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Abstract: This study investigates how the performance of a set of models depends on the catchments
to which these models are applied. It examines (i) whether it is possible to identify a single best
model for each of the catchments, or whether results are dominated by equifinality; and (ii) whether
the ranking of model performance can be related to a set of predictors, such as climate and catchment
characteristics. In order to explore these questions, we applied 12 model structures to 99 catchments
in Germany, ranging in size from 10 km2 to 1826 km2. We examined model performance in terms of
streamflow predictions, based on various indices. Our results indicate that for some catchments many
structures perform equally well, whereas for other catchments a single structure clearly outperforms
the others. We could not identify clear relationships between relative model performance and
catchment characteristics. This result led us to conclude that for the spatial scales considered, it is
difficult to base the selection of a lumped conceptual model based on a priori assessment, and we
recommend a posteriori selection based on model comparisons.
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1. Introduction

Understanding the key factors that control similarities and differences in catchment response
behavior is an important objective of hydrological science. This objective underlies, for example,
the research initiative of “catchment classification,” which aims to develop the theoretical framework
to sort the variability in “space, time, and process” of catchment systems [1]. Advancing catchment
classification cannot be achieved only through detailed studies at individual catchments, but requires
a “large catchment sample” approach. It is therefore necessary to assemble data from a large number
of catchments, and try to identify and explain emerging spatial and temporal patterns [2].

Conceptual models are important tools for understanding and predicting the hydrologic behavior
of meso-scale catchments [3] and the identification of an appropriate model structure is often seen as a
means to characterize catchment functioning, e.g., [4–6]. Different authors have criticized the use of
off-the-shelf models in favor of “flexible” approaches that can be adapted to the dominant processes of
the catchments [7–10]. “Since dominant runoff processes are expected to vary between catchments of
different substrate, climate, and land use, it would be anticipated that different model structures may
perform better in different catchments” [11].
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Whereas the majority of conceptual modeling studies is limited to individual catchments [2],
recently an increasing focus has been placed on model and catchment inter-comparison studies.
Model comparisons have been performed using two distinct approaches: use different structures from
different model concepts [6,12,13], or use different structures within a modeling framework [14–17].
Model structure selection, development, and comparison are a great advantage of flexible model
frameworks. For example, various models generated using the SUPERFLEX framework [10] were
applied to 237 French catchments, and these models provided better average results than the fixed
model GR4H [16].

A wide range of previous studies analyzed the performance of various models in different
catchments [12,15,16]. Some studies showed no relationships between catchment types and suitable
model structures, e.g., [12,14]. Instead, they reported similar model performance for a variety of model
structures, supporting the notion of “equifinality” of model structures [12]. Beven [18] introduced
model equifinality as the expectation that “acceptable model predictions might be achieved in many
different ways, i.e., different model structures or parameter sets” and “should not be a surprising
concept” [19].

In contrast, other studies reported that different catchments are represented best by distinct model
structures, and that differences in model performance can help to interpret catchment processes. For
example, Buytaert and Beven [20] showed that model comparisons helped to interpret the dominant
processes of an upland catchment in the Ecuadorian Andes. Fenicia et al. [17] showed that the difference
in performance of various models on three headwater catchments in Luxembourg could be interpreted
based on geology-controlled dominant processes.

Perhaps the different conclusions of those studies are due to how models are constructed and
evaluated. In order to take advantage of model comparisons, multi-model experiments need to
be constructed in a meaningful way, so that models cover the space of plausible hypotheses while
differing from each other in some controlled aspects [21]. Furthermore, model evaluation needs
diagnostic power in order to represent model performance meaningfully [22]. The identification of a
suitable model structure for a catchment is usually based on the choice of an appropriate performance
measure [6]. Ley et al. [23] demonstrate that the selection of suitable performance measures increases
the quality of the selection of acceptable model structures. They propose the use of signature indices
derived from the flow duration curve as performance measures for model comparison.

On the other hand, the application of multiple conceptual model structures to a single catchment
is a popular and constructive approach to understand and identify hydrological processes and
recognize differences in process catchment behavior [15,16,20]. In this respect Savenije [8] describes
“one-size-fits-all” models as useless for the purpose of hydrological research and calls for tailor-made
and site-specific models because of heterogeneity at all scales in hydrology. Clark et al. [21] and
Fenicia et al. [17] characterize catchments in New Zealand [21] and in Luxembourg [17] with distinct
hydrological dynamics using different lumped models. Wagener and McIntyre [15] describe the
suitability of single model structures for particular regions in the eastern half of the United States,
reflecting the influences of catchment properties. Likewise, van Esse et al. [16] refer to connections
between model structures and catchment size, climate, and a runoff descriptor for French catchments.
Coxon et al. [6] underline the importance of varying the model structure for a set of 24 UK catchments
with wide climatic and hydrologic diversity and insist that model structures need to be tailored to
each catchment.

In this study, we applied 12 model structures of diverse complexities, formulated within
the modeling framework SUPERFLEX [10], to 99, mostly meso-sized, often neighbored or nested
catchments situated in western Germany. Each of the 12 models was calibrated on each of the
catchments, and the differences in model performance were analyzed.

This study has the following objectives: to analyze (i) whether the ranking of the performance
of the selected model changes depending on the catchment; and (ii) whether such ranking can be
indicative of the different behavior of the catchments, and related to its characteristics.
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The article is structured as follows: After a description of the analyzed catchments, the calibration,
the performance measures and the selection and analysis of acceptable models is described. The results
portray the behavior of the different model structures for the 99 catchments, which are analyzed in the
discussion and summarized in the conclusion at the end of this paper.

2. Materials and Methods

2.1. Study Area

The study area consists of 99 small to medium size gauged catchments in the low mountain ranges
of southwest Germany (Figure 1). Catchment sizes vary from 10 km2 to 1826 km2; 62 catchments
are smaller than 200 km2 and seven catchments are larger than 1000 km2. Several catchments are
neighbored or nested. The catchments are situated in a comparatively small area with the maximum
distance between two points of the study area being about 325 km. Geology is very variable. In the
north of the study area, it consists of greywacke, quartzite, and sedimentary rock with tertiary and
quaternary volcanism. In the south of the study area, it consists of sandstone, marl, and limestone.
There is no considerable presence of karst.
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Figure 1. Catchments (black lines) of the study area in western Germany (red lines: federal states of
Rhineland-Palatinate and Baden-Württemberg). Nested basins are sorted by size: smaller catchments
are plotted on top of larger ones so that only headwater basins are displayed completely.

All catchments within the study area belong to the same climatic region (temperate humid),
but show climatic peculiarities depending on the altitude and location. Precipitation ranges from
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542 mm/year in the Rhine valley up to 1730 mm/year for the Black Forest. Two thirds of the catchments
have mean annual precipitation between 700 mm/year and 1000 mm/year, 11 catchments have a mean
annual precipitation larger than 1200 mm/year, and four catchments have less than 600 mm/year.
Aridity indices (precipitation/potential evaporation) vary between 0.8 in the Rhine valley and about
2.5 in the Black Forest. Annual runoff coefficients vary between 0.1 in the Rhine valley and 0.8 in the
northern Black Forest.

Elevation ranges from about 85 m above sea level (a.s.l.) to 1000 m a.s.l., whereas the largest part
of the area is situated between 300 m a.s.l. and 500 m a.s.l. Most of the catchments are rural with little
urbanization (less than 10%). The proportion of forest varies between 14% and 95%, except for two
catchments in the Rhine Valley that are characterized by viticulture without forests. For 11 catchments,
over 70% of the surface area is forested. Table A1 lists important characteristics of all catchments in the
study area.

2.2. Data

For the model application, hourly runoff, areal precipitation, and temperature data for the period
from January 1996 or January 1997 to December 2003 were used. These time series cover a wide range
of diverse annual or seasonal precipitation and runoff events.

Areal precipitation and air temperature was calculated for catchments in Rhineland-Palatinate
with “InterMet” [24], which interpolates meteorological data using the kriging technique. InterMet
takes into account data from about 200 rain gauges, along with meteorological data, prevailing
atmospheric conditions, orography, and satellite and radar data. For catchments in Baden-Württemberg
areal precipitation and air temperature were calculated with the interpolation routine of the water
balance model LARSIM (Large Area Runoff Simulation Model [25]). The conversion of measurements
to subareas is done by a modified inverse distance method with consideration of altitude’s dependency
of the temperature. The two interpolation methods for areal precipitation may have marginal effects
on the calibration and therefore on the results. However, in our study, no effects were visible. Potential
evaporation was calculated with Hamon’s equation [26].

The typical spatial extent of rainfall fields is in the range of most of the catchments. However,
in summer, convective rainfall events may affect only parts of the catchments. Snow events occur in the
study area. However, they are of minor importance since they are limited in amount, not prolonged,
and irregular. Snow processes are thus not considered in the modeling exercise.

2.3. Methods

2.3.1. Calibration

For all catchments, we use eight years of hourly rainfall and runoff data. The warm-up period of
the calibration consists of the first year of the data period (1996). Following a split-sample approach [27],
the remaining range (1997–2003) is subdivided into a calibration period and a validation period of
equal length.

We use 12 lumped conceptual model structures constructed within the SUPERFLEX modeling
framework [10]. The structures are proposed by Fenicia et al. [17] for catchments in Luxemburg,
and they are also used by van Esse et al. [16] for French catchments. Since all model structures
are lumped, they provide physically plausible descriptions of the catchment-scale response,
but the behavior of different runoff mechanisms cannot be allocated to different areas within the
catchment [17].

The model structures include serial, linear, and parallel model structures with different numbers
of reservoirs and parameters, thus covering a broad range of conceptual model complexities (Figure 2).
M01 represents the simplest hydrological model with one nonlinear reservoir and M02 an extended
single reservoir with a power function. M03 to M05 comprise two reservoirs as serial structures,
representing an unsaturated and a storage reservoir. Differences are in the connection of the reservoirs:
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as an overflow (M03) or as a power function of the storage (M04 and M05) and including a transfer
function between the reservoirs of M05. M06 is similar to M05 but with an additional interception
reservoir before the unsaturated reservoir. M07 to M12 comprise two to four reservoirs in parallel
arrangements. M07 has a riparian zone reservoir, which receives a constant fraction of precipitation.
M08 is a simple parallel structure where precipitation is partitioned between two linear reservoirs
(slow and fast). M09 is extended by an unsaturated reservoir partitioning precipitation and M10
includes an unsaturated reservoir and a transfer function. M11 is based on M10 but with an additional
power function splitting the outflow of the unsaturated reservoir. For M12 is like M11 with the
inclusion of an interception reservoir [17]. The number of parameters varies between two for the
simplest model structure M01 to eight for model structure M12 (Figure 2). Please note that there
is no linear increase in complexity from structure M01 to structure M12. Table 1 lists the ranges of
all parameters.
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Figure 2. Model structures, adapted from Fenicia et al. [17]. D: partition between fast and slow reservoir;
Ef (Ce): actual evaporation; Eu (Ce): unsaturated evaporation; I = interception; K: storage coefficient;
P: precipitation; Q: discharge; S: storage; Sumax: storage; β: power function; f = fast; r = riparian;
s = slow; t = total; u = unsaturated.

Table 1. Parameter ranges of the 12 model structures. All parameters, except D and M, are converted
to a logarithmic value for calibration.

Parameter Minimum Maximum

Ce (-) 0.01 30
D (-) 0 1

Imax (mm) 0.000001 20
Kf (1/d) 0.0000001 1
Kr (1/d) 0.00001 1
Ks (1/d) 0.0000001 1

M (-) 0 0.3
Rmax (mm/day) 0.001 30

Sumax (mm) 0.1 0.000001
Tf (d) 1 500
β (-) 0.001 50
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The calibration was similar in van Esse et al. [16], except for the fact that the parameter α at
the outflow of the fast reservoir of models 1, 3, 4, 5, 6, and 7 was set to 2, corresponding to a
“Dupuit–Boussinesq aquifer” [28]. Van Esse et al. [16] describe this parameter as far less effective than
parameter β. Parameter α showed only a marginal effect for catchments in our study area as well. With
a constant parameter α, we achieve better simulations with a reduced number of calibrated parameters.

The objective function for calibration is based on a weighted least squares approach, assuming
independent Gaussian error with zero mean and standard deviation linearly proportional to the
modeled discharge [29]. Optimization was carried out through a quasi-Newton method with
30 multi-starts randomly selected across the parameter space.

We calibrated 12 model structures for each of the 99 catchments. Each of these 1188 models
consists of a specific structure combined with a parameter set and catchment information.

2.3.2. Model Evaluation: Identification of Acceptable Models

The large scatter of signature indices for several models requires the identification of acceptable
models for further analysis. The identification of acceptable models is based on thresholds of two
performance measures: a combination of four signature indices derived from the Flow Duration Curve
(FDC) [23] and the Nash–Sutcliffe Efficiency (NSE) [30].

The FDC represents the relationship between magnitude and exceedance probability of runoff
for a single catchment. Therefore, it is a key signature of runoff variability and can be used for
model evaluation and comparison [31–33]. Yilmaz et al. [32] developed so-called signature indices,
which represent specific parts of an FDC and express the percentage biases between observed values
and simulated values proportional to the observed FDC. Ley et al. [23] proposed four signature indices
to examine the influence of specific aspects of the hydrograph on model performance: extreme high
runoff (FHV), medium runoff (FMV), mid-slope (FMS), and low flow (FLV) (Figure 3). These four
signature indices take into account the whole FDC and therefore the entire hydrograph.
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To evaluate model performance based on the values of the four signature indices, the absolute
values of these indices are summed into one value: SSI (Equation (1)). Because the sum of percentages
as absolute values of biases can lead to misunderstandings, we set SSI as dimensionless:

SSI “ |FHV| ` |FMV| ` |FMS| ` |FLV| . (1)

The addition of the absolute values of the signature indices considers all parts of the FDC equally.
The absolute values indicate that whether the FDC is over- or underestimated is irrelevant. The values
of SSI range between zero (perfect fit) and infinity (no fit).

As the FDC does not reflect information on timing of the flow, we use the NSE (Equation (2)) to
avoid recognizing models with large timing errors but an acceptable FDC by chance.

NSE “ 1´
řn

i“1 p qobs piq ´ qsim piq q
2

řn
i“1 p qobs piq ´ qobs q

2 , (2)

where qobs represents observed runoff, qsim represents simulated runoff, the overbar denotes the mean,
and n is the length of the time series. The NSE is a common normalized measure to evaluate the
performance of hydrologic models and compares the mean square error of the simulated runoff to the
variance of the observed runoff (Equation (2)). It ranges from minus infinity to 1, where 1 indicates a
perfect fit. For characterizing streamflow performance, it is typically considered that NSE is overly
sensitive to large values [34] and that the NSE is not always expedient for model evaluation and
comparison [23,35].

Models are considered acceptable if SSI is less than 70 and NSE is larger than 0.65. Models that do
not fulfill these two criteria are no longer incorporated in the subsequent stages of the analysis.

The threshold values for SSI and NSE are selected based on experience. For the NSE, the selected
threshold corresponds to adequate or very good reported performance ratings for NSE according to
Moriasi et al. [36], whereas Oudin et al. [37] refer to a poorly modeled catchment when the NSE is less
than 0.7. The threshold of 70 for SSI is based on visual inspections of suitable FDCs.

2.3.3. Comparing Model Performances

To separate similar from dissimilar runoff simulations, we grouped model performances by a
cluster analysis with a Self-Organizing Map (SOM). Input data for the analysis are the four signature
indices of each acceptable model. For catchments with more than one acceptable model, all acceptable
models are included.

An SOM is an automatic data-analysis method widely applied to clustering problems and data
exploration [38]. Kohonen [39] provides a detailed description of the algorithm and its properties.
A SOM produces a semantic map of units, called neurons, which represent the input datasets
(i.e., signature indices of models). On the map similar units are mapped closer together and dissimilar
units are further apart. The semantic map also quantifies distances between units that are interpreted
as borders of clusters. These groups of similar units and distances constitute clusters of models with
similar signature indices. The use of SOM for cluster analysis is described in detail by Ley et al. [40,41].
For the training and visualization of the SOM we use the “SOM-Toolbox for Matlab 5” [42].

The cluster analysis groups models with similar sets of signature indices into homogenous clusters
of models and therefore quantifies similarity. For each catchment we analyzed in which cluster the
acceptable model results are listed. Acceptable models of one catchment in different clusters indicate
discriminating results by different model structures. Multiple models of one catchment in a cluster
highlight multiple model structures simulating the catchment similarly. We use the results of the
cluster analysis to group the catchments:
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I Multiple model structures simulate a catchment differently. The identification of a best
performing model is possible. The model structure can be tentatively connected to the
catchment behavior. If there are catchments with only one acceptable model, they belong to
this group too.

II Multiple model structures simulate the catchment similarly. Model equifinality [12,18,43]
makes it difficult to connect model structure and catchment structure or behavior. Catchments
of this group are further divided into:

a catchments where all acceptable models simulate the runoff similarly; and
b catchments where at least 60% but not all acceptable models simulate runoff similarly.

Catchments without an acceptable model result constitute an additional group:
III No model structure simulates the catchment acceptably. All structures fail to capture

catchment behavior.

2.3.4. Identification of Best Performing Models

For each catchment with acceptable models, the model with the lowest SSI (Equation (1)) is the
best performing model for this catchment. For catchments with only one acceptable model, this model
is assigned as the best performing.

If models show minimal differences, an identification based on the lowest SSI is often possible,
but not very reliable. For catchments with differences of SSI < 2.0 between models, we identify more
than one best performing model.

The suitability of best performing models to represent catchment characteristics is tested by
correlating them with catchment properties and catchment location.

2.3.5. Correlation with Catchment Properties

To find a link between catchment properties and model behavior, we compare catchments with
the same best performing models and catchments of groups I to III with their catchment properties,
neighborhoods, and nesting.

3. Results

3.1. Calibration

The calibrated models show only minor differences with reference to their performance when
compared to the validation period. The mean difference between the NSE of calibrated and validated
models is 0.07, with a median of 0.05. Models based on structure M03 show the highest differences,
up to 0.66; most of the models show differences with a maximum of 0.2. For acceptable models,
the mean difference between the NSE for the calibration and the validation period is 0.05, with a
median of 0.04 and a maximum of 0.24. The highest mean differences are observed for models based
on structures M01 and M08. Therefore, the analysis uses the simulated results of the calibrated models.

3.2. Signature Indices

The signature indices for each calibrated model show no unique model structure that represents
all parts of the FDC best (Figure 4). Large biases (high values of signature indices) are predominantly
found for model structures M01 to M03 and to a lesser extent for model structure M08. The biases
of FHV (peak flow) show predominantly underestimations for most of the model structures. Here,
only model structure M03 shows a median bias of zero, but a very high uncertainty range.

Most of the models show for the three remaining signatures a median close to zero. This indicates
well performing models, except for the highest peaks. Nevertheless, from this analysis, it is not possible
to clearly detect which model structure performs best.
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Figure 4. Box and whisker plots of the four signature indices of all models and 12 model structures.
The boxplots show the interquartile ranges as boxes and the median by a black line in the middle of the
box; the whiskers show the minimum and the maximum up to the 1.5 interquartile range and outliers
outside the 1.5 interquartile range.

3.3. Acceptable Models

For the 99 catchments, we identified different numbers of acceptable models per catchment
(Figure 5a): in total, we determined 511 acceptable models. For 15 catchments, there is no acceptable
model. In addition, different model structures lead to acceptable models for a different number of
catchments (Figure 5b). Model structure M02 generates no acceptable model. This indicates that model
structure M02 is not suited for simulating catchments of the study area.
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No model structure is capable of producing an acceptable model for all catchments (Figure 5b).
This shows that model structures differentiate between catchments.

3.4. Comparing Model Performances

The cluster analysis of acceptable models by their signature indices shows 14 homogenous clusters
containing 13 to 78 models with similar signature indices. The analysis of models per cluster indicates
that for some catchments several models have similar signature indices. Other catchments exhibit
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different signature indices per model. Figure 6 displays the four FDC-based signature indices of
acceptable models for some catchments: the x-axis presents the signature indices; the y-axis shows the
value of the indices.
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Figure 6. Different sensitivities of simulated runoff to model structures for single catchments.
The signature indices of a catchment are displayed and connected by a line creating a performance
pattern for this model. Model structures are indicated by colors and named in the legend with the
number of the model structure. (I) displays examples of catchments with differentiated patterns of
signature indices; (II) performance pattern of catchments with all (a) or most (b) acceptable models with
similar patterns of signature indices; and (III) catchments without an acceptable model. (I, II) show
only acceptable models for these catchments; (III) shows all models of a catchment.

Based on the clusters of models with similar signature indices, we identified four groups of
catchments, including a group of catchments without any acceptable model:

I Multiple model structures simulate a catchment differently. The two example catchments
(Figure 6I) show different patterns of signature indices.For 30 catchments of the study
area (Table A1), multiple model structures produce different simulations, even though few
models show related patterns of signature indices.Additionally, we include in this group
the five catchments with only one acceptable model because of differentiated simulation
results (Table A1).
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IIa All acceptable models of a catchment simulate the catchment similarly and display model
equifinality [43]. This occurs for 17 catchments (Table A1); two examples are displayed
in Figure 6IIa.

IIb At least 60% of acceptable models simulate the catchment similarly (Figure 6IIb). The best
performing model must not be part of the models with similar performances. This group
includes 32 catchments of the study area (Table A1).

III No model structure simulates a catchment acceptably (Figure 6III). Fifteen catchments of
the study area belong to this category (Table A1), indicating conceptual, structural, or data
errors [43].

Similarly performing models of a catchment (group IIa and IIb) are based on different model
structures. Nearly all possible compositions of model structures occur as similarly performing models
of a catchment. No model structure shows similar performance in all cases of acceptability.

Model structures with relatively seldom accepted models (i.e., model structures M01, M03,
and M08) often show different patterns of signature indices than the other model structures,
e.g., models M01 and M03 for catchment “Seelbach” (Figure 6I), “Abentheuer” and “Kocherstetten”
(both Figure 6IIb). Model structures M01 and M08 are the only structures without a separate
unsaturated reservoir and model structure M03 is the only structure in this study with a threshold
function rather than a power function as outflow from the unsaturated reservoir. The remaining
structures result in many acceptable models. These structures include serial, linear, and parallel
structures with two to four reservoirs and four to eight parameters.

The spatial distribution of the catchments of categories I to III show no spatial correlation,
neither for neighbored nor for nested catchments (Figure 7a). Furthermore, no clear correlation
can be identified between these groups of catchments and catchment properties (Figure 7b–e).
Only catchments with similar patterns of signature indices for acceptable models (Figure 7b, c,
dark green) seem to have mean annual precipitation more than 700 mm/year and high runoff
coefficients. However, there are many catchments with these properties in all groups, too.
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(b–e) display catchment properties of catchments in categories I to III.
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3.5. Best Performing Models

For several catchments with similar signature indices for different models, an identification based
on the lowest SSI is possible but not reliable. Therefore, all models with only minor differences of
performance to the lowest SSI (differences < 2.0) are regarded as best performing. Hence, we identify
more than one best performing model for 18 catchments (Table A1). Most of these 18 catchments belong
to categories IIa and IIb. Five catchments of category I show similar signature indices. Models with
similar patterns of signature indices are not necessarily the best performing models of the catchment.
For example, for catchment “Kocherstetten” (Figure 6IIb, on the right), the model based on structure
M03 is the best performing model with an SSI of 24 while the SSI of other similar models are about 36.

3.6. Correlations with Catchment Properties

Figure 8 shows the spatial distribution of catchments with equal best performing models
(Table A1). Catchments with more than one best performing model are striped in the color of their
two best performing models. Spatial proximity is not a good predictor of the best performing model.
Catchments with a best performing model are distributed throughout the study area. Even neighbored
or nested catchments often have different best performing models.
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Figure 8. Spatial distribution of catchments with equal best performing models. Catchments with
two best performing models are striped in the color of both model structures. Please note that nested
catchments are sorted by size: only the headwater catchments are displayed completely. Borders of
large catchments with several upstream catchments are marked with a bold line.

Figure 9 illustrates the relationship between best performing models and mean annual
precipitation, mean runoff coefficient, land use as a percentage of forested area, and catchment
size. Only a few correspondences between groups of similar best performing models can be found:
Model structure M03 seems to perform less well for catchments with a mean annual precipitation
below 800 mm/year and low runoff coefficients, and model structure M04 seems to work well for
small catchments with an area below 300 km2. However, there are no clear correlations between
best performing models and catchment properties like runoff characteristics, climate, land use,
or catchment size.
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4. Discussion

The evaluation of 12 model structures on 99 catchments in Germany indicated that catchments can
be classified into three categories: (I) catchments where several model structures perform differently
and a best performing model structure can be identified; (II) catchments where several model structures
perform similarly; and (III) catchments without well performing models. The first two classes reflect
the different points of view on the general applicability of hydrological models, where the first class
represents the perception that different models are appropriate in different regions, as shown in
some studies e.g., [15,16]. The second class represents the perception of “equifinality” of model
structures [18], which was documented in several applications too [12,14]. In our study, groups of
similar performing models are made up of different combinations of model structures and nearly every
possible combination of model structures does occur. The most complex models (M07, M11, or M12)
do not contribute to all groups of models with similar performance. Our results reconcile these two
perspectives, showing that, depending on the catchment, different results may be obtained.

We then attempted to explain why the relative ranking of various models depends on the
catchment, based on proximity or catchment and climate characteristics. We found that model
structure M03 seems to perform less well for catchments with a mean annual precipitation below
800 mm/year and low runoff coefficients. This model, in fact, is characterized by a threshold reservoir,
and has a runoff coefficient either of 0 or of 2. We also found that model structure M04 seems to work
well for small catchments with an area less than 300 km2. These catchments will be on average more
homogeneous than larger catchments, and can therefore be well represented by a simple structure.
Models based on these structures (M03 and M04, Figure 2) are best performing for about 20% of the
catchments in this study.

Apart from these conclusions, we did not find a strong correlation between best performing
models and predictors such as mean annual precipitation, runoff coefficient, forested area,
and catchment area. It may be that other variables not considered here, such as snow, topography,
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or geology, might lead to better correlations. More plausibly, there is no simple correlation between
model structure and mean catchment properties at the meso-scale. Indeed, Merz and Blöschl [44], in a
study on the regionalization of the HBV model parameters, did not identify a strong pattern between
model parameters and various predictors.

In order to find some correlations, it may be necessary to zoom to smaller scales, such as grid
elements or hydrologic response units (HRUs). Other studies have shown that these scales may be
appropriate for finding suitable correlations between model structure and parameters to catchment
properties [45,46].

The 12 model structures of this study do not cover all possible model structures, but a relatively
broad range of complexities and a priori model hypotheses [17]. Van Esse et al. [16] showed their
applicability to a wide range of catchments in France. In our study, except for structure M02, all model
structures are able to simulate runoff acceptably and are able to differentiate between catchments.
Additional model structures may change the division of catchments between the described groups.
Therefore, the findings of this study are valid only for the used model structures and catchments.
Besides these limitations, the study illustrates the different catchment characteristics in relation to
conceptual models.

Dependent on the aim of model usage, differentiating catchments with or without acceptable
models or equifinality may be a crucial factor. The comparison of different models remains
advantageous if the objective is to improve model predictions. Lumped conceptual models are
able to produce a good runoff prediction. If the modeling objective is merely the simulation of
streamflow, and model realism is not an objective, the presence of model equifinality is irrelevant.
If, however, model realism is an important objective, model equifinality would ideally be avoided.
The identification of reasons for model equifinality of single catchments would be a step towards a
better understanding of model and catchment functioning.

The connection between lumped models and real processes becomes more difficult as the scale of
application increases. Large-scale processes represented in lumped models lose a direct correspondence
with observations, which are usually available only at small scales. Therefore, it becomes difficult to
determine a clear correspondence between processes and lumped conceptual model structures.

5. Conclusions

In this study, we calibrated 12 conceptual models on 99 catchments in Germany. The calibration
was based on weighed least squares, and model performance was assessed based on the Nash–Sutcliffe
efficiency and signature indices based on FDC.

Our results indicate that a classification of catchments by model structures is possible:

‚ For about 15% of the catchments, no model had a suitable performance, which indicates model
structural errors or data errors.

‚ For about 50% of the catchments, large parts of the models display a similar performance and
thus demonstrate strong equifinality. About 35% of the catchments show no strong equifinality.

‚ Most of the catchments can be classified by a clear best performing model, which indicates that
models may perform differently in different regions.

We did not find significant correlations between groups of same best performing models or
catchments with/without model equifinality and predictors such as mean annual precipitation, runoff
coefficient, forested area, and catchment area. It might be possible that other catchment or climate
characteristics would have led to better correlations. Nevertheless, we support the hypothesis that
at this scale of application, it may be difficult to find relationships between model structure and
parameters of lumped models and climate or catchment characteristics.

The fact that there are no predictable patterns of well performing models indicates that a priori
model selection cannot be easily justified. Thus, our results support the conclusion that model selection
should be done a posteriori, based on comparisons between models.
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Appendix A Appendix

Table A1 lists important catchment characteristic of all catchments of the study area. State = federal
state of Germany: RLP = Rhineland Palatinate, BW = Baden Württemberg. Size: surface catchment area,
mean prec. = long-term mean annual precipitation, RC = annual runoff coefficient, AI = aridity index
(mean annual Precipitation/Evaporation), best = best performing model according to Section 3.5, group
= groups of catchments with similar or different patterns of signature indices according to Section 3.4.

Table A1. Catchment characteristics.

Catchment
Name State Size

(km2)
Urban

Area (%)
Forest

Area (%)
River Length

(km)
Mean Prec.
(mm/year) RC AI Best Group

Abentheuer RLP 39 0 91 13 1139 0.59 2.05 4; 7 I
Abtsgmuend BW 246 5 36 46 968 0.51 1.61 7 IIb

Albisheim RLP 113 5 30 22 631 0.28 0.97 11 I
Altenahr RLP 748 2 55 NaN 780 0.35 1.19 7; 11 IIa

Altenbamberg RLP 318 4 31 51 662 0.30 1.03 11 IIb
Altensteig BW 135 2 76 24 1250 0.47 2.24 7 I

Argenschwang RLP 31 0 76 13 790 0.41 1.10 0 I
Bad Bodendorf RLP 864 3 54 NaN 773 0.33 1.17 12 IIb
Böhringsweiler BW 17 8 48 6 1040 0.56 1.45 0 III
Bad Rotenfels BW 466 5 85 64 1510 0.73 2.53 11 IIa
Denkendorf BW 128 29 14 26 744 0.48 1.12 7 IIb

Denn RLP 95 0 83 18 817 0.40 1.20 0 III
Doerzbach BW 1029 5 32 112 835 0.41 1.31 11; 7 I

Ebnet BW 257 3 61 26 1380 0.60 2.16 0 III
Elpershofen BW 816 6 32 84 830 0.45 1.32 3 IIb
Enzweiler RLP 22.9 6 62 11 899 0.32 1.36 7; 11 IIa
Erzgrube BW 34 2 83 10 1400 0.44 2.44 6 IIa

Eschelbronn BW 193 6 28 27 893 0.45 1.16 9; 12 IIb
Eschenau RLP 597 9 34 57 841 0.39 1.40 10; 11 IIb

Friedrichsthal RLP 681 6 41 91 908 0.42 1.38 12; 7 I
Gaildorf BW 733 6 51 76 945 0.49 1.53 3 I

Gaugrehweiler RLP 41 1 43 15 694 0.26 0.99 11 I
Gensingen RLP 196 5 20 45 560 0.15 0.82 10 IIb

Gerach RLP 63 4 54 20 850 0.38 1.33 11 IIb
Gondelsheim BW 127 8 34 22 800 0.20 1.06 12 IIb

Hausen BW 109 8 19 22 763 0.32 1.04 12 IIb
Heddesheim RLP 164 5 54 31 718 0.26 1.03 12 IIb

Heimbach RLP 318 6 43 29 1042 0.70 1.65 3 I
Hoefen BW 219 2 92 33 1330 0.61 2.04 3 I
Hopfau BW 201 5 41 30 1240 0.52 2.03 3; 4 IIb

Hüttlingen BW 107 13 50 23 956 0.80 1.44 0 III
Imsweiler RLP 171 6 37 24 688 0.30 1.09 9; 12 IIb

Iselshausen BW 147 5 44 24 992 0.36 1.55 4 IIb
Isenburg RLP 155 6 47 35 888 0.37 1.34 4 I
Jagstzell BW 329 6 41 41 850 0.43 1.32 7 IIb

Kallenfels RLP 251 4 40 42 773 0.35 1.20 4 I
KArnstein RLP 113 2 41 33 735 0.32 1.06 7 IIb

Kautenmuehle RLP 37 11 17 15 873 0.40 1.39 11 IIa
KEhrenstein RLP 66 1 34 21 910 0.44 1.31 12 I
Kellenbach RLP 362 2 35 49 721 0.33 1.11 11 IIb
KEngelport RLP 113 2 48 NaN 774 0.32 1.20 11 I

Kirmutscheid RLP 88 3 38 21 781 0.38 1.25 4 IIa
Kocherstetten BW 1289 6 44 120 911 0.47 1.47 3 IIb

Kreuzberg RLP 45 1 62 NaN 742 0.26 1.06 11 IIa
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Table A1. Cont.

Catchment
Name State Size

(km2)
Urban

Area (%)
Forest

Area (%)
River Length

(km)
Mean Prec.
(mm/year) RC AI Best Group

Kronweiler RLP 65 3 54 17 976 0.46 1.51 3 I
Lahr BW 130 6 68 26 1090 0.31 1.52 9; 11 IIb

Lautenhof BW 84 1 95 20 1490 0.60 2.55 7; 9 IIa
Lippach BW 10 1 39 7 835 0.42 1.31 0 III

Loellbach RLP 45 0 32 16 699 0.33 1.13 7 IIb
Martinstein RLP 1467 5 44 79 842 0.47 1.31 7 I

Miehlen RLP 102 2 38 17 724 0.42 1.03 11 IIa
Mittelrot BW 126 4 59 31 994 0.48 1.60 10 IIb

Monsheim RLP 198 5 21 30 625 0.24 0.91 11 IIb
Muesch RLP 353 2 39 NaN 759 0.33 1.27 9 IIa

Murr BW 505 8 44 48 918 0.51 1.37 12 IIa
Nanzdietschw. RLP 201 8 34 30 838 0.43 1.48 11 I

Nettegut RLP 368 10 31 65 697 0.31 0.98 11 I
Neuenstadt BW 142 5 38 33 859 0.40 1.28 7 IIb

Niederelbert RLP 16.4 6 59 8 930 0.42 1.35 4 I
Nierstein RLP 37 14 0 13 575 0.12 0.78 0 III

Oberingelheim RLP 365 8 1 62 542 0.11 0.79 0 III
Obermoschel RLP 61 1 15 20 653 0.25 0.97 0 III

Oberrot BW 62 5 57 19 1010 0.49 1.58 9; 12 IIb
Oberstein RLP 557 6 50 55 995 0.60 1.56 0 III
Odenbach RLP 1087 9 35 78 784 0.38 1.30 9; 11 I
Odenbach
Steinbruch RLP 85 2 16 25 723 0.38 1.10 4 I

Oppenweiler BW 181 4 66 23 1010 0.51 1.56 12 I
Papiermühle RLP 170 3 57 NaN 818 0.44 1.35 12 I
Pforzheim-E BW 1479 8 57 94 1020 0.41 1.61 6 IIb
Pforzheim-W BW 418 13 35 52 806 0.32 1.21 11 I

Planig RLP 171 4 20 44 588 0.23 0.87 7 IIb
Platten RLP 377 5 46 NaN 834 0.40 1.40 12 I

Rammelsbach RLP 78 7 17 18 901 0.49 1.42 3 IIb
Rheindiebach RLP 10 0 59 7 635 0.23 1.04 0 III
Schafhausen BW 238 16 33 23 802 0.36 1.21 0 III
Schenkenzell BW 76 4 65 19 1350 0.49 2.24 9; 11 IIa
Schulmuehle RLP 145 2 36 26 719 0.31 1.01 0 III
Schwabsberg BW 178 4 31 27 846 0.41 1.31 5 I
Schwaibach BW 954 3 72 69 1410 0.66 1.84 3 IIa

Schwarzenberg BW 179 4 87 30 1620 0.77 2.86 11 IIa
Seelbach RLP 193 6 36 41 994 0.51 1.53 3; 4 I

Seifen RLP 176 6 42 43 917 0.41 1.38 12 IIb
Sinspelt RLP 101 1 34 NaN 934 0.48 1.48 7 IIb

Stausee Ohmb. RLP 34 4 19 15 858 0.49 1.42 3 IIb
Steinbach RLP 46 0 47 11 750 0.45 1.13 11 I
Steinheim BW 76 8 38 18 831 0.39 1.30 9; 11 IIa
Talhausen BW 192 17 28 40 764 0.24 1.09 11 I
Talheim BW 73 8 32 19 816 0.32 1.20 0 III
Uffhofen RLP 85 3 45 22 612 0.20 0.88 11 I

Untergriesheim BW 1826 5 31 168 832 0.44 1.27 7 I
Vaihingen BW 1662 8 54 122 996 0.51 1.09 6; 7 IIa
Voerbach BW 44 4 57 10 1110 0.37 1.74 4; 7 IIa
Weinaehr RLP 215 13 41 38 887 0.40 1.34 12 I

Wernerseck RLP 242 5 39 56 734 0.33 1.07 12 I
Westerburg RLP 44 13 34 13 1049 0.47 1.80 4 IIb
Wiesloch_W BW 55 9 23 18 797 0.27 1.05 0 III
Wiesloch_L BW 114 10 22 21 808 0.31 1.03 11 I
Woellstein BW 468 7 43 51 943 0.53 1.52 3 I
Zollhaus RLP 243 4 53 NaN 734 0.34 1.05 7 III
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