0.094) 2 (0.022) 1 (0.063)
Sum (normalized values) 1.0 1.0 1.0 1.0 1.0

Table 10. F-AHP matrix and weights.

Criteria Flow Accumulation Elevation Precipitation Land Cover Soil F-AHP Weight

Flow accumulation (1, 1, 1) (3, 4, 5) (4, 6, 7) (6, 7, 8) (7, 8, 9) 0.576
Elevation (1/5, 1/4, 1/3) (1, 1, 1) (1, 1, 1) (2, 3, 4) (2, 3, 4) 0.163

Precipitation (1/7, 1/6, 1/4) (1, 1, 1) (1, 1, 1) (2, 3, 4) (1, 1, 1) 0.122
Land cover (1/8, 1/7, 1/6) (1/4, 1/3, 1/2) (1/4, 1/3, 1/2) (1, 1, 1) (3, 4, 5) 0.083

Soil (1/9, 1/8, 1/7) (1/4, 1/3, 1/2) (1, 1, 1) (1/5, 1/4, 1/3) (1, 1, 1) 0.056

It is important to check the consistency of the pairwise matrix in the AHP as given
by Saaty [65], which should be less than 0.1. The consistency check is used to check and
evaluate the eigenvalue matrix of the AHP (Table 9). It is given by:

CR =
CI
RI

(2)

where CR is the consistency ratio, CI is the consistency index, and RI is the random index,
which is given by Saaty (1980), depending on the size of the matrix. The CR is given by:

CR =
λmax − n

n − 1
(3)
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where λmax is the principal eigenvalue of the matrix and n is the matrix size. For this matrix,
the random index is 1.12 (given by [65]), and the principal eigen value calculated for this
matrix is 5.119; thus, the consistency ratio is 0.027, which is well below 0.1, as recommended
by Saaty [65].

3. Results

The results of this study are presented in the following subsections, which include the
results from the F-AHP, the F-AHP with equal weights, and fuzzy logic.

3.1. F-AHP Results

The risk map was obtained as a product of the probability of occurrence and the
impact, as described in the methodology (Figure 1). The resulting risk map, based on the
F-AHP, is shown in Figure 12. The map is classified into five categories based on the degree
of risk.

Figure 12. The resulting flood risk map using the F-AHP approach.

The results of the F-AHP reveal that most built-up areas are within the high flood-risk
category, with some smaller parts, especially in Doha and in the northern townships located
within the very high risk category. However, the majority of the country is within the
very low risk category. It is also noted that the depression areas (refer to Figure 3) are of
intermediate flood risk, despite the likelihood of flood being high. This is because the
exposure impact is low at these depressions.
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3.2. Equal Weights Results

In the preceding analysis, the F-AHP was performed using the relative importance of
the various pairwise parameters that contribute to flood probability, as shown in Table 9.
Their relative importance relies on the literature data and expert judgment. To examine the
effect of the relative importance on the risk map, a new analysis was conducted using an
equal weight for each of the five parameters listed in Table 9. In this case, each parameter
has a weight of 0.2 because there are 5 parameters.

Figure 13 shows the resulting risk map using equal weights assigned to the five
parameters listed in Table 9. While the low-risk areas are similar to those resulting from
the F-AHP, the high-risk areas are different. In all cases, the high-risk zones are within
the built-up areas, but the equal weights risk map contains larger areas of high risk than
the F-AHP. This is probably because the equal weights make no differentiation within the
likelihood parameters and, thus, is biased toward the exposure map (Figure 5). As such,
the F-AHP is more accurate as it differentiates within one class of the exposure-impact map.
Nevertheless, for low-risk areas, the equal weights analysis produces similar results to
those from the F-AHP (and also to those from fuzzy logic, as discussed in the next section).

Figure 13. Risk map using equal weights.

3.3. Fuzzy Logic Results

The fuzzy logic approach was used to create a risk map and to compare the results with
the fuzzy-AHP. Fuzzy logic is computing based on “degrees of truth” rather than the usual
“true or false” (1 or 0) Boolean logic on which the computer is based. Zadeh [37] developed
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the concept as an extension of classical (binary) logic, which only allows for binary truth
values of either “true” or “false”. Based on fuzzy logic, truth values are represented as
degrees of membership on a continuous scale between 0 and 1, where 0 represents “false”
and 1 represents “true”. This allows for intermediate values that represent the degree of
truth or uncertainty.

The membership function expresses the likelihood that a parameter is a member of
a fuzzy set, which indicates the possibility and not the probability. It is a mathematical
function that assigns a degree of membership or truth to an element in a fuzzy set. A fuzzy
set is a set of values defined by a continuous membership function that maps each element
to a degree of membership. The degree of membership represents the degree to which an
element belongs to the set and how well it satisfies the set’s characteristics.

In a fuzzy logic system, the membership function is used to describe the relationship
between the input and output variables. The input variables are typically linguistic terms,
such as “small”, “medium”, or “large”, and the membership function is used to determine
the degree to which an input satisfies the corresponding fuzzy set. The output of the system
is then determined by aggregating the results of multiple fuzzy rules that relate the inputs
to the outputs.

Within the GIS, fuzzy logic was used to create membership function and the fuzzy
overlay function was used to sum up the fuzzy overlays [66]. Figure 14 shows the flood
risk map using the fuzzy logic approach.

Figure 14. Flood risk map using the fuzzy logic approach.

4. Conclusions

Flood-risk mapping is a valuable tool for relevant authorities and decision makers,
as it helps land management, planning and protection. The unique characteristics of arid
regions, such as limited water resources, absence of vegetation, and very dry soil make them



Hydrology 2023, 10, 136 19 of 22

highly vulnerable to flood risks. This highlights the importance of flood risk assessment
in these regions. The F-AHP provides a robust and flexible framework for evaluating the
various criteria that contribute to flood risk, including precipitation, topography, land use,
soil, and flow accumulation.

As the aforementioned parameters inherit a considerable margin of uncertainty, the
F-AHP is more suitable for assessing the likelihood of flood occurrence than the classical
AHP method. The exposure impact was produced through the classification of land use,
where different land uses were ordered based on their flood impact. Risk mapping was
calculated as the product of the probability of occurrence and exposure impact. Through
the application of the F-AHP on Qatar as a case study, it is clear that the F-AHP can provide
valuable insights into the importance of different factors that contribute to flood risk. By
using the F-AHP to analyze these factors and their interrelationships, decision-makers can
better understand the potential impacts of different flood risk management strategies and
prioritize their efforts accordingly.

The comparison between the F-AHP, equal weights analysis, and fuzzy logic shows
high similarities in the low-risk category and differences in the high-risk category. The three
methods produce similar low-risk areas and the only variation is in the high-risk zones.
Fuzzy logic results are more conservative than those of the F-AHP and the equal weights
method. This is probably because the F-AHP accounts for uncertainty and considers a
wider range of values compared to fuzzy logic. The F-AHP has the potential to play a
critical role in improving flood risk management in arid countries. By providing a more
comprehensive and accurate assessment of flood risks, decision makers can implement
more effective strategies to reduce the negative impacts of floods on the environment,
infrastructure, and communities. The use of the F-AHP can be further explored through the
collection of more field data, application to various case studies, and validation through
comparison with actual flood events.
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