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Abstract: This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in
Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios,
SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the model was notably effective in
the upper Meta River subbasin. This study predicts an overall increase in the basin’s annual water
yield due to increased precipitation, especially in flatter regions. Under the SSP 4.5, the Meta River
basin’s water flow is expected to rise from 5141.6 m3/s to 6397.5 m3/s, and to 6101.5 m3/s under
the SSP 8.5 scenario, marking 24% and 19% increases in water yield, respectively. Conversely, the
upper Meta River subbasin may experience a slight decrease in water yield, while the upper Casanare
River subbasin is predicted to see significant increases. The South Cravo River subbasin, however, is
expected to face a considerable decline in water yield, indicating potential water scarcity. This study
represents a pioneering large-scale application of the InVEST–AWY model in Colombia using CMIP6
global climate models with an integrated approach to produce predictions of future water yields.

Keywords: water balance; hydrological model; climate change; CMIP6 scenarios; Orinoco River

1. Introduction

Climate change is a global issue that has widespread impacts on various aspects
of the environment, including water resources. The effects of climate change on water
resources are multifaceted and can have significant consequences for freshwater ecosystems,
biodiversity, and human societies [1–3]. One of the key impacts of climate change on water
resources is the alteration of precipitation patterns [2]. Dai [4] highlights that climate
change results in changes in precipitation patterns affecting water yield and leads to water
scarcity or excess in different areas [1]. Water yield refers to the total amount of water that
is generated within a specific drainage basin or watershed over a given period of time
according to Budyko [5]. Freshwater ecosystems are particularly vulnerable to the effects
of climate change on water yields.

Hydrological models are widely used to study the impact of climate change on the
hydrologic cycle and the management of water resources systems [6]. These models
integrate various hydrological and ecological processes that allow for the simulation of
water yield under different environmental and climatic conditions [7], providing valuable
insights into the potential effects of climate change scenarios [8]. However, many of these
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models require amounts of data often not available in developing countries, which are
likely to be the most affected by climate change.

Therefore, there is a growing need for assessing water yield response in areas with
low weather station densities, such as the tropics, through hydrological models with low
data requirements. Despite limitations assessing model performance, several studies have
shown that relatively simple models with limited data requirements can credibly simulate
flows and water balance components in large, data-poor basins. Valencia et al. [9] used the
annual water yield model from the INVEST package to quantify current water yields in
specific subbasins in the Meta River basin, Colombia. The study [10] also demonstrated the
application of a distributed hydrological model like MIKE-SHE in data-scarce watersheds
to assess climate change impacts on water resources, using limited meteorological and
hydrological data for model input.

These simple models have been used to analyze the effects of climate change on
water yields in different regions. The IHACRES model, used by Kim et al. [11], was
effectively applied in various catchments, accounting for nonstationary and seasonal effects
in climate impact studies. Lastly, models requiring low data, as used by Bejagam et al. [12],
demonstrated effective results from the InVEST annual water yield model in assessing the
impacts of climate change on water yield in the Tungabhadra River basin, India.

A limited number of studies have analyzed the impact of climate change on Colombia’s
water resources at the basin scale. Various climate change scenarios predict the country’s
rainfall to increase, but ongoing complex land-use dynamics and data shortages create
uncertainty about the impacts of climate change in certain basins. The Meta River basin
has seen a significant expansion of agricultural activity and has been the center of many
development plans in Colombia; however, hydrological and climatic data in the region are
limited.

The primary objective of this research was to perform a future prediction of the
annual water yield in the Meta River basin (Colombia) by 2050. Building on work [9] that
revealed historical and current patterns of water yield, this assessment was conducted
using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model for
annual water yield. This research emphasized analyzing water yield predictions under two
specific Shared Socioeconomic Pathways (SSPs) of the Coupled Model Intercomparison
Project Phase 6 (CMIP6)—4.5 and 8.5 scenarios. A feature of this study was the novel use
of an ensemble approach combining 13 global climate models under these two CMIP6
scenarios. This methodology increased the robustness of the predictions, allowing for a
wide assessment of future water availability in the Meta River basin. Based on foundational
research previously carried out in this area by [9], this allowed for a comprehensive
predictive assessment of large-scale water availability in the region, which is crucial for
Colombia’s future agricultural productivity.

2. Methods
2.1. Study Area

The boundary of the Meta River basin was defined by [9], with the aid of ArcSWAT tool
and the Digital Elevation Model (DEM) having a 30 m resolution, obtained from the Global
Multi-Resolution Topography (GMRT) dataset [13]. This process outlined a region spanning
113,981 km2 (Figure 1). In addition, the InVEST–AWY model’s effectiveness was assessed
in four specific subbasins of the river, chosen based on the presence of gauging stations.
The purpose of this assessment was to identify the regions where the model produced
the most accurate results. The Meta River, a left tributary of the Orinoco River, traverses
several Colombian departments, including Meta, Casanare, Cundinamarca, Boyacá, Arauca,
Vichada, and Bogotá. This region includes 31.7% of the country’s flood-prone zones [14]
and has a tropical climate and varied topography, including mostly flat and gently sloping
lands, as well as mountainous regions in the west, including the eastern Cordillera and
La Macarena range. Air temperature varies between 4 ◦C and 28 ◦C, with annual rainfall
ranging from 1000 to 7000 mm [14,15]. Climatic conditions within the region vary: the
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lowland areas have a monomodal climate with a single rainy season, contrasting with the
bimodal climate of the mountains [16].
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Figure 1. The location of the Meta River basin (Research zone) and its subbasins in Colombia.

2.2. Method

The methodology flowchart for this study, adapted from [9,12], is shown in Figure 2.
The initial step involved preparing key spatial datasets such as precipitation, potential
evapotranspiration, plant available water content, root restricting layer, land-use/land-
cover (LULC) with a biophysical table, and basin/subbasin delimitation maps.

Hydrology 2024, 11, x FOR PEER REVIEW 3 of 18 
 

 

and gently sloping lands, as well as mountainous regions in the west, including the east-
ern Cordillera and La Macarena range. Air temperature varies between 4 °C and 28 °C, 
with annual rainfall ranging from 1000 to 7000 mm [14,15]. Climatic conditions within the 
region vary: the lowland areas have a monomodal climate with a single rainy season, con-
trasting with the bimodal climate of the mountains [16]. 

  
Figure 1. The location of the Meta River basin (Research zone) and its subbasins in Colombia. 

2.2. Method 
The methodology flowchart for this study, adapted from [9,12], is shown in Figure 2. 

The initial step involved preparing key spatial datasets such as precipitation, potential 
evapotranspiration, plant available water content, root restricting layer, land-use/land-
cover (LULC) with a biophysical table, and basin/subbasin delimitation maps. 

 
Figure 2. Flowchart for calculating changes in water yield in the Meta River basin using the InVEST–
AWY model. 

The sensitivity analysis carried out by [9] used a base Z (the Zhang coefficient) value 
of 30, which is the annual number of rainfall days divided by 5. In the study area, the 
average number of rainfall days is 177. The coefficient Z was adjusted in the range from 1 
to 30 (Figure 3). In relation to the study region, our results showed that at Z = 15, water 
yield increased by 9%, while at Z = 1, it increased by 101%. 

Figure 2. Flowchart for calculating changes in water yield in the Meta River basin using the InVEST–
AWY model.

The sensitivity analysis carried out by [9] used a base Z (the Zhang coefficient) value
of 30, which is the annual number of rainfall days divided by 5. In the study area, the
average number of rainfall days is 177. The coefficient Z was adjusted in the range from 1
to 30 (Figure 3). In relation to the study region, our results showed that at Z = 15, water
yield increased by 9%, while at Z = 1, it increased by 101%.

In contrast, the sensitivity analysis for the crop evaporation factor, Kc, revealed that a
30% reduction in Kc resulted in a 10.7% decrease in water yield. Conversely, increasing Kc
by 30% only resulted in an increase in water yield of only 2%. These results suggest that,
in the InVEST–AWY model, the Kc value does not have a significant effect on water yield,
unlike the Z value.
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2.2.1. The InVEST–AWY Model

The InVEST Annual Water Yield model is designed to estimate how different parts of
the landscape contribute to water availability. It offers valuable perspectives on the impact
of changes in land-use and land-cover on annual surface water yield and hydropower
generation, as highlighted in [17]. The water yield module in the InVEST model is based
on the annual average precipitation and the Budyko curve [5]. The annual water yield for
each pixel is determined by the Equation (1):

Y(x) =
(

1 − AET(x)
P(X)

)
× P(x), (1)

where AET(x) is the annual average evapotranspiration, and P is annual precipitation for
each pixel (x). For lands with known vegetation or land-use/cover types (LULC), the
evapotranspiration fraction of the water balance is AET(x)

P(x) ; it is calculated as follows:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

(
AET(x)

P(x)

)w] 1
w

, (2)

where PET(x) represents the annual potential evapotranspiration; w(x) is a parameter
characterizing soil-climate properties; the formulas for PET(x) and w(x) are as follows:

PET(x) = Kc(x)× ET0(x), (3)

w(x) = Z ×
(

AWC(x)
P(x)

)
+ 1.25 (4)

where Kc(x) is the crop coefficient per pixel; ET0 is the potential evapotranspiration per
pixel; w(x) is a non-physical parameter that characterizes the natural climatic properties of
the soil (Equation (4)); AWC(x) is the water available to the plant; Z is the Zhang coefficient,
which depends on the amount of precipitation per year.

For other land-use and land-cover types like open water surfaces, urban areas, and
wetlands, actual evaporation is directly calculated from the reference evaporation, ET0(x),
with an upper limit set by precipitation as described in Equation (5):

AET(x) = Min(Kc(lx)× ET0(x), P(x)), (5)

where ET0(x) is the reference evapotranspiration; Kc(lx) denotes the evaporation factor
specific to each land-use and land-cover type.

2.2.2. Data Requirements

To calculate the annual water yield of the river with the InVEST–AWY model, it is
essential to input various raster and shape format data (Table 1). These include the annual
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average rainfall, annual average reference evapotranspiration, land-use and land-cover
data accompanied by a biophysical table, the depth of the layer that restricts root growth,
the amount of water available for plant use, and detailed maps of the studied river basin
and its subbasins.

Table 1. Dataset used in the InVEST–AWY modeling for the water yield calibration, validation, and
prediction.

Data Period Source Tool Format

Annual average
precipitation

1983–2021 Instituto de Hidrología, Meteorología
y Estudios Ambientales—IDEAM R version 4.1.2 Raster

2040–2060 Worldclim—CMIP6 scenarios

Annual average water
discharge 1983–2021 Instituto de Hidrología, Meteorología

y Estudios Ambientales—IDEAM – CSV

Evapotranspiration 1983–2021
Instituto de Hidrología, Meteorología

y Estudios Ambientales IDEAM
(air temperature)

Hargreaves equation Raster

2040–2060 Worldclim—CMIP6 scenarios
(air temperature)

Root restricting
layer depth – [18] R version 4.1.2 Raster

Plant available
water content – [19] R version 4.1.2 Raster

Land-use/Land-cover 2018 Instituto de Hidrología, Meteorología
y Estudios Ambientales—IDEAM ArcMAP software 10.6 Raster

Watersheds DEM – GMRTMapTool/ArcSWAT ArcMAP software 10.6 Shapefile

Biophysical table – FAO/IDEAM data – CSV

Z coefficient – – – Ranges from 1
to 30

Source: [9].

2.2.3. Meteorological Data

Meteorological data were sourced from the IDEAM (Instituto de Hidrología, Me-
teorología y Estudios Ambientales) website [20], including figures on annual rainfall
(Figure 4A), annual average water flow, and annual average maximum and minimum
air temperatures. This study identified a total of 246 hydrometeorological stations in the
upper Meta River subbasin that record air temperatures, precipitation, and water discharge.
In contrast, the Yucao River subbasin had only one station, and the South Cravo River
subbasin had four stations monitoring precipitation and air temperatures. In addition,
there were 20 hydrometeorological stations in the upper Casanare River subbasin. Records
from these in situ gauging stations date back to 1983. The annual potential evapotranspira-
tion (Figure 4E) was estimated using the Hargreaves formula, which uses air temperature
data from on-site stations and extraterrestrial solar radiation data derived from [21], using
the R package environment. These data were spatially interpolated to a resolution of
1 km × 1 km. The potential evapotranspiration—PET (Eto)—was calculated as follows:

Eto = 0.0023 × Ra
[

Tmax − Tmin
2

+ 17.8
]
+ ( Tmax − Tmin)0.5 (6)

where Tmax and Tmin are annual average maximum and minimum air temperatures
(◦C), respectively; Ra is the terrestrial radiation (MJ m−2 d−1). The PET (Eto) units are in
mm/year.
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Figure 4. Spatial data required for InVEST–AWY modeling: (A) Annual precipitation; (B) Land-
use code: 1—urban area, 2–8—crops, 9—pastures, 10—forests, 11–13—shrubby area, 14—sands,
15—rocks, 16—bare grounds, 17—snow cover, 18—aquatic vegetation, and 19—water bodies; (C) Wa-
ter content in the soil (PAWC); (D) Soil depth; (E) Potential evapotranspiration (PET); (F) Digital
elevation model (DEM). Source: [9].

2.2.4. Soil Data and Plant Available Water Content Data

The layer of soil that limits root growth, called the Root Restricting Layer (RRL), is
where plant roots stop developing. We used a global dataset map for the depth of this layer
from [18], as seen in Figure 4D.

Plant Available Water Content (PAWC) is the amount of water in the soil that plants
can consume, calculated by taking the difference between the volumetric field capacity and
the permanent wilting point. In our research, we used a global PAWC map from [19]. This
map shows the available water content for soil up to 200 cm deep, divided into seven layers
and combined into one file. As shown in Figure 4C, PAWC values in these river subbasins
range from 0.14 mm/mm in the soils of the upper Casanare River subbasin to 0.39 mm/mm
in the soils of the upper Meta River subbasin, with an average of 0.2 mm/mm in the soils
of all studied subbasins.

2.2.5. Land-Use Data, Land-Cover Data, and Kc

The land-use/land-cover (LULC) map used for this study was made by IDEAM, which
includes land-use and land-cover data from 2014 to 2018 [22]. This map was converted into
a raster file simplified into 19 different types of land-use (see Figure 4B). In addition, we
created a biophysical table in a comma-separated values (CSV) format. This table consists
of five columns and contains detailed information about each LULC category. It includes
the land-use (LU) code, a description of the LULC, Kc value, root depth, and the type of
vegetation in the LULC categories. Table 2 shows the first three columns of the biophysical
table used.
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Table 2. Crop coefficient (Kc) used for each LULC category.

LU Code LULC Description Kc

3 Cereals 1.2
4 Oilseeds and legumes 1.2
8 Agroforestry crops 1.2
2 Short duration crops 1.1
7 Permanent crops 1.1
12 Shrubland 1.1
13 Secondary vegetation 1.1
9 Pasture 1.0
10 Forest 1.0
18 Aquatic vegetation 1.0
19 Water surface 1.0
5 Vegetables 0.9
6 Tubers 0.9
11 Grassland 0.9
14 Sand 0.3
15 Rocks 0.3
16 Bare soils/grounds 0.3
17 Snow cover 0.2
1 Urban area 0.1

The crop coefficient (Kc) is a dimensionless quantity used in this study to calculate
crops’ water requirements during their growth phases. The FAO (Food and Agriculture
Organization of the United Nations) created a well-known set of Kc values for a variety of
crops. Ranging from 0 (no water loss) to 1 (maximum water loss), these values are based on
studies carried out in different regions and conditions over the world and were obtained
from [9].

2.2.6. River Water Discharge Data

This study examines data from five hydrometeorological stations (Table 3). The
Aceitico gauging station, located downstream in the study basin, was identified as the
main outflow point. The highest annual average water discharge was recorded there
at 9288.5 m3/s in 2021, while the lowest one at 3647.6 m3/s was in 1992. Over the pe-
riod 1983–2021, the annual average water discharge was 5256.8 m3/s at this station. For
information on the studied subbasins, see Table 3.

Table 3. The gauging stations used in the study (AAWD—annual average water discharge).

Code Station (River) Basin Area (km2) Automatic Period AAWD (m3/s)

35117010 Humapo (upper Meta River) 26,343 No 1980–2021 1576.3
35127020 Campamento Yucao (Yucao River) 1797 No 1980–2021 88.3
35217010 Puente Yopal (South Cravo River) 1187 Yes 1980–2021 97.2
36027050 Cravo Norte (upper Casanare River) 22,872 No 1994–2021 494.2
35257040 Aceitico (Meta River) 113,981 No 1983–2021 5256.8

2.2.7. Climate CMIP6 Scenarios

This study used climate change data from the WorldClim database, focusing on
scenarios available at a 2.5-min resolution [23]. These data were downscaled to 1 km
resolution using the thin-plate splines interpolation method, adhering to the methodology
detailed by [24]. The baseline for anomaly calculations was set using the average values
from spatial data used for the calibration period from 1983 to 2012.

We used an ensemble model comprising 13 global climate models from the World-
Clim portal (https://www.worldclim.org/, accessed on 22 August 2023) to assess future
climate scenarios. These models include ACCESS-CM2, BCC-CSM2-MR, CMCC-ESM2, EC-
Earth3-Veg, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3-GC31-LL, INM-CM5-0, IPSL-CM6A-LR,

https://www.worldclim.org/
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MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. The GFDL-ESM4 model was
excluded in this analysis due to the absence of data for the SSP 4.5 scenario and the limited
availability of spatial data for precipitation under the SSP 8.5 scenario.

Key statistical measures—maximum value, minimum value, mean, and standard
deviation—for critical climate variables associated with climate models used in this study
are presented in Tables 4 and 5.

Table 4. Descriptive statistics for the models according to the SSP 4.5 scenario for the Meta River
basin.

2050 Shared Socioeconomic Pathways Scenario 4.5

Model
Precipitation, mm Evapotranspiration (Eto), mm

Max Min Mean SD Max Min Mean SD

ACCESS-CM2 4236.4 898.6 2537.1 420.2 1850.8 675.8 1710.1 195.8

BCC-CSM2-MR 5293.1 1109.4 3115.3 548.1 1870.4 688.8 1733.1 191.5

CMCC-ESM2 3921.5 905.1 2572.1 405.3 1853.4 673.1 1708.7 197.5

EC-Earth3-Veg 4191.3 887.5 2659.4 476.2 1832.4 655.8 1668.6 186.5

FIO-ESM-2-0 3916.8 879.5 2385.4 393.5 1880.6 681.6 1737.6 203.0

GISS-E2-1-G 4105.0 868.9 2478.1 448.2 1844.7 668.7 1705.2 198.6

HadGEM3-GC31-LL 3710.0 811.5 2291.2 381.6 1937.2 729.7 1775.5 207.4

INM-CM5-0 4085.9 939.5 2572.7 406.6 1801.9 637.0 1664.0 192.8

IPSL-CM6A-LR 4150.8 802.0 2356.7 446.3 1856.2 678.0 1701.1 193.6

MIROC6 4018.7 885.1 2508.5 423.3 1823.0 642.7 1678.2 202.8

MPI-ESM1-2-HR 3728.4 827.7 2462.2 412.1 1813.1 655.1 1659.1 185.3

MRI-ESM2-0 4246.1 913.7 2665.6 454.7 1814.9 636.4 1663.0 193.5

UKESM1-0-LL 3850.5 814.3 2381.2 405.6 1915.2 721.8 1750.9 198.0

Table 5. Descriptive statistics for the models according to the SSP 8.5 scenario for the Meta River
basin.

2050 Shared Socioeconomic Pathways Scenario 8.5

Model
Precipitation, mm Evapotranspiration (Eto), mm

Max Min Mean SD Max Min Mean SD

ACCESS-CM2 4003.2 845.7 2438.1 411.2 1885.3 700.9 1741.6 197.5

BCC-CSM2-MR 4904.6 1005.1 2837.5 477.1 1906.2 720.5 1761.7 189.7

CMCC-ESM2 3765.6 820.1 2382.2 390.3 1875.8 693.0 1730.2 197.6

EC-Earth3-Veg 4111.6 892.3 2615.8 468.0 1868.7 671.4 1692.0 187.5

FIO-ESM-2-0 3935.1 883.1 2371.7 395.0 1909.8 699.8 1764.8 205.9

GISS-E2-1-G 4147.1 863.8 2471.8 458.3 1865.2 681.1 1723.2 200.0

HadGEM3-GC31-LL 3596.7 807.2 2255.3 374.8 1968.2 752.4 1805.9 209.2

INM-CM5-0 4141.2 910.3 2539.5 414.2 1810.3 646.2 1672.2 191.2

IPSL-CM6A-LR 4100.2 784.3 2263.3 444.6 1889.1 701.7 1730.2 195.1

MIROC6 4071.5 872.9 2505.1 435.9 1844.0 646.5 1693.3 205.7

MPI-ESM1-2-HR 3533.9 829.3 2367.6 393.3 1857.3 684.7 1700.4 186.6

MRI-ESM2-0 4068.2 893.3 2628.0 437.1 1846.2 652.8 1686.2 193.5

UKESM1-0-LL 3635.6 770.3 2283.6 395.4 1992.6 777.7 1814.8 205.2
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In terms of precipitation and evapotranspiration predictions for the year 2050 under the
Shared Socioeconomic Pathways (SSP) Scenario 4.5, the data show considerable variation
among the climate models. The BCC-CSM2-MR model predicts the highest maximum
precipitation at 5293.1 mm per annum, indicating the likelihood of significant rainfall events.
At the lower end, the IPSL-CM6A-LR model records the smallest minimum precipitation at
802 mm per annum, suggesting less precipitation in certain zones of the river basin studied.
When considering average conditions, the BCC-CSM2-MR model also leads with the
highest mean precipitation at 3115.3 mm per annum. For evapotranspiration, the highest
mean is predicted by the HadGEM3-GC31-LL model at 1775.5 mm per annum, while the
highest maximum evapotranspiration was also recorded in the HadGEM3-GC31-LL model
at 1937.2 mm per annum.

We observe significant variability in precipitation patterns across the models under the
Shared Socioeconomic Pathways (SSP) Scenario 8.5. The BCC-CSM2-MR model predicts the
highest maximum precipitation at 4904.6 mm per annum, suggesting intense rainfall events
could become more common. Conversely, the UKESM1-0-LL model shows the lowest
minimum precipitation at 770.3 mm per annum, indicating potential aridity in certain
regions. The average precipitation is the highest in the BCC-CSM2-MR model–2837.5 mm
per annum, which may imply a general increase in precipitation levels. Regarding evapo-
transpiration, the UKESM1-0-LL model predicts the highest mean at 1814.8 mm per annum
and shows the highest maximum evapotranspiration at 1992.6 mm per annum, reflecting
potential water loss from the surface and indicating the possibility of increased drought
due to rising air temperatures.

2.3. Calibration and Validation

The InVEST–AWY model was calibrated using annual data from 1983 to 2012 obtained
from the Aceitico gauging station. The subsequent review phase lasted from 2013 to 2021,
as shown in Figure 5. The model’s performance was assessed to reduce the average bias
and refine the coefficient of determination (R2) along with the Root Mean Square Error
(RMSE) (Table 6).
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Figure 5. Fluctuations in observed (represented by a solid blue line) and modeled (depicted with a
solid red line) water discharge (Q) in the studied rivers of the Meta River basin from 1980 to 2021.
The dotted line traces the sixth-degree polynomial trend of water discharge, whether observed or
modeled. R2 denotes the fit quality of the trend line to the data points; rcal and rval signify the
correlation coefficients for the calibration (1983–2012) and validation (2013–2021) period, respectively.
Source: [9].
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Table 6. Metrics for the model performance in the studied subbasins during calibration and validation
periods using the InVEST–AWY model (for symbols, see Figure 5). Source: [9].

Basin/Subbasin NSE RMSE rcal rval DIF STD

Meta River 0.07 1071.61 0.5 0.28 1083.62
Upper Meta River 0.49 135.37 0.79 0.83 132.81

Yucao River 0.03 57.49 0.4 0.22 40.61
South Cravo River −1.29 24.75 0.5 −0.25 24.92

Upper Casanare River −0.49 452.32 0 0.18 261.12

A total of 100 simulations were carried out annually from 1983 to 2012 [9] with
variations in the Kc and Z coefficients. The analysis revealed that the InVEST–AWY model
gave optimal results with Z = 1 and Kc = 1.10. Despite identifying the most effective
parameter combination for the Meta River basin, only the upper Meta River subbasin
showed strong correlation coefficients, scoring 0.79 in the calibration phase and 0.83 in
validation, indicating that the model performed accurately in this area.

3. Results

The simulated average water yield for this basin was 1.62 × 1011 m3/year (5141.6 m3/s)
(Figure 6A) during the period 1983 to 2021, which is 1.5% higher than the value reported
by IDEAM.

Hydrology 2024, 11, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. Maps of baseline annual water yield (A) versus predicted 2050 annual water yields under 
SSP 4.5 (B) and SSP 8.5 (C) climate scenarios. (1) Upper Meta River subbasin; (2) Yucao River sub-
basin; (3) South Cravo River subbasin; (4) upper Casanare River subbasin. (D) is the location of the 
Meta River basin in Colombia. 

3.1. Changes in the Annual Water Yield Predicted 2050 under CMIP6 Scenarios 
Table 7 presents annual water yield data (in m3/year) for various subbasins and sce-

narios, including the current baseline (1983–2012) and predictions for the year 2050 under 
two Shared Socioeconomic Pathways (SSP 4.5 and SSP 8.5 scenarios). In addition, the per-
centage change in annual water yield volume and flow changes for these future scenarios 
compared with the baseline period was revealed. 

Table 7. Spatial variation in the annual water yield in the Meta River basin under the SSP 4.5 and 
8.5 scenarios. 

Station ID Basin/Subbasin Climate Scenario Precipitation (mm) PET (mm) 
AET 
(mm) 

Water Yield 
Volume (m3) 

Simulated 
Water Flow 

(m3/s) 

Measured 
Mean Flow for 

1983–2012 
(m3/s) 

Water Yield 
Changes (%) 

35257040 Meta River basin 
Current 2255.3 1672.0 726.1 1.73 × 1011 5141.6 

5063.84 
  2 1 

2050 SSP 4.5 2553.8 1776.8 773.9 2.02 × 1011 6397.5 24 
2050 SSP 8.5 2474.2 1805.8 776.7 1.92 × 1011 6101.5 19 

35117010 
Upper Meta 
River subbasin 

Current 2683.9 1732.2 769.8 5.05 × 1010 1600.6 
1559 

  3 1 
2050 SSP 4.5 2647.9 1676.3 760.5 4.98 × 1010 1578.3 –1 
2050 SSP 8.5 2571.8 1705.3 764.5 4.77 × 1010 1511.3 –6 

36027050 
Upper Casanare 
River subbasin 

Current 2011.6 1469.4 666.0 3.08 × 1010 976.3 
470 

108 1 
2050 SSP 4.5 2307.3 1783.5 764.5 3.53 × 1010 1119.7 15 
2050 SSP 8.5 2226.9 1813.3 766.5 3.34 × 1010 1059.9  9 

35127020 
Yucao River 
subbasin 

Current 2504.5 2039.2 821.2 3.02 × 109 95.9 
82.7 

 16 1 
2050 SSP 4.5 2804.1 1934.3 815.4 3.57 × 109 113.3 18 
2050 SSP 8.5 2732.2 1964.8 818.6 3.44 × 109 109.0 14 

Figure 6. Maps of baseline annual water yield (A) versus predicted 2050 annual water yields under
SSP 4.5 (B) and SSP 8.5 (C) climate scenarios. (1) Upper Meta River subbasin; (2) Yucao River subbasin;
(3) South Cravo River subbasin; (4) upper Casanare River subbasin. (D) is the location of the Meta
River basin in Colombia.

3.1. Changes in the Annual Water Yield Predicted 2050 under CMIP6 Scenarios

Table 7 presents annual water yield data (in m3/year) for various subbasins and
scenarios, including the current baseline (1983–2012) and predictions for the year 2050
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under two Shared Socioeconomic Pathways (SSP 4.5 and SSP 8.5 scenarios). In addition,
the percentage change in annual water yield volume and flow changes for these future
scenarios compared with the baseline period was revealed.

Table 7. Spatial variation in the annual water yield in the Meta River basin under the SSP 4.5 and
8.5 scenarios.

Station ID Basin/Subbasin Climate
Scenario

Precipitation
(mm)

PET
(mm)

AET
(mm)

Water Yield
Volume (m3)

Simulated
Water Flow

(m3/s)

Measured Mean
Flow for

1983–2012 (m3/s)

Water Yield
Changes (%)

35257040 Meta River basin
Current 2255.3 1672.0 726.1 1.73 × 1011 5141.6

5063.84
2 1

2050 SSP 4.5 2553.8 1776.8 773.9 2.02 × 1011 6397.5 24
2050 SSP 8.5 2474.2 1805.8 776.7 1.92 × 1011 6101.5 19

35117010 Upper Meta
River subbasin

Current 2683.9 1732.2 769.8 5.05 × 1010 1600.6
1559

3 1

2050 SSP 4.5 2647.9 1676.3 760.5 4.98 × 1010 1578.3 −1
2050 SSP 8.5 2571.8 1705.3 764.5 4.77 × 1010 1511.3 −6

36027050 Upper Casanare
River subbasin

Current 2011.6 1469.4 666.0 3.08 × 1010 976.3
470

108 1

2050 SSP 4.5 2307.3 1783.5 764.5 3.53 × 1010 1119.7 15
2050 SSP 8.5 2226.9 1813.3 766.5 3.34 × 1010 1059.9 9

35127020 Yucao River
subbasin

Current 2504.5 2039.2 821.2 3.02 × 109 95.9
82.7

16 1

2050 SSP 4.5 2804.1 1934.3 815.4 3.57 × 109 113.3 18
2050 SSP 8.5 2732.2 1964.8 818.6 3.44 × 109 109.0 14

35217010 South Cravo
River subbasin

Current 2238.6 1498.0 690.4 1.85 × 109 58.5
98.7

−41 1

2050 SSP 4.5 2086.3 1493.7 684.5 1.67 × 109 52.9 −10
2050 SSP 8.5 2021.8 1522.6 688.6 1.59 × 109 50.3 −14

Note: PET is Potential Evapotranspiration, AET is Actual Evapotranspiration; 1 uncertainty estimated in the
baseline simulation for the period 1983–2012.

The Meta River basin shows a slight increase in annual precipitation under both future
scenarios (Table 7), with a corresponding rise in PET. The simulated water flow increases
according to the SSP 4.5 scenario but reveals a smaller rise according to the higher emission
SSP 8.5 scenario (Figure 6; Table 7). Water yield changes reflect an increase of 24% under the
SSP 4.5 scenario and 19% under the SSP 8.5 scenario, indicating potential water resource
availability.

The upper Meta River subbasin experiences minimum changes in annual precipitation
across the scenarios (Table 7), while PET shows a moderate increase. The simulated water
flow and water yield changes under future scenarios indicate a slight decrease under the
SSP 4.5 scenario with −1% and under the SSP 8.5 scenario with −6% (Figure 6; Table 7).
In the case of the upper Casanare River subbasin, precipitation and PET are predicted to
increase under both scenarios. Remarkably, the changes in water yield are noticeable, with
a significant increase of 15% under the SSP 4.5 scenario and 9% under the SSP 8.5 scenario
(Figure 6; Table 7). It is also important to note the InVEST–AWY overestimation in 108% in
this subbasin, which means careful recalibration for that specific zone is necessary.

For the Yucao River subbasin, the model predicts an increase in annual precipitation
and a slight increase in PET for both future scenarios (Table 7). The changes in water
yield are markedly positive, with increases of 18% and 14% under the SSP 4.5 and SSP
8.5 scenarios (Figure 6; Table 7), respectively, indicating a trend towards greater water
resource availability.

Predictions for the South Cravo River subbasin show decreased annual precipitation
and minor changes in PET under both future scenarios. The simulated water flow will
decrease significantly, with a decrease of −10% under the SSP 4.5 scenario and −14% under
the SSP 8.5 scenario. This prediction suggests a concerning decline in water availability for
the South Cravo River subbasin. However, the model performance for the South Cravo
River subbasin is notably less accurate with a sub estimation of 41% in the baseline period,
indicating a need for model refinement. The predicted negative impact and the discrepancy
with observed data emphasize the need for improved data and modeling at the local level.

Based on the InVEST–AWY model’s predictions for the year 2050 under the SSP 4.5
and 8.5 scenarios, there is an anticipated increase in available water in 24% and 19%,
respectively, throughout the entire basin of the Meta River, attributed to heightened rainfall
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in the higher elevations. Simultaneously, scenarios [25] suggest a substantial decrease, up
to 85%, in low water flows in over half of the Colombian Orinoco River basin.

Table 7 also highlights the variability and uncertainties inherent in the InVEST An-
nual Water Yield model’s predictions when calibrated with data from 1983–2012. The
discrepancies in water yield changes are considerable, with the model overestimating
yields by 108% in the Upper Casanare River subbasin, indicating a possible overprediction
of water availability in this area. Conversely, the South Cravo River subbasin’s yield is
underestimated by 41%, suggesting an underprediction of water yield. These errors could
be attributed to the sparse network of weather stations within these watersheds and the
significant topographical variations, both of which are challenging factors for the model to
accurately simulate [16].

3.2. Spatial Variation in Water Yield for 1983–2012 and 2050 under Two Scenarios

Figure 6 shows the outputs from the annual water yield model identifying the fluctu-
ating availability of water across a historical baseline (annual average water yield for the
period 1983–2012) and two prediction scenarios for 2050, based on CMIP6 SSP 4.5 and SSP
8.5 scenarios. The historical baseline, covering the period from 1983 to 2012, frames the
analysis, with a noticeable gradient in water yield across the landscape. Higher elevation
zones located in the western part of the Meta River basin, typically associated with higher
annual precipitation, present a reduction in water yield. This decline is attributed to fluctu-
ations in precipitation coupled with rising air temperatures, which are evident in the shift
from historical patterns to the 2050 predictions. The SSP 4.5 scenario, considered moderate,
retains much of the baseline’s spatial pattern, but it shows a subtle shift in the distribution
of water yield across these higher elevations, signaling a nuanced response to evolving
climatic conditions.

On other hand, the SSP 8.5 scenario, characterized by higher greenhouse gas emissions,
predicts a severe deviation from historical trends, especially in the western highlands,
where more intense changes are expected. This scenario indicates an increased change in
water yield, and a deeper color on the map (Figure 6) signals a potential increase in water
availability. Such changes are likely a consequence of predicted increases in precipitation
and the amplifying effects of increased air temperatures on evapotranspiration processes.
Meanwhile, low-lying areas of the Meta River basin are predicted to experience increased
rainfall.

4. Discussion
4.1. Model Limitations

The InVEST–AWY model uses annual average data and does not consider the changes
in water supply and hydropower production that occur at different times of the year, such
as dry or rainy seasons. This means that predicting the amount of water or energy available
during extreme weather conditions such as drought or flooding may not be very accurate.
Also, the way the model calculates how much water is used up (consumptive demand) is
too simple, which may affect how well it can determine how much water is available for
various purposes. This is important when looking at how land-use and land-cover changes
affect water resources [17]. Furthermore, the InVEST–AWY model does not separate surface
and groundwater runoff [26]. On the other hand, the model shows a minimum response to
variations in the Z coefficient [27,28], but it is very sensitive to changes in precipitation and
evapotranspiration [29].

4.2. Uncertainties in the Reported Information

The lack of comprehensive hydrogeological studies in the Meta River basin makes
it difficult to fully understand hydrogeological dynamics, especially the contribution of
groundwater to total river flow [29]. This finding points to diverse water dynamics within
aquifers, suggesting more complex interactions between surface and groundwater systems
than previously thought.
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On the other hand, this study faces significant uncertainty due to incomplete data
from the selected monitoring stations. Among the five stations used, only one is automated,
and notable data gaps were observed, such as missing annual data for certain years at
the Aceitico and Cravo Norte gauging stations, as well as Puente Yopal (see Figure 5). In
addition, these stations reported irregular values in various years, potentially impacting
the reliability of the model calibration and validation. This circumstance highlights the
difficulty of accurately estimating water flow in this area. Furthermore, Pimentel et al. [25]
found that although groundwater extraction accounts for approximately 5% of total regional
demand, the actual figure may be higher due to unaccounted-for extraction.

4.3. Climate Change Uncertainties

In the context of the 2050 water yield predictions under the CMIP6 for the SSP 4.5
scenario, Figure 7 shows clear spatial differences in predictions between different global
climate models. The BCC-CSM2-MR model predicts a significantly high-water yield,
especially in the western part of the study basin, with estimates ranging from 3000 to
4500 mm per annum. This increase is particularly noticeable on the mountain slopes in the
western region, in the southwest of the basin. In contrast, models such as HadGEM3-GC31-
LL, MPI-ESM1-2-HR, and UKESM1-0-LL indicate a drier trend in most parts of the basin.
However, on the mountain slopes of the river basin, they do predict isolated zones with
maximum water yields of about 1500 mm per annum. The remaining models generally
suggest a moderate increase in water yield in the mountainous areas, maintaining a trend
that falls between these two extremes.
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Regarding the uncertainties inherent in these climate predictions, the BCC-CSM2-
MR model exhibits the highest level of variance. This is primarily due to its significant
deviation from the ensemble average (estimated from all 13 models used in this study) with
an overestimation ranging from 400 to 1200 mm, especially noticeable on the mountain
slopes of the study basin. At the other end of the spectrum, models like FIO-ESM-2-0,
HadGEM3-GC31-LL, and IPS-CM6A-LR show strong underestimations, deviating from
the ensemble average by approximately −150 to −450 mm. Notably, the MIROC6 model
demonstrates the least uncertainty, maintaining water flow deviation in a narrow range
from 0 to 100 mm.

In the high-emission SSP 8.5 scenario (depicted in Figure 8), the CMIP6 model water
yield predictions show a pattern largely similar to the SSP 4.5 scenario, with some notable
variations. An analysis of the map mosaic shows that most models predict a small increase
in water yield, mainly concentrated on the mountain slopes of the study basin. This trend
is consistent across various models, with the BCC-CSM2-MR model continuing to predict
high water yields. In contrast, models such as HadGEM3-GC31-LL, MPI-ESM1-2-HR, and
UKESM1-0-LL predict lower to moderate water yields.
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In terms of uncertainties, the BCC-CSM2-MR model again demonstrates a significant
overestimation of annual water yield under the SSP 8.5 scenario, 150 to 900 mm above the
average of all the models. This overestimation underscores the model’s tendency to predict
higher water yields, especially under higher emission scenarios. In addition, the EC-Earth3-
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Veg model predicts a substantial increase in water yield, particularly in the central-western
zone of the river basin, with estimates ranging from 250 to 500 mm. The MRI-ESM2-0
model also indicates a modest positive deviation in water yield for the north-eastern zone
in the range of 250 to 300 mm. In contrast, models such as INM-CM5-0 and MIROC6 show
the least uncertainty, with deviations ranging from 0 to 150 mm across most of the river
basin.

In the most severe of these scenarios, the Meta, Vichada, and Guaviare rivers are
expected to experience significant reductions in low water flow, by 95%, 98%, and 50%,
respectively. Moreover, in a study carried out by [16], using the SWAT model, simulations
were carried out in the Meta River basin, covering the basins of the Ariporo, Cravo Sur,
Cusiana, Guatiquía, and Guayuriba rivers. This study aimed to assess the impact of various
climate change scenarios (RCP 2.6, RCP 4.5, and RCP 8.5 scenarios) for the year 2040, using
a reference period of 1997 to 2012 (16 years). These predictions modeled annual water
flow reductions of 6–7%, with January identified as the most critical month for water flow
reductions.

5. Conclusions

(1) For the Meta River basin, we predict a significant increase in simulated water flow
from the current 5141.6 m3/s to 6397.5 m3/s by 2050 under the SSP 4.5 scenario,
and an increase to 6101.5 m3/s under the SSP 8.5 scenario. This correlates with an
increase in water yield by 24% and 19%, respectively, under the two future scenarios
evaluated. The upper Meta River subbasin shows a slight decrease in water flow
from the current 1600.6 m3/s to 1578.3 m3/s (SSP 4.5) and a decrease to 1511.3 m3/s
(SSP 8.5), with water yield changes ranging by −1% and −6%, respectively. The
upper Casanare River subbasin is expected to see a moderate rise in water yield from
976.3 m3/s to 1119.7 m3/s and 1059.9 m3/s under the SSP 4.5 and SSP 8.5 scenarios,
respectively, with water yield changes rising by 19% and 9%, respectively. The Yucao
River subbasin shows an increase from 95.9 m3/s to 113.3 m3/s and 109 m3/s, with
water yield changes increasing by 18% and 15%, respectively. In contrast, the South
Cravo River subbasin is predicted to face a decrease in water flow from the current
58.5 m3/s to 52.9 m3/s and 50.3 m3/s, with a significant drop in water yield changes
of −10% and −14%, respectively, indicating a marked reduction in water availability.

(2) Although the InVEST–AWY model provided acceptable results for the entire Meta
River basin using data from 1983 to 2012, our study showed that the model is capable
of effectively predicting potential impacts in well-calibrated areas, especially in the
upper Meta River subbasin as defined by the Humapo gauging station.

(3) The uncertainties observed in the thirteen global climate models according to SSP
4.5 and 8.5 scenarios stem from the varying predictions of increased water yield
availability in the flatter regions of the main basin. This potential increase could lead
to a higher likelihood of concurrent floods or river overflows, emphasizing the need
for adaptation strategies in these areas.

(4) Future research should prioritize two key areas. First, flood risk analysis and strategies
are needed in areas that have potential for increased water yield, considering expected
increases in water levels and the possibility of flooding. This area of research will
include the use of models to predict floods, assess impacts on infrastructure and
communities, and develop flood mitigation strategies. Second, it is important to study
the socioeconomic impacts of water yield fluctuations, especially in regions facing
declining water availability, such as the South Cravo River subbasin. Research in this
area may focus on water management, impacts on agricultural practices, and impacts
on community livelihoods.

(5) Finally, it would be useful to carry out comparative studies using a range of both non-
robust and robust hydrological models. This approach would serve to validate the
study’s findings and provide a clearer understanding of the comparative advantages
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of various hydrological models, especially in regions with complex topography and
scarce meteorological monitoring data in Colombia.
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