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Abstract: Droughts are projected to increase in intensity and frequency with the rise of global mean
temperatures. However, not all drought indices equally capture the variety of influences that each
hydrologic component has on the duration and magnitude of a period of water deficit. While such
indices often agree with one another due to precipitation being the major input, heterogeneous
responses caused by groundwater recharge, soil moisture memory, and vegetation dynamics may
lead to a decoupling of identifiable drought conditions. As a semi-arid basin, the Limpopo River
Basin (LRB) is a severely water-stressed region associated with unique climate patterns that regularly
affect hydrological extremes. In this study, we find that vegetation indices show no significant
long-term trends (S-statistic 9; p-value 0.779), opposing that of the modeled groundwater anomalies
(S-statistic -57; p-value 0.05) in the growing season for a period of 18 years (2004–2022). Although the
Mann-Kendall time series statistics for NDVI and drought indices are non-significant when basin-
averaged, spatial heterogeneity further reveals that such a decoupling trend between vegetation
and groundwater anomalies is indeed significant (p-value < 0.05) in colluvial, low-land aquifers
to the southeast, while they remain more coupled in the central-west LRB, where more bedrock
aquifers dominate. The conclusions of this study highlight the importance of ecological conditions
with respect to water availability and suggest that water management must be informed by local
vegetation species, especially in the face of depleting groundwater resources.

Keywords: drought; Limpopo; vegetation health; groundwater; anomalies; GRACE; MODIS

1. Introduction
1.1. Background

Global warming will lead to unprecedented hydrological extremes this century due to
the increasing water holding capacity of the troposphere [1,2]. This is especially concerning
in warm, dry climates, where evaporative demand is naturally high and home to vulner-
able populations as defined by international socioeconomic standards [3]. The Limpopo
River Basin (LRB) is one such region as a critical transboundary watershed for more than
18 million people across four countries: Botswana, Mozambique, South Africa, and Zim-
babwe. Characterized by a predominantly semi-arid climate, the LRB receives about
530 mm of annual rainfall, which must be distributed across pre-existing water demand
between its agricultural, mining, and urban sectors [4–6]. Drought conditions attributed to
climate teleconnection events such as El Niño-Southern Oscillation and the Indian Ocean
Dipole regularly exacerbate the water deficit in this closed basin as well [7,8]. Although
mesoscale weather patterns such as cloud bands and tropical low-pressure systems typical
of January through March provide seasonal relief, associated storms also run the risk of
causing devastating floods [9,10]. Given this dynamic variance in water quantity, addi-
tional studies on this basin’s hydrologic anomalies are required to better understand the
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uncertainty of and the watershed’s response to wet or dry spells, for the benefit of current
and future stakeholders.

A drought is generally defined by the duration and magnitude of a regional deficit
in available water and may be additionally categorized as one of the following: meteo-
rological, agricultural, hydrological, or, more recently, ecological [11,12]. Depending on
the hydrologic component in question, different indices may be calculated to predict and
contextualize the drought condition. For example, the Standardized Precipitation Index
(SPI) uses a historical precipitation dataset for reference, while the Palmer Drought Severity
Index (PDSI) includes a temperature component to inform soil moisture and evapotranspi-
ration conditions, though both indices are used to assess meteorological droughts [11,13,14].
With the advent of satellite-based Earth observations, remotely sensed products derived
from the Moderate Resolution Imaging Spectroradiometers (MODIS) have also become use-
ful for monitoring droughts by way of determining vegetation and temperature conditions
based on the Normalized Difference Vegetation Index (NDVI) and land surface tempera-
ture retrievals, respectively—two variables that may be further combined to generate the
Vegetation Health Index (VHI), interpreted to be a measure of ecological drought in this
study [15–17]. In recent years, the Standardized Precipitation Evapotranspiration Index
(SPEI) has become a well-known meteorological drought index that considers the effects
of both available water (precipitation, P) and atmospheric demand (potential evapotran-
spiration, PET) [18,19]. Precipitation plays such a significant role in determining drought
conditions because of its temporal relationship to a basin’s water balance components. For
example, drought-stricken watersheds with flashier hydrographs may still be vulnerable
even after intense rainfall events due to low infiltration capacities and high runoff volumes.
The basin’s response to precipitation is critical in determining hydrological droughts, which
may not be captured by rainfall and temperature conditions alone. Subsurface interac-
tions between soil moisture, groundwater recharge, and plant water uptake are therefore
important to consider for more comprehensive drought assessments.

Fortunately, the National Atmospheric and Space Administration’s (NASA) Gravity
and Recovery and Climate Experiment (GRACE) and its successor, GRACE Follow-On (FO),
satellite missions have become instrumental in assessing total water storage anomalies
(TWSA) around the globe. By inferring the temporal variations in Earth’s gravity field as
mass changes caused by the movement and storage of water, GRACE observations have
been discovered to detect trends in groundwater depletions on the regional scale [20,21].
Despite its coarse spatial resolution (>150,000 km2), GRACE has been used to generate
TWSA products based on regional mass concentration (mascon) functions at a higher
gridded resolution of 0.5 degree. The GRACE mascon data facilitates the assimilation
of data into land surface models for the purpose of simulating a seamless terrestrial
water budget for drought monitoring and analysis [22]. The most recent efforts by Li et al.
(2019) [23] incorporate GRACE TWSA into NASA’s Catchment Land Surface Model (CLSM)
using mascon solutions to develop a global groundwater storage data product.

Previous studies using publicly available satellite observations, model outputs and
simple hydrological models have been used to study the hydrological cycle of global river
basins [24], the Lower Mekong River Basin [25–27], Vietnam [28,29], India [30], and the
Middle East [31–33] where in situ data are often inaccessible. Many of these studies have
focused, like this present study, on hydrological extremes such as droughts [33–37] and
floods [38–40]. By leveraging a variety of different hydrologic variables and datasets, a
more comprehensive assessment of drought conditions may be conducted [41].

1.2. Motivation

In the context of Southern Africa, only a handful of studies exist that leverage GRACE
data products and have primarily focused on total water storage trends, precipitation
anomalies, and climate teleconnections [42–46]. Without the inclusion of other hydrologic
components, a knowledge gap on long-term interactions between total water storage and
its constituents remains for the Limpopo River Basin. Water available to vegetation, or
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green water, is especially important in comparable climates, where soil moisture may be
insufficient during dry spells and root systems may tap into deeper sources of water [47–49].
The widespread phenomenon of greening in the form of shrub encroachment across the
greater region raises further questions about its relationship with water availability in this
region [50–52].

Although NDVI trends were considered alongside TWSA by Scanlon et al. (2022) [46]
for the major aquifers on the African continent, the LRB was not included. The NDVI of
the Karoo basin, which is located southwest of the LRB, was determined to have minimal
correlation (r = 0.3) with TWSA, while midlatitude African aquifers had higher values
with coefficients ranging between 0.6 and 0.9. One overlooked component of their study
is aquifer type. Because the LRB is underlain by both alluvial sand (downstream river
valley) and fractured crystalline (upstream tributary catchments) aquifers, the recharge
potential will vary with both human abstraction and seasonal precipitation [53]. Saveca
et al. (2021) [54] and Walker et al. (2018) [55] investigated sand river deposits along
the Limpopo River in Mozambique and the Molototsi sand river catchment in South
Africa, respectively, and found that shallow, alluvial aquifers have significant potential for
groundwater abstraction, as they have the added benefits of frequent recharge potential
with both aquifer thicknesses ranging between 0 and 6 m and sustained lateral groundwater
flow occurring in both the wet and dry seasons through surface runoff. Such aquifers can
become fully saturated even after consecutive periods of droughts but require robust
management practices to prevent the reduction of perennial flow conditions [54,55]. On
the other hand, stable isotope analyses by Abiye et al. (2020) [56] show that short-term
intense rainfall events (non-seasonal) are crucial recharge events for bedrock aquifers due
to the infiltrated water’s long residence time, especially with groundwater recharge being a
smaller component of the water balance for deep aquifers (2–5% of the annual rainfall) [57].

The primary objective of this study is therefore to determine drought conditions in the
LRB by vegetation health, groundwater storage anomalies, and meteorological components
and assess their potential interactions. First, a series of the drought indices are calculated
using the following datasets: the GRACE-assimilated CLSM outputs, MODIS-based optical
and thermal products, and precipitation estimates based on retrievals from the Global
Precipitation Measurement (GPM) mission, which are calibrated and processed under
the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm (Table 1) [23,58,59].
Then, both growing season and monthly anomalies are assessed with time series analyses
and correlation tests to observe potential trends and relationships. Lastly, the spatial
heterogeneity of the indices and variables are compared for the LRB for the growing season
based on a reference period of 2004–2022. The variety and long-term record of the selected
datasets offer a unique study on droughts and their impact on remotely sensed vegetation
in the Limpopo River Basin.

Table 1. Remotely sensed and modeled datasets.

Variable Unit Dataset Source Spatial
Resolution

Temporal
Resolution Citation

Land Surface Temperature K
MOD11A1

1 km Daily Wan (2014) [60]
MYD11A1

Normalized Difference
Vegetation Index

-
MOD13A3

250 m Monthly Didan and Munoz (2019) [58]
MYD13A3

Precipitation
Accumulation mm GPM IMERG 0.10◦ Daily Huffman et al. (2019) [59]

Evapotranspiration kg m−2
MOD16A2GF

500 m 8-day Running et al. (2021) [61]
MYD16A2GF
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Table 1. Cont.

Variable Unit Dataset Source Spatial
Resolution

Temporal
Resolution Citation

Groundwater Water
Storage mm

GLDAS CLSM 0.25◦ Daily Li et al. (2019) [23]Surface Runoff kg m−2 s−1

Soil Moisture
kg m−2

m3 m−3 SMAP 1 km Monthly Fang et al. (2022) [62]

Total Water Storage
Anomaly m GRACE TWSA

mascon 0.5◦ Monthly Watkins et al. (2015) [63]

Land Cover - Sentinel-2 10 m Annual Esri (2021) [64]

Surface Lithology - USGS 90 m - Sayre (2023) [65]

2. Materials and Methods
2.1. Study Area

The Limpopo River Basin spans a drainage area of about 412,000 km2 with an ele-
vation band ranging from sea level to above 2000 m. The region may be subdivided into
four climate regions: the lowveld and central river valley (arid), middleveld (semi-arid),
escarpment (humid subtropical), and coastal plains (wet tropical). A general north-south
and west-east rainfall gradient exists following the orography, and ranges between about
200 mm of annual rainfall in the dry and 1500 mm in the wetter areas. Potential evapotran-
spiration for the basin over open water ranges between 800 and 2400 mm per year, with the
highest rates occurring in the river valley and during rainy seasons in the austral summer
(October through March), defined as this region’s growing season. Mean daily temperatures
for the basin range between 0 ◦C in the winter and 36 ◦C in the summer [4,6,64,65].

The dominant land cover classes are savannah-grass and shrublands, which include
woody trees (deep-rooted, ≥4 m) and shrub species (shallow-rooted) [48]. Croplands across
the LRB are populated by primarily rainfed maize, sorghum, and millet, as well as some
irrigated fields for cultivating tropical fruits such as mangos and bananas year-round. “Blue
water” irrigation is made possible by both groundwater and surface water abstraction,
which is supplemented by reservoirs formed by dams, one of which is the Massingir Dam in
the Oliphants sub-watershed [4,66–70]. Forested regions are made up of both native forests
and commercial plantations of exotic species (e.g., pine, eucalyptus) in the escarpment
and mountainous region of South Africa [4,66]. Studies have also identified a trend in
decreasing natural vegetation in exchange for increasing cropland cover in the past decades
in the Limpopo [71,72].

Figure 1 shows a land cover map based on 2017 imagery from Sentinel-2. Although no
formal land cover accuracy assessment was conducted, a qualitative comparison between
it and South Africa’s custom 2014 and 2020 maps revealed sufficient overlap [73].

2.2. In Situ Datasets

A groundwater level dataset from the South African Department of Water and Sanita-
tion (SA DWS) containing more than 1000 borehole sites matching the South African extent
of the Limpopo River Basin was selected to assess the groundwater storage anomalies
derived from the GRACE-assimilated CLSM groundwater data—further validated with
remotely sensed GRACE TWSA mascon solutions (Figure 2)—and build confidence in
using the CLSM outputs for further drought index analyses. The borehole sites were filtered
to 172 records based on location, limited to records north of greater Pretoria to remove
unnatural groundwater level fluctuations due to irrigation and urban abstraction. The
water level data were then linearly interpolated for temporal continuity and standardized



Hydrology 2023, 10, 170 5 of 22

for comparison with the basin-averaged CLSM groundwater storage anomalies, as shown
in Equation (1):

z =
x − x

σ
(1)

where z equals the water level/storage anomaly index, x is the water level/storage for
a given month, x is the average water level/storage for the entire record, and σ is the
standard deviation of the record for that borehole or the LRB. After standardization, all
records were averaged to create a mean and standard deviation to characterize uncertainty.
Growing season anomalies were calculated by filtering for observations in October through
March by water year.
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Figure 2. Time series of water storage anomalies from GRACE and CLSM.

Daily discharge rates from the Global Runoff Data Centre (GRDC) were selected
from 36 gauges across the LRB to compare with the CLSM surface runoff dataset. Each
record was multiplied by upstream areas, summed by month, log-transformed for greater
interpretability, and then standardized like the groundwater level dataset. Fifteen daily
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precipitation records, also from the SA DWS, were used to assess the accuracy of GPM
IMERG for the basin. A monthly validation with both its given unit (mm) and a log-
transformed unit were evaluated for context (Figure 3). Table 2 shows the in situ datasets
used for this study. One limitation of these in situ datasets is that they only represent the
South African region of the LRB. Thus, they are only used as partial references to compare
against the modeled and remotely sensed products, which cover the entire basin.
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Figure 4. Basin-averaged monthly time series of hydrologic components: (a) Monthly precipitation 
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Table 2. In situ datasets.

Variable Unit Dataset Source Station Count Frequency Time Period Version Citation

Groundwater
Levels m

South African
DWS

174 Monthly October
1999–July 2022

SA DWS [74]
(Downloaded

3 January 2023)

Precipitation mm 15 Daily
January

2002–March
2021

SA DWS [74]
(Downloaded

30 August 2022)

Discharge m3 s−1 GRDC 36 Daily October
2002–July 2022

GRDC [75]
(Downloaded
5 May 2023)

2.3. Time Series of Additional Remotely Sensed and Modeled Datasets

Monthly Land Surface Temperature (LST) estimates were calculated using the averages
of daily MODIS Terra (MOD11) and Aqua (MYD11) products, which are generated using
the generalized split-window algorithm and brightness temperature values observed in the
sensors’ thermal infrared bands. These products are thoroughly validated for various land
covers and approach an error of ±1 K [60]). NDVI estimates are based on the averages of
monthly MOD and MYD products, which take advantage of MODIS’ near infrared and red
bands to produce a standardized reflectance ratio (−1 to 1), minimizing error [58].

Monthly precipitation accumulation estimates from GPM IMERG are derived from a
constellation of passive and active microwave-sensing satellites with a core observatory
that houses both the GPM Microwave Imager and Dual Frequency Precipitation Radar [57].
The available daily accumulation final run products were summed on a monthly timestep
for October 2003 through September 2021, after which the late run products were required.
Potential evapotranspiration products are calculated using the Penman–Monteith equation,
which incorporates daily meteorological reanalysis data generated by the National Atmo-
spheric and Space Administration’s Global Modeling and Assimilation Office and 8-day
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products from MODIS, including land surface temperature, land cover, and albedo [59].
Monthly estimates were aggregated using a weighted average algorithm to appropriately
partition the given 8-day estimates that overlap on a monthly timestep.

Soil moisture estimates at both the surface and root zone layer from CLSM were
investigated. Due to the lack of in situ soil moisture data, downscaled 1 km volumetric
water content based on remotely sensed brightness temperatures captured with the pas-
sive L-band radiometer on board the Soil Moisture Active Passion (SMAP) mission were
assessed for similar drying and wetting signals [76]. The selected soil moisture product
has a spatial resolution of 1 km at near daily resolution, with a reported unbiased root
mean squared error of 0.063 m3m−3. This soil moisture product is engineered using the
thermal inertia principle and requires both MODIS LST and NDVI products [62]. Iterations
of this product have been generated using a combination of various sensors, including
the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System [76],
AMSR-2 [77], and aircraft and field experiments [78,79]. Both the surface soil moisture
estimates from CLSM and SMAP estimate the water content within the top 5 cm, which
must be multiplied to the volumetric soil moisture to get a liquid water equivalent length.
All variables mentioned so far are plotted in Figure 4 to provide context.

2.4. Drought Indices (Standardized Anomalies, VHI, SPEI)

The time series datasets for this study period were standardized appropriately (at both
monthly and growing season time steps) to compare across variables at their respective
frequencies, using the following equation, Equation (2):

z =
xi − xi

σi
(2)

where z equals the variable anomaly, xi is the estimate for month/season i, xi is the
monthly estimate for that given month/season, and σi is the standard deviation of the
monthly/seasonal estimate. Notice that this equation slightly differs from Equation (1).

Monthly LST and NDVI values were used to calculate the Temperature Condition
Index (TCI) (Equation (3)) and Vegetation Condition Index (VCI) (Equation (4)), respectively.
The former is an indicator of temperature stress, while the latter is an indicator of moisture
content. Lower values in either signal drought-like conditions during the window of
observation. Their composite index, VHI (Equation (5)), can then be calculated using a
weighted average of the TCI and VCI. Typically, an alpha value of 0.5 is used for studies
lacking more nuanced information regarding the relative importance of either temperature
or moisture conditions in the basin [15,16].

TCI =
LSTmax − LST

LSTmax − LSTmin
(3)

VCI =
NDVI − NDVImin

NDVImax − NDVImin
(4)

VHI = αVCI + (1 − α)TCI α = 0.5 (5)

The SPEI is a climatic drought index developed by Vincente-Serrano et al. (2010) and is
informative in that it includes the effects of temperature variability based on the aggregated
deficit or surplus of water availability at a selected timescale (e.g., 3, 6, 12, 48 months) [18]
(Equation (6)).

Di = Pi − PETi (6)

where D is the monthly difference between precipitation, P, and potential evapotranspira-
tion, PET, for a given month i.
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Figure 4. Basin-averaged monthly time series of hydrologic components: (a) Monthly precipitation
accumulation and average monthly soil moisture in liquid water equivalent (mm) from both CLSM
and SMAP are plotted for comparison. (b) Evapotranspiration, NDVI, and land surface temperature
estimates from MODIS. (c) Groundwater storage and surface runoff from CLSM.

The differences are then normalized based on a distribution (e.g., Gamma, Pearson III,
Log-Logistic) calculated with parameters generated from the L-moment procedure. Over
a long-enough record, the SPEI is able successfully capture the intensity and duration of
drought events over a region [19]. For this study, SPEIs based on the Gamma distribution
at timescales of 12 months were calculated using an open-source python library called
climate-indices developed at the National Ocean and Atmospheric Administration [80].
The 12-month scale was selected for its possible relationship to groundwater anomalies [41].
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2.5. Statistical Analyses

To identify trends in the time series, a Mann-Kendall test was performed for each
calculated index and anomaly. It is a widely used non-parametric test that can deter-
mine the presence of a negative or positive monotonic trend based on the S-statistic
(Equation (7)). The null hypothesis, which assumes the existence of a non-monotonic
trend in a series without autocorrelation, must be rejected. A seasonal test function (to
remove serial correlation) under the pyMannKendall package was used for the monthly
datasets [81].

S =
n−1

∑
i=1

n

∑
j=i+1

sign
(
xi − xj

)
sign(xi − xj)


1, xi − xj > 0
0, xi − xj = 0

−1, xi − xj < 0
(7)

where n is the number of total observations, i is ranked from 1 to n − 1, and j is ranked
from i to n. A Spearman’s Rank correlation (or rho) test, another non-parametric test,
was performed for a more robust time series analysis. The Spearman’s Rank test’s null
hypothesis assumes the rho coefficient to equal 0, meaning that no trend exists, such as the
Mann-Kendall test, and must be rejected to confirm any monotonic trend. Both statistical
tests have become well documented since their popularization [82]. Correlation coefficients
were also calculated between the standardized time series values.

3. Results

Figure 5a shows that the gridded GRACE-assimilated CLSM groundwater storage
anomalies capture the decreasing trend in groundwater levels, matching the annual trend
by growing season, of the distribution of in situ groundwater level anomalies to within one
standard deviation (highlighted in a lighter shade of blue). The CLSM anomalies exhibit a
relatively greater annual magnitude in the growing season, oscillating between −1.5 and
+1.9. The in situ anomalies hover above 0 between 2006 and 2016, after which there is a
steady decreasing trend to about −0.5 by 2021. However, the CLSM anomalies further
show a recovery beyond 2020, trending positive to a peak anomaly of about +0.8 in 2021;
the in situ anomalies do not reach a baseline of 0. Interestingly, the trough in 2016 is not
captured with the in situ data, and the rebound in groundwater levels is not as dramatic
between 2020 and 2022. Below, (b) shows the transformed and standardized seasonal in situ
discharge and CLSM surface runoff estimates. Compared to the groundwater anomalies,
the in situ discharge observations show more resilience, returning to a baseline of 0 after
the 2016 drought. The CLSM surface runoff also exhibits a similar pattern as the monthly
discharge totals, except the peak in 2008 and trough in 2010–2012. The naturally low flows
of this basin likely cause the minimal variation in discharge or runoff anomalies, in contrast
to the visibly more negative groundwater anomalies of 2016 and 2020, based on Figure 5a.

Table 3 shows all Mann-Kendall and Spearman’s Rank statistics, which confirm a cou-
ple of the trends already depicted in Figure 5. While no obvious trend exists at the annual
frequency (based on the growing season), groundwater and both soil moisture anomalies
appear to have a significantly decreasing monotonic trend, with both non-parametric tests.
Additionally, even in the growing season, the significance of the groundwater storage
anomalies straddles a p-value of 0.05. On the other hand, NDVI and evapotranspiration
monthly anomalies show strong signs of a monotonically increasing trend, though not as
significant based solely on the growing season. Figure 6a shows the trends visually with
monthly anomalies in NDVI and components from CLSM. Although the soil moisture
component varies across a wider distribution of z-scores and trends toward lower z-scores,
the NDVI appears relatively consistent, even increasing in the latter months. The rising and
falling signals in tandem suggest that NDVI and soil moisture are well correlated; however,
that is not consistently the case.
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Table 3. Time series analysis of anomalies and indices with significant trends bolded.

Variable Time
Domain

Mann-Kendall Spearman’s Rank

Trend S-Statistic p-Value rho p-Value

ET
Growing none 13 0.670 0.128 0.601
Monthly increasing 442 0.001 0.095 0.133

GW
Growing none −57 0.050 −0.421 0.073
Monthly decreasing −628 0.000 −0.300 0.000

LST
Growing none −3 0.944 −0.040 0.870
Monthly none 39 0.720 −0.010 0.877

NDVI
Growing none 9 0.779 0.130 0.596
Monthly increasing 302 0.005 0.199 0.083

P
Growing none −25 0.401 −0.202 0.408
Monthly none −36 0.757 −0.029 0.644

Root Zone
SM

Growing none −33 0.263 −0.235 0.333
Monthly decreasing −470 0.000 −0.199 0.002

Runoff
Growing none −11 0.726 −0.091 0.710
Monthly none −166 0.100 −0.072 0.269

Surface SM
Growing none −37 0.208 −0.286 0.235
Monthly decreasing −336 0.001 −0.136 0.037

VHI
Growing none −19 0.529 −0.144 0.557
Monthly none 521 0.649 0.035 0.596

SPEI-12
Growing none 9 0.780 0.063 0.797
Monthly none 999 0.419 −0.053 0.438
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Figure 7 shows the plot of drought indices calculated for the LRB. The SPEI-12 and
VHI are somewhat correlated, but the groundwater storage anomalies appear to show more
intense wet and dry periods, approaching a maximum z-score of 2.2 in early 2008 and a
minimum z-score of −1.7 in late 2019. The VHI has greater variance due to its seasonal cycle,
and at times do not agree with either the SPEI-12 or groundwater anomalies. For example, in
late 2012, healthier vegetation conditions (0.5) were observed in the growing season months
despite lower groundwater (−1.2) and SPEI-12 z-scores (−1). A similar example is shown
during the rebound in water storage after the 2020 drought, in which the VHI approaches
positive z-scores sooner than either the groundwater anomalies or SPEI-12. Given that
the VHI is influenced by NDVI, the plot in Figure 6b reveals a similar decoupling as
Figures 6a and 7, in which the NDVI anomalies are relatively higher during some droughts
(z = −0.6 for 2020) but lower for the rainier growing seasons in 2006 (z = 0) and 2008
(z = 0.75) compared to the CLSM soil moisture, groundwater, and runoff anomalies.
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The spatial distribution of the variables in Figures 8 and 9 reveals some distinct
patterns relative to the anomalies’ time series. For example, for both 2016 and 2020, despite
experiencing drought conditions, the NDVI remained high in the mountainous region
of the escarpment in central-east LRB, as shown in Figure 8a,b. Precipitation patterns
are also well correlated with vegetation health, with higher percentages in VHI showing
spatial association with greater monthly precipitation accumulation. Groundwater and
soil moisture estimates appear to be especially low to the east in Mozambique, but again,
relatively high in the central-east, likely due to orographic influence. Figure 9a,b depicts the
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opposite conditions with much higher total monthly rainfalls. However, some discrepancy
exists between the vegetation and groundwater and soil moisture distributions in Figure 9b.
Despite showing relatively good vegetation conditions in the east, groundwater storage is
noticeably lower, compared to Figure 9a. In both anomalously wet and dry growing seasons,
the spatial distributions of rainfall, groundwater, and soil moisture are only moderately
consistent.
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Figure 7. Monthly drought conditions based on the VHI, SPEI-12, and groundwater storage anomalies.

Table 4 lists the correlation coefficients across all variables as a matrix, which all ex-
hibit statistically significant relationships with at least 95% confidence. Here, surprising
results include the lower correlation between precipitation and NDVI (r = 0.510) and high
correlation between surface runoff and root zone soil moisture (r = 0.913) but not NDVI
(r = 0.684). Lower correlations were expected between groundwater and precipitation due
to the lagging influence of infiltration (r = 0.475), but a moderate relationship exists be-
tween it and NDVI anomalies (r = 0.705). While all correlation coefficients were considered
significant (p-value < 0.05), precipitation and groundwater anomalies showed the least
significance (p-value = 0.04). Table 5 is the correlation matrix of monthly anomalies and in-
dices for all variables. Here, we see that the strongest relationships (besides VHI-NDVI and
the soil moisture components, which are dependent by default) exist between the surface
soil moisture and VHI (r = 0.774), and the least between precipitation and groundwater
(r = 0.064). The relationship between groundwater and NDVI anomalies is moderate
(r = 0.671). Weak linear relationships also appear between NDVI and both precipitation
and runoff (r < 0.4). Precipitation is mostly correlated with runoff (r = 0.724) and mod-
erately with the surface soil moisture (r = 0.509). All relationships except for P and GW
(p-value > 0.3) had a p-value of < 0.001, removing the need for a sub-table.

Figure 10a,b shows the spatial growing season anomalies for the groundwater storage
and NDVI, two variables that were determined to have significant monotonic trends
based on their monthly anomalies. Although Table 3 had shown non-significant results
for the growing season, the anomalies’ spatial distributions reveal a different story. The
decreasing trend in groundwater storage appears to be strongest in the eastern LRB, within
Mozambique’s boundaries. Despite the wetter growing seasons of 2021 and 2022, it appears
that the groundwater reserves have not quite recovered, likely matching the in situ borehole
anomalies from South Africa (Figure 3a). However, a bimodal trend exists for the NDVI,
in which different parts of the basin are experiencing greening or browning. Figure 10c,d
shows the calculated p-value for each pixel and trend, confirming a significant trend in
decreasing groundwater storage, but more spatial heterogeneity with the NDVI.
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Table 4. Growing season anomalies correlation matrix (a) bolded for p-values < 0.001 (b).

(a)

r LST NDVI ET P GW SM RZ Q
LST 1

NDVI −0.934 1
ET −0.844 0.865 1
P −0.607 0.510 0.777 1

GW −0.729 0.705 0.525 0.475 1
SM −0.824 0.812 0.744 0.708 0.914 1
RZ −0.764 0.754 0.780 0.789 0.842 0.972 1
Q −0.671 0.684 0.800 0.769 0.629 0.845 0.913 1
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Table 4. Cont.

(b)

p-value LST NDVI ET P GW SM RZ Q
LST 0

NDVI 0 0
ET 0 0 0
P 0.006 0.026 0 0

GW 0 0.001 0.021 0.040 0
SM 0 0 0 0.001 0 0
RZ 0 0 0 0 0 0 0
Q 0.002 0.001 0 0 0.004 0 0 0
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Table 5. Monthly Anomalies and Drought Indices Correlation Matrix.

r VHI SPEI-12 GW SM RZ NDVI ET P Q
VHI 1

SPEI-12 0.711 1
GW 0.690 0.764 1
SM 0.774 0.620 0.753 1
RZ 0.757 0.589 0.770 0.964 1

NDVI 0.915 0.688 0.671 0.726 0.723 1
ET 0.773 0.523 0.490 0.656 0.655 0.787 1
P 0.307 0.134 0.064 0.509 0.455 0.264 0.317 1
Q 0.412 0.221 0.243 0.696 0.687 0.380 0.404 0.724 1

Hydrology 2023, 10, x FOR PEER REVIEW 2 of 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Spatial Mann-Kendall Statistics for GW (a,c) and NDVI (b,d). 

 

Figure 10. Spatial Mann-Kendall Statistics for GW (a,c) and NDVI (b,d).

4. Discussion

The results show unexpected relationships across the analyzed hydrologic variables.
Although precipitation, surface runoff, and evapotranspiration did not exhibit any signifi-
cant trends, NDVI, groundwater storage, and soil moisture conditions did (Table 3). This
was confirmed with the SPEI-12, which did not reveal a specific trend, but was informative
for both drought duration and magnitude, tracking similarly to the groundwater storage
anomalies. On the other hand, NDVI showed a significant increasing trend, while LST
showed no such trend during this reference period. Surprisingly, the VHI also showed
no significant trends; nevertheless, its peaks and troughs still informed drought condi-
tions such as the SPEI-12, albeit at a higher frequency (Figure 7). Assuming all datasets
analyzed in this study are reliable enough to exhibit the appropriate signals for drought
conditions—as verified with the in situ datasets for rainfall, groundwater levels, and dis-
charge, and remotely sensed datasets for TWSA and soil moisture (Figures 2, 3, 4a and 5)—
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these results point to a potential decoupling of hydrological and ecological droughts. This
is further strengthened by the comparison of growing season and monthly analyses. As
shown in Figure 6, the corresponding offset between NDVI and groundwater anomalies
are visible at both timescales. Because Table 3 reveals that the monthly anomalies exhibit
strong trends, the lack of obvious trends in the growing season anomalies suggests that
interannual interactions between subsurface processes (i.e., plant water uptake, recharge,
and human abstraction) may be maintaining some sense of equilibrium through times of
high and low annual rainfall.

In the first half of the time series in Figure 6a, the NDVI peak anomalies were relatively
lower than the soil moisture components, averaging a z-score of about 1 compared to
1.5, respectively. As the time series approached 2017, this relationship inversed, in which
the NDVI peak anomalies were higher than the soil moisture anomalies, suggesting that,
on the basin-scale, vegetation in the LRB can withstand these more long-term drought
events. However, that may not be the case for more short-term, intense droughts, as shown
in January 2016, where the NDVI anomaly was in fact marginally lower than either soil
moisture anomaly. This pattern becomes more obvious for the growing season anomalies
in Figure 6b, in which the NDVI z-score reaches a global minimum of about −1.3 in 2016
but does not again in the following droughts. However, the groundwater and soil moisture
anomalies drop again for the second time during the 2019 drought. Based on the spatial
distribution, Figure 8b shows how precipitation may have been the cause for this rebound.
However, this is not consistent for Figure 9b in the western LRB, in which a relatively high
NDVI is associated with comparably drier surface soil moisture and groundwater storage
conditions, with patterns such as the distribution of values depicted in Figure 8 for the
drier areas.

A lag of approximately one month exists between precipitation and NDVI, while
the runoff peaks align well with the monthly precipitation accumulations (Figure 4). The
correlation coefficients in Table 5 confirm these observations and reveal further subsur-
face flow dynamics. For example, the groundwater anomalies appear to be uncorrelated
with precipitation anomalies, which confirms that seasonal precipitation is insufficient
for groundwater recharge [56]. However, the soil moisture and vegetation components
appear to retain some water post rainfall, as demonstrated by their correlations, albeit weak
(r ≤ 0.5).

Perhaps the most interesting finding of this study is the confirmation of this decoupled
relationship between groundwater and NDVI anomalies. Although the basin-averaged
growing season anomalies for groundwater storage and NDVI showed no significant trends,
this was proven to be false at the distributed level, as shown in Figure 10. Decreasing
groundwater storage anomalies were especially significant in the eastern basin, just north
of Limpopo River’s mouth at the Mozambiquan coast. However, the NDVI appeared to
be increasing during the growing season, despite depleting groundwater storage. The
decreasing trend in NDVI in the central LRB was more consistent with what is expected
of decreased groundwater storage [83,84]. This pattern could reflect mean annual rainfall.
In the wetter portions of the study region to the southeast, vegetation water subsidies
from groundwater would likely be less important and the ample rainfall maintains the
greening of Krueger National Park at the border between South Africa and Mozambique,
and Banhine National Park near the eastern boundary of the LRB in Mozambique. In the
dryer portion of the basin to the northwest, deeper rooted plants (≥40 m) may be more
dependent on groundwater storage [85].
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A more threatening explanation may be that the increasing trend in NDVI is attributed
to groundwater loss due to plants exploiting limited resources as an adaptation strategy.
Key processes regarding the vegetation–groundwater dynamic include (1) partitioning of
water by plants during precipitation and evapotranspiration, (2) extraction of groundwater
in either the saturated or unsaturated zone, and (3) hydraulic redistribution via the root
system [47,86]. Past studies have noted that woody invasive species in South Africa,
previously introduced in past centuries to address timber shortages, can lead to reduced
recharge and exploit groundwater at deeper root depths [50–52]. Therefore, this explanation
may offer an insight into how or why depleting water resources is not correlated with
browning in some areas of the LRB. Another point to consider is the difference in land
cover, assuming the Sentinel-2-based map is accurate in Figure 1. Given the more densely
forested region of the eastern LRB compared to the grassy-rangeland cover of the central
LRB, future studies that relate equilibrium between woody vegetation and grasses may be
necessary to better characterize the relationship between groundwater (or precipitation)
deficit and vegetation species [87].

The middle-ground hypothesis is that plant species in such regions can leverage the
more sustainable shallow, unconfined aquifers, which are recharged with every growing
season, given normal precipitation conditions, while more intense precipitation events are
required to offset groundwater loss [54,55,88]. Given the surface lithology of the LRB, as
shown in Figure 11, this may be a plausible explanation, because the majority of the eastern
LRB is composed of sand dune alluvium (deposited river sediment), and is primarily
a phreatic aquifer [85,88]. Upstream of the Limpopo River, metaigneous rocks, which
have hard crystalline structures, may be associated with fractured, deeper aquifers where
root systems depend on groundwater resources, leading to a browning in each growing
season that does not receive enough intense precipitation, and thus limiting groundwater
recharge [56,85,89]. Because the statistics for precipitation anomalies remain inconclusive
with negative trends but high p-values, decreasing annual precipitation cannot be accepted
as the sole reason for these groundwater anomalies. In fact, human abstraction must
also be accounted for, as the semi-arid nature of the LRB requires using groundwater for
agricultural irrigation as an alternative to surface water, which is relatively low throughout
most of the year [57,85]. Because seasonal precipitation in the growing season is only able
to sustain the vegetation so much and cannot adequately recharge groundwater storage
(Table 4), this browning phenomenon appears to be more significant in the arid climate
of the central river valley (Figure 10). This is further supported by the non-significant,
decorrelated relationship between monthly precipitation and groundwater anomalies
(Table 5).

Therefore, the relationships and statistical metrics for NDVI and CLSM-based anoma-
lies suggest that ecological drought conditions with respect to vegetation health may
not inherently follow hydrological drought conditions, at least according to the available
record of modeled groundwater storage anomalies in the LRB. One concerning conclusion
is that groundwater storage overall has depleted, despite the temporary relief in 2021
(Figures 3a and 10). Because the record-breaking drought of 2016 was particularly intense
due to a strong El Niño event, water management practices must become even more pre-
cautious in preparation for such future events [46,90,91]. Therefore, vegetation health in
the eastern LRB cannot be used to assess groundwater availability, though it may be in the
more arid climate of the central west region.
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5. Conclusions

This study analyzed a collection of monthly and annual growing season anomalies
related to meteorological, hydrological, and ecological droughts, including land surface
temperature, NDVI, precipitation, evapotranspiration, soil moisture, surface runoff, ground-
water storage, and two drought indices, the VHI and SPEI-12, for the Limpopo River Basin
from a water year of 2004 through 2022. We highlight the importance of vegetation dy-
namics with respect to groundwater anomalies and recommend that future groundwater
studies be investigated in the context of vegetation health to understand the impact of both
humans and plants on terrestrial water storage trends. Significant trends in both vegetation
greening and browning appear through the study period’s growing seasons, which exhibit
signs of both negative and positive correlation with the other significant trend in ground-
water depletion based on aquifer type and surficial lithology. Although this research is
limited by both the lack of in situ data in Mozambique, Botswana, and Zimbabwe and the
unaccounted influence of human impact by either abstractions or dam control, basin-wide
in situ data from South Africa’s DWS and the GRDC, and the agreement in drought signals
across modeled and remotely sensed data products increase the validity of these research
conclusions. Therefore, a method to isolate surface discharge is necessary to characterize its
role in linking the hydrologic cycle with not only human impact but also vegetation health.
Assuming all excess precipitation is converted to either runoff or river flow, reanalyzing
the studied factors at shorter timescales (hourly to daily) is required to understand the
intermediate responses of the system. Other limitations may include the validity of the
land cover map and the surface lithology map provided by the USGS; however, these maps
are not essential to the conclusions made in this study. As one of the few reports in the
LRB that consider vegetation health in the context of groundwater, this study calls for
renewed attention to the heterogeneous response of vegetation to groundwater availability
and seasonal precipitation. Thus, droughts must be researched with the greater ecosystem
to better assess present-day and future water management practices in a water-stressed,
semi-arid basin such as the Limpopo under current climate change projections.
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