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Abstract: Mitigating stream and river impairment is complex, particularly in mixed-land-use
watersheds given the likelihood of integrated responses of stream restoration to coupled and
ongoing terrestrial ecosystem disturbance and the need for periodic reassessment and maintenance.
Traditional biological sampling (e.g., macroinvertebrate sampling or other biological indices) alone
seldom identifies the cause of biological community impairment and large fiscal investments are
often made with no apparent improvement to aquatic ecosystem health. A stream physical habitat
assessment (PHA) can yield information that, when paired with land-use data may reveal causal
patterns in aquatic physical habitat degradation and help to identify sites for rehabilitation or
restoration. A rapid and customizable physical habitat assessment method (rPHA) is presented that
reduces commonly high PHA time and labor costs while facilitating informative value. Sampling time
is reduced to approximately 30–40 min per survey site with a crew of three individuals. The method is
flexible and thus adaptable to varied applications and needs. The rPHA design facilitates replication
at regular spatial and temporal intervals thereby informing land-use managers and agencies of
current conditions and trends in habitat response to natural and anthropogenic stressors. The rPHA
outcomes can thus provide science-based supplemental information to better inform management
practices and stream restoration decisions in contemporary mixed-land-use watersheds.

Keywords: rapid physical habitat assessment; rPHA; mixed-land-use watershed; stream impairment;
stream restoration; urban watershed

1. Introduction

Many United States federal and state water quality agencies apply biotic indices as a proxy for
stream physical condition [1]. Determination of biotic indices often includes sampling stream biological
communities, such as macroinvertebrate communities, to quantitatively characterize the presence and
abundance of certain taxa known to be pollution tolerant [1]. These assessment methods are of great
importance for initial listing and subsequent removal of water bodies from polluted status. However,
and despite progress, since 2002, the number of impaired streams added to the Clean Water Act 303 (d)
list has outpaced the removal of restored streams in the United States [2]. This trend is expected to
continue as human population increases, driving continued land-use alteration and resultant stress
upon aquatic ecosystems [3]. Ultimately, biotic indices alone may not elucidate causes, and therefore,
proper mitigation of impairment in contemporary mixed-land-use watersheds.

Determining the cause(s) of stream impairment is complicated, particularly in mixed-land-use
watersheds where multiple interwoven aquatic and terrestrial factors impact stream condition [4].
For example, urban areas adjacent to streams may exact a disproportionate impact on stream ecosystem
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status at even small percentages (5%) of total stream length [4]. Consequently, while biotic indices may
describe the species composition and richness in a given stream, they generally do not distinguish
between various potential causes of stream habitat degradation. For example, chemical pollutants
and/or terrestrial land-use changes [5] may degrade the community structure of macroinvertebrates
in riffles. A solution lies in quantification of stream physical habitat that can identify potential causes
of stream impairment at regular intervals along the length of the stream (e.g., a physical habitat
assessment, PHA) [6]. As an example, longitudinal variability of physical features such as bedrock
constraints lends insights as to how the channel may migrate or otherwise adjust to natural and
anthropogenic stressors or restoration activities [7–9]. A PHA also provides information about the
availability of microhabitats for macroinvertebrates and other aquatic biota [10,11]. For example,
quantification of rootmat habitat loss can identify reaches affected by scouring of stream banks [11].
In mixed-land-use watersheds key physical features can be compared with stream distance and/or
drainage area to identify deviations from expected patterns of natural stream development, and
how those variations are linked to terrestrial land use. Width and depth of stream channels, for
example, may be altered adjacent to or below urban areas due to the anticipated effects of urban stream
syndrome [12].

Data collected during a PHA may also help identify potential sites for rehabilitation or in some
cases, restoration. Variation in characteristics such as channel morphology, riparian vegetation, and
sediment composition of the stream bed can help to predict where specific management actions
will be most effective and can be used to monitor mitigation solutions after implementation [13–17].
This approach (before and after implementation) is important given anticipated ongoing human
population growth and urban development, coupled with increasing fiscal constraints. There is thus
an urgent need for rapid, repeatable, and cost-effective methods to assess aquatic ecosystem health
and water quality in contemporary mixed-land-use watersheds. The objective of the present work
was therefore to present an adaptive protocol for a rapid and replicable physical habitat assessment
in wadeable streams that provides an economical mechanism for land managers of mixed-land-use
watersheds to identify longitudinal variation in stream physical habitat. Application of the method can
provide science-based supplemental information to better inform management practices and stream
restoration decisions in contemporary watersheds. Specific physical characteristics were selected based
on applicability to low-gradient riffle-pool streams in mixed-land-use systems of the Midwestern
United States. However, the study design could be modified to suit other hydro-ecosystems globally.
This article is not intended to provide a literature review, comparison or validation of methods (as
supported in the literature), but rather an employable practitioner’s tool. The approach used is
important because, even though they are preferred, the costs of micro-scale surveys are infeasible (e.g.,
due to fiscal and labor constraints) in most cases where macro-scale approaches are used, such as in
rapidly changing landscapes. However, transect spacing in macro-scale approaches is often inadequate
for characterizing physical habitat variability, especially in morphologically complex channels of
mixed-land-use watersheds. Hence the need for rapid high resolution (micro-scale) approaches for
larger scales. The rapid physical habitat assessment method (rPHA) presented here is thus an adaptable
contribution in the ongoing effort to continue to seek balance between waning resources, investments
and conservation goals.

Application of the rapid physical habitat assessment (rPHA) method presented in the following
text may have a particular advantage as land use managers begin to develop strategies for management
at large spatial scales (e.g., catchment scale) [18]. Given the number of streams and tributaries present
in a representative catchment in the Midwestern United States, use of the rPHA method to assess
stream physical habitat offers a less expensive and faster method for collecting stream data without
sacrificing informative value. The rPHA presented is a collection of methods gathered from multiple
sources [6,11]. Specific indices were applied from [6] and adapted to include contemporary technology.
For example, a laser rangefinder and laser level are used in lieu of more cumbersome, less user-friendly
and more time-consuming methods of assessment. The methods included in the protocol have been
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selected to gather the most informative indicators of stream habitat quality by a small team along the
entire length of a stream. Additional indices were identified from the work of [11] and others (please
see text that follows) to collect a broad data set that illustrates the condition and availability of physical
habitat. The rPHA is not intended to result in an exhaustive set of physical habitat data, as the methods
were chosen for their utility in presenting a rapid assessment of the quality and quantity of available
physical habitat.

2. Field Protocol for Rapid Assessment of Physical Habitat in Wadeable Streams

The rapid physical habitat assessment (rPHA) methods presented here can be conducted at any
spatial or temporal frequency. Temporal frequency can be determined by establishing the amount of
time, labor and financial support available to collect the desired information. The following protocol
is flexible so that information can be collected along the entire length of a stream, and/or at points
identified by observation, or using Geographic Information Systems (GIS) or other spatial technology.
The utility of GIS frees the field crew from some traditional stream reach and stream width calculations.
The spacing of the survey points will depend upon the goals of the researchers conducting the study
and the length of the stream. For the study referenced in this article, the stream was 56 km long.
It was determined that spacing survey points at 100 m intervals was appropriate and obtainable.
A conceptual diagram of steps of the rPHA may assist the reader in understanding the work flow
(Figure 1). The following protocol assumes a field crew of at least three individuals, though it is
recognized that field crew numbers may vary depending on available funds and desired outcomes.
Thus, the assessment could be conducted by one or more individuals with only minor adjustments.
Data collection criteria are presented in the order that they may logically occur during a field survey,
though the order of field operations may also vary by site, application, and expectations. Field surveys
should be conducted at or near baseflow conditions in the study stream to assure conveyance, and
moving in an upstream direction to avoid clouding the survey area with disturbed sediment.
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2.1. Identifying Survey Locations

Prior to the field campaign, coordinates for each survey location should be numbered
consecutively from the mouth to the headwaters of the study stream, or vice versa. Flow conditions
in the study stream may prevent sequentially surveying the points, and pre-numbering the points
prevents confusion about which points have been surveyed. It is recommended that GPS waypoints
be named using a code for the survey point number. For example, the waypoint for survey point one
could be named SP1 (Survey Point 1). Survey point numbers should be recorded on field data sheets
(see example in Appendix A) for later inputting to an electronic database along with the corresponding
field measurements.

Survey points should be determined using standard ArcGIS or other spatial analysis software and
preloaded into a Global Positioning System (GPS) handheld unit for use by the field team. In the field
the project team may need to triangulate the survey position to the center of the stream channel closest
to the preloaded coordinates because the GPS signal may be diminished or distorted in the stream
channel due to topographic relief and/or vegetated canopy cover. For each point surveyed the data
sheet should include the coordinates of the survey point (center of channel) and a set of coordinates at
the center of the stream if different from the center of the channel. In addition, coordinates should
be collected to mark the position of both stream banks (bottom of bank/top of stream bed gravel) on
either side of each survey point. Coordinates of special features including woody debris piles, public
utilities, engineered structures, erosion gullies, bank failures, debris piles, and any other obvious
habitat altering features can also be recorded on the field data sheet or in the properties of photographs
of the features if a camera that records GPS coordinates is used (see Section 2.4). Collection of multiple
sets of coordinates facilitates detailed mapping of the survey site locations if desired. Additional
survey points can be established at the confluence of each of the major tributary of the study stream.
Coordinates should be collected at confluence survey points (a set of coordinates at each of three
transects—see Section 2.2) and recorded in the same manner as the standard survey points.

2.2. Developing Study Plot Locations in the Field

For the purposes of conducting measurements at each survey point (stream channel center), it
may be useful to conceptualize the survey point as the center of a study plot. The study plot consists of
a principal transect running from streambank to streambank through the survey point perpendicular
to the direction of stream flow, bracketed by upstream and downstream transects located 5 meters
from and parallel to the principal transect (Figure 2).
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At confluences, the field team should create three transects: one upstream of the confluence in
the study stream, one downstream of the confluence in the study stream, and a third upstream in the
tributary. Three transects established in this manner will more appropriately describe the characteristics
of physical habitat at rapidly changing, dynamic locations (such as confluences). The three transects
should be located equidistant from the center point of the confluence (Figure 3). The distance measured
from the center point of the confluence will depend upon the size of the channel at the confluence.
The selected distance should locate transects on the study stream and the tributary at least 10 m
upstream (the figure uses 20 m as an example) of the point where the upstream tributary bank and
study stream intersect. All measurements described in this protocol should be collected along each of
the three transects.
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2.3. Photographic Database

A digital camera should be used to create a photographic database documenting each study
plot. The set of photographs for each survey point is useful for comparison with photographs taken
during subsequent rPHA resurveys of the same point. Use of a camera that records GPS coordinates
is recommended so that coordinates of special features do not have to be read from a GPS and
recorded on the data sheet. A standard set of photographs should be taken from the survey point in a
consistent order for ease of cataloging. For example, directly down at a distance of 1 m from the stream
bed (stream bed composition), directly upstream (parallel with the channel), then turning clockwise
a perpendicular (90 degree angle) photograph of the left bank, directly downstream (parallel with the
channel), a perpendicular photograph of the right bank, and a final photo directly upwards to capture
canopy cover (Figure 4). When possible, photographs of the stream banks should capture the extent of
vegetative cover present.

At confluence survey points, the standard channel photographs described above should be
collected, plus additional photographs to document any distinct physical characteristics at the
confluence including a 360-degree panorama from the center of the confluence and at each of the three
transects surveyed.
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Figure 4. Example of a series of standard channel photographs taken to document survey points during
a rapid physical habitat assessment (rPHA).

2.4. Special Features

If a GPS-enabled digital camera is used, GPS coordinates will be embedded in the properties of
the photographs, thus documenting the presence and location of any of the following special features:
bank stabilization structures, including rip-rap, gabion baskets, and other engineered structures; pipes,
outfalls, discharge control structures, and utilities with any related infrastructures; disturbance features
including erosion gullies, debris fans, slumps, bank failures, and woody debris piles; large trash dumps
in or near the stream; other special features of interest in the study stream.

2.5. Estimating Canopy Cover

Canopy cover (proxy for stream shading) can be estimated following the method described by [6]
using a convex densiometer [19] with a slight modification to prevent duplication of canopy cover
from closely neighboring measurements. The modification consists of creating a “V” comprised of tape
on the face of the densiometer with the vertex pointing towards the viewer so that 17 line intersections
exist within the “V” [20] (Figure 5). The number of line intersections covered by canopy is recorded on
the data sheet. During winter months, in deciduous cover, the number of line intersections covered by
branches is recorded on the data sheet, and a notation is made as to the presence or absence of leaves.
Canopy cover is determined by quantifying the percentage of points covered by canopy [6], and as per
the following procedure:

1. A field team member stands on the principal transect at mid channel facing upstream.
2. The densiometer is positioned 1 m above the stream bed, and leveled using the bubble level.

The densiometer is then positioned so that the face of the field team member is reflected just
below the apex of the taped “V” (Figure 5).

3. The number of grid intersection points within the “V” that are covered by a tree, a leaf, or a high
branch are counted (0 to 17) and recorded on the field data sheet (Appendix A).

4. The field team member then faces the left descending bank (left, facing downstream). Steps 2 and
3 are repeated, and the value is recorded.

5. Steps 2 and 3 are repeated again facing downstream and again facing the right bank, and the
values are recorded.

6. Steps 2 and 3 are repeated at the channel’s edge along the left bank (while facing the center
of the stream) at the end of the principal transect, and again on the right bank, and the values
are recorded.
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2.6. Bank and Channel Measurements

At each survey point, measurements of channel width, wetted width of the stream, bankfull
width, bank angle, bank height, and channel depth should be recorded (Figure 6). Bank angle is
measured on both banks and calculated as the average slope of the bank extending a short distance
from the bottom toward the top of the bank. A 1 m pole and clinometer can be used to measure bank
angle. However, where the bank slope is variable or channels are incised, the use of a 2 m pole to
average bank slope is recommended. It is further recommended that the top of the stream bed gravel
be used to mark the bottom of the bank. The surface of the water can be used as bottom of the bank,
but if the water level is ephemeral, the stream bed gravel (embedded in the stream bank) may be stable
for longer periods of time and thus be a more reliable point of reference. Normally, slope is between 0◦

and 90◦; however, by definition undercut banks have an angle greater than 90◦ because the edge of
the water is underneath the overhanging bank. For comparison of all slope measurements collected
during a rPHA, undercut banks should be measured from the water’s edge along the underside of the
undercut, and the clinometers reading can be subtracted from 180◦ and recorded.
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Identifying bankfull can be a challenge. Bankfull flows are of sufficient magnitude and velocity
to erode the stream bed and stream banks, and frequent enough to prevent substantial regrowth of
terrestrial vegetation after scouring [6]. Annual peak flows are used to compare channel morphology
measurements on a consistent basis, relative to bankfull flows thought to have a consistent 1.5–2.0-year
return interval [21]. Common indicators of bankfull level include the top of pointbars, changes in
vegetation from aquatic to terrestrial, changes in slope, changes in bank material (e.g., from coarse
gravel to sand), bank undercuts, or stain lines on bedrock or boulders [22]. Determination of bankfull
levels may require some discussion among crew members and if possible, multiple indicators that
agree with each other should be used. Bankfull width can be measured as the distance between banks
at the bankfull level perpendicular to stream flow. Bankfull bank refers to the bank with the lowest
vertical distance from the surface of the water (i.e., the first to be breached in a high flow event).
All measurements in this section with the exception of bank angle and channel depth can be made
using a laser level and/or laser range finder. Bank angle can be determined using an extension pole,
and locating the bottom of the stream bank at the top of the stream bed gravel (modified after [6]):

1. An extension pole should be laid on the bankfull bank at the end of the principal transect so that
the base of the pole is at the bottom of the bank (top of the line of coarse gravel from the stream
bed). The extension pole is extended 2 m up toward the top of the bank. A clinometer is placed
on the extension pole and the bank angle is recorded in degrees (0◦–90◦). If the bank is undercut
(>90◦), the measurement is made from the water’s edge along the underside of the undercut, and
the clinometers reading is subtracted from 180◦ and recorded.

2. If the bank is undercut, the undercut depth is recorded by placing a meter stick horizontally
parallel to the stream, and the distance from the back of the undercut to the edge of the bank
is measured.

3. If there is a large boulder or log at the transect point, the measurement point should be moved
(≤5 m) to a nearby point which is more representative of the slope of the bank.

4. Step 1 (and Step 2 if necessary) are repeated on the opposite bank.

Channel width, wetted width, bankfull width, bank height, channel depth, and relative thalweg
depth and thalweg position are determined by the following procedure using a laser level and laser
range finder to increase the speed of field measurements. A small amount of stream bank vegetation
may need to be removed to prevent obstruction of the laser level and laser range finder:

1. Using a laser range finder, the distance from the bottom of the bank (the top of the gravel from the
stream bed) is measured across the stream channel from one bank to the other (channel width),
and the distance from one side of the stream to the other (wetted width) is measured. A meter
stick is used to measure the wetted width manually if the width is below the lower end of the
range of the laser range finder. If there is a split in the channel due to a bar or island, the following
wetted width values are recorded where possible and applicable: entire width of wetted portion
of the stream, wetted width nearest to left bank, wetted width of center stream channel, wetted
width nearest to right bank. Values for channel width and wetted width(s) should be recorded on
the data sheet.

2. To measure bankfull width, the bankfull level on the stream bank with the highest terrace is
located (please see discussion above or [21] for more information). From the top of the stream
bank with the lowest terrace (bankfull bank), a field team member can use the laser range finder
(visually leveled with the level inside of the device) to measure the width to the bankfull level on
the opposite stream bank.

3. Whether the right bank or left bank (descending) is used for bank measurements is determined at
each survey point by which bank has the lower elevation (bankfull bank), and is noted on the data
sheet. Bank height is measured as the distance from the bottom of the bankfull bank (determined
by the top of the line of gravel from the stream bed) to the top of the stream bank. A laser level
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(transmitter) is placed at the top of the bankfull bank and a field team member standing in the
stream bed extends an extension pole with a receiver attached upward (in a vertical position) from
the bottom of the bankfull bank. The receiver makes intermittent beeping noises when it gets
close to the horizontal plane of the projection from the laser level transmitter; the beeping noises
become a continuous sound once bank height is reached. Bank height measurements should be
adjusted in spreadsheet to subtract the height from the bottom of the laser level transmitter to the
point where the laser beam is emitted.

4. Thalweg depth is measured by positioning the meter stick or extension pole on the stream bed at
the deepest part of the channel and reading the depth of the water. In the event that the water is
more than chest deep, a float with a depth finder can be deployed to measure thalweg depth.

5. Thalweg depth and thalweg position are measured relative to the bankfull bank. Relative thalweg
depth is measured in a manner similar to bank height, using the laser level as a transmitter and
an extension pole with a receiver. The extension pole is set at the bottom of the stream in the
thalweg, and raised or lowered in a vertical position until the receiver is on a horizontal plane
with the laser level transmitter stationed at the top of the bank (Figure 6). Relative thalweg depth
measurements are adjusted in spreadsheet to subtract the height from the bottom of the laser
level transmitter to the point where the laser beam is emitted. Thalweg position is measured
using a laser range finder to measure the distance between the top of the bankfull bank and the
laser receiver on the extension pole. In water deeper than chest deep, an inner tube or other
flotation device can be used to float near the thalweg of the stream to obtain the measurements.

2.7. Longitudinal Thalweg Depth Profile

The thalweg is the path of the stream that follows the deepest point of the channel [23]. This is
also the last part of the channel to become dry during low flow conditions. Although this is not
a bathymetric profile, a longitudinal profile of thalweg depth yields information about potential habitat
complexity and channel form variability. Here, the thalweg is measured at each survey point and
every 10 m between survey points, however, measurement point distances could vary depending on
the application and desired study outcomes. At the location of each thalweg measurement (including
position 1, the survey point) a field crew member records the thalweg depth and the channel unit code
(Table 1).

Table 1. Channel unit types and codes * used in data recording during a rapid physical habitat
assessment (rPHA). Synthesized from [6].

Channel Unit Code Description

Plunge pool PP Pool below cascade or falls—surface tension is broken

Trench pool PT Pool-like trench in the center of the stream—flow and depth not
uniform across stream bed

Lateral scour pool PL Pool formed by flow scouring along a bank as flow is diverted by an
obstruction, such as large woody debris

Impoundment pool PD Pool formed by impoundment above dam or constriction in the channel

Pool P Pool that does not fall into one of the other categories

Glide GL Water moving slowly, with smooth unbroken surface and low
turbulence (laminar flow)

Riffle RI

(1) Water moving with small ripples, waves and eddies—waves not
breaking, surface tension not broken, accompanied by sound of
babbling or gurgling; or (2) channel of water passing between gravel
bar on either side

Dry channel DR No water in the channel or flow is under the substrate (hyporheic)

* Due to the local topography in the Midwestern United States, where this rapid physical habitat assessment
(rPHA) was developed, cascades were unlikely to occur, and thus this category was omitted from the list of
Channel Unit Codes on the data sheet (see Appendix A) to conserve space.
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The thalweg profile is determined by the following procedure (modified from [6]). 10 m intervals
were selected here given the 100 m distance between survey points. However, this distance can be modified:

1. Using a string line marked at 10 m intervals and run for 90 m from the survey point, the field
team travels upstream following the thalweg.

2. At each 10 m interval, the depth of the water is measured at the deepest part of the channel in the
same manner that thalweg depth is measured at the survey points. This depth (cm) is recorded
under the appropriate station number on the data sheet.

3. At each 10 m point, the channel unit is identified and the channel unit code is recorded on the
data sheet.

2.8. Substrate Characterization (Pebble Count)

At each thalweg measurement after the survey point (i.e., positions 2 through 10), the substrate
size classification of a randomly selected particle is recorded (Table 2), as well as the presence or
absence of periphyton on the selected particle. It is acknowledged that pebble counts may not always
be the most precise method of substrate characterization. However, this method was chosen here
because it remains highly informative, is less costly, and much less time-consuming relative to other
methods, a review of which is beyond the scope of the current article. Periphyton on rock surfaces
can provide habitat for micro-organisms and some macroinvertebrates, and can provide refugia for
these organisms from high velocity flows [24]. Periphyton presence is also an indicator of stream
productivity [25,26]. This procedure yields estimations of the diameter size class of 15 substrate
particles at each study plot (adapted and modified from [6,27]). Five particles each are selected from
the principal transect, the upstream transect, and the downstream transect (Figure 2). At each transect,
particles are samples from the left and right banks, and from 25%, 50%, and 75% of the distance across
the width of the channel. Particle size is then estimated according to the size classes listed in Table 2.
Much of the time savings of the rPHA method presented in this work occurs at this point by collecting
only 15 substrate particles instead of 100 particles recommended by [27]. As with other parameters,
this method can also be modified to best suit specific needs. Where possible the presence or absence of
periphyton on the substrate particle at the thalweg should be determined and noted on the data sheet.

Table 2. Particle size classes and codes to be used on data sheets for substrate particles sampled during
a rapid physical habitat assessment (rPHA) (Synthesized from [6]).

Diameter (mm) Size Equivalent Code Substrate Type

>4000 Larger than a car RS Bedrock (smooth)
>4000 Larger than a car RR Bedrock (rough)
>4000 Larger than a car RC Concrete/asphalt

1000 to 4000 Meter stick to car XB Large boulder
256 to 1000 Basketball to meter stick SB Small boulder

64 to 256 Tennis ball to basketball CB Cobble
16 to 64 Marble to tennis ball GC Coarse gravel
2 to 16 Ladybug to marble GF Fine gravel

0.06 to 2 Gritty—up to ladybug SA Sand
<0.06 Smooth, not gritty FN Silt, clay, or muck

Any size n/a HP Hardpan (firm, consolidated fine substrate)
Any size n/a WD Wood
Any size n/a CPOM Coarse particulate organic matter (e.g., leaves)
Any size n/a OT Other (include description)

Substrate measurement is conducted as follows:

1. Beginning on a bank of the principal transect, a field team member randomly points to a spot
on the channel bed using a meter stick. The first particle that the meter stick comes into contact
with is selected. If the substrate is sand or finer material, multiple particles are picked up and
size class is determined by texture.
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2. The size of the selected particle is estimated (or particles for finer material) as per Table 2.
3. The percent vertical embeddedness of the particle in the substrate (what percentage of the particle

is not visible) is estimated to the nearest 5%. Sand and silt are by definition 100% embedded, and
bedrock or claypan are 0% embedded.

4. The field team member moves to the next station along the principal transect (stream bank, 25%
across channel width, 50% across channel width, 75% across channel width, stream bank) and
repeats Steps 2 to 3. Five particles are sampled on the principal transect.

5. Steps 1 to 3 are repeated on the upstream transect and the downstream transect (Figure 2), for
a total of 15 particles per study plot.

2.9. Rootmat Survey

Submerged woody rootmats are important refugia for aquatic macroinvertebrates [28].
The following method can be used to quantify the volume and density of root habitat and characterize
the composition of riparian vegetation which may be important to rootmat availability [11].

1. Any submerged woody rootmats within the study plot are located. The following procedures are
repeated separately for each separate contiguous area of rootmat within the study plot (Figure 2).
A single tree may have more than one separate rootmat. Likewise, a single contiguous rootmat is
sometimes composed of the roots from multiple trees. The position of each rootmat relative to the
principal transect is recorded and the location on the stream bank is noted by checking the box
next to the appropriate category on the data sheet (e.g., “Up-Lft” refers to the left bank upstream of
the principal transect, and “Dn-Rt” refers to the right bank downstream of the principal transect).

2. To calculate the volume of submerged rootmats, each contiguous area of rootmat should be
measured in three dimensions (parallel to bank, perpendicular to bank, and vertical). Each of the
three measurements is recorded on the data sheet. For large contiguous rootmats, a laser range
finder may be used to measure the length of the rootmat parallel to the bank, otherwise a meter
stick is the appropriate tool.

3. The percent by volume of fine roots is visually estimated (<2 mm diameter) to the nearest 10%.
4. The parent species of tree or shrub is recorded. In cases where there are multiple parent trees or

shrubs, each species is recorded. In cases where the exact parent tree cannot be determined, the
dominant or most abundant species within a 2 m radius is recorded.

5. The diameter at breast height (DBH) of each parent tree is estimated according to predetermined
size classes. Size classes are <10 cm, 11–30 cm, 30–60 cm, >60 cm. The appropriate DBH value is
circled on the data sheet. If the parent tree cannot be determined, “N/A” should be circled.

6. Linear distance from the base of the tree to the edge of the top of the bank is estimated according
to predetermined ranges (for example, <0.5 m, 0.5–1 m, 1–2 m, and >2 m).

2.10. Riparian Zone Assessment and Determination of Dominant Vegetation Type

The width of the riparian corridor and dominant vegetation type may be used to assess what
areas of the study stream might be impacted by excessive runoff, bank erosion, and/or sedimentation
during high flow events. This information, in combination with other quantitative assessments, can
be used to assess stream ecosystems and may assist in future decisions regarding re-vegetation, bank
stabilization, or other management projects [29,30].

A visual estimation is made of the width of the riparian zone of each bank and recorded as one of
several classes: 0–5 m, 5–10 m, 10–20 m, >20 m. Riparian vegetation includes trees, grasses, and sparse
vegetation, but does not include vegetation identifiable as crops or lawn grass. The presence of any
fencing, roads or buildings in the riparian zone is noted including the approximate distance from the
stream bank. A visual estimation of the mix of woody and herbaceous vegetation types in the riparian
zone is made, and classified as a percent mix of the two classes, i.e., 60% woody, 40% herbaceous.
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2.11. Wildlife and Cattle

If wildlife and/or domestic animals (e.g., cattle, horses, goats, etc.) have access to the study
stream (and can be identified using tracks or other methods) this should be documented. The use of
the study stream by domestic livestock (and potentially wildlife) may impact the suspended sediment
load [31], and levels of bacteria such as Escherichia coli (E. coli) [32]. A visual survey is conducted at
and between survey points. Presence or absence of wildlife use is recorded. If wildlife is observed, the
type of wildlife is noted (including species, if known). If animal tracks are present at the survey point
or along the upstream distance between survey points, they are identified using an animal track field
guide, and recorded on the data sheet.

3. Data Analysis

Preliminary analysis of rPHA data should begin by calculating descriptive statistics of the data for
the length of the stream, including (but not limited to) mean, minimum, maximum, standard deviation,
coefficient of variation, etc., to describe the basic features of the data. This process will provide simple
summaries about the sample and the measures and should be followed by graphing individual stream
metrics against various landscape features such as roads and bridges. Where data points are highly
variable, a moving average can be used in lieu of a trend line. Stream distance and drainage area are
physiographic features that are useful to compare and contrast stream metrics, as well as land use in
mixed-land-use watersheds. Land use can be determined using public resources such as the National
Resources Inventory in conjunction with ArcGIS tools. Photographs collected during a rPHA will
document the location of other features including small tributaries, bridges, and outfalls which may
alter local hydrology and hydraulics, and these features can be mapped and graphed with stream
metrics to examine the influence of localized features. Figures 7 and 8 (using data from an rPHA of
Hinkson Creek, Boone County, MO, USA) illustrate use of bankfull width data in different analyses.
The location of major confluences is shown as an overlay in Figure 8, and can be compared to stream
distance, drainage area, and width to depth ratio among other variables. Stream distance and drainage
area can be calculated using a combination of ArcGIS and ArcHydro tools. Digital elevation model
(DEM) data of many if not most locations in the United States is publicly available and can be used to
delineate watershed boundaries.

Hydrology 2016, 3, 37  12 of 17 

 

fencing, roads or buildings in the riparian zone is noted including the approximate distance from the 
stream bank. A visual estimation of the mix of woody and herbaceous vegetation types in the riparian 
zone is made, and classified as a percent mix of the two classes, i.e., 60% woody, 40% herbaceous. 

2.11.Wildlife and Cattle 

If wildlife and/or domestic animals (e.g., cattle, horses, goats, etc.) have access to the study 
stream (and can be identified using tracks or other methods) this should be documented. The use of 
the study stream by domestic livestock (and potentially wildlife) may impact the suspended sediment 
load [31], and levels of bacteria such as Escherichia coli (E. coli) [32]. A visual survey is conducted at 
and between survey points. Presence or absence of wildlife use is recorded. If wildlife is observed, 
the type of wildlife is noted (including species, if known). If animal tracks are present at the survey 
point or along the upstream distance between survey points, they are identified using an animal track 
field guide, and recorded on the data sheet. 

3. Data Analysis  

Preliminary analysis of rPHA data should begin by calculating descriptive statistics of the data 
for the length of the stream, including (but not limited to) mean, minimum, maximum, standard 
deviation, coefficient of variation, etc., to describe the basic features of the data. This process will 
provide simple summaries about the sample and the measures and should be followed by graphing 
individual stream metrics against various landscape features such as roads and bridges. Where data 
points are highly variable, a moving average can be used in lieu of a trend line. Stream distance and 
drainage area are physiographic features that are useful to compare and contrast stream metrics, as 
well as land use in mixed-land-use watersheds. Land use can be determined using public resources 
such as the National Resources Inventory in conjunction with ArcGIS tools. Photographs collected 
during a rPHA will document the location of other features including small tributaries, bridges, and 
outfalls which may alter local hydrology and hydraulics, and these features can be mapped and 
graphed with stream metrics to examine the influence of localized features. Figures 7 and 8 (using 
data from an rPHA of Hinkson Creek, Boone County, MO, USA) illustrate use of bankfull width data 
in different analyses. The location of major confluences is shown as an overlay in Figure 8, and can 
be compared to stream distance, drainage area, and width to depth ratio among other variables. 
Stream distance and drainage area can be calculated using a combination of ArcGIS and ArcHydro 
tools. Digital elevation model (DEM) data of many if not most locations in the United States is 
publicly available and can be used to delineate watershed boundaries.  

 
Figure 7. Bankfull width as a function of stream distance and drainage area, with 100 pt moving 
average shown in red.  
Figure 7. Bankfull width as a function of stream distance and drainage area, with 100 pt moving
average shown in red.



Hydrology 2016, 3, 37 13 of 17
Hydrology 2016, 3, 37  13 of 17 

 

 
Figure 8. Width to depth ratio as a function of stream distance and drainage area, with 100 pt moving 
average showing in red. The major tributary confluence points are marked for reference.  

Selections of two or more metrics can be graphed with stream distance to model the combination 
longitudinally. For example, bank height and thalweg depth, two metrics which are important 
determinants of urban stream syndrome [12], can be graphed together (surface of the water can be 
set at zero, with bank height as a positive y-axis, and thalweg depth as a negative y-axis) to analyze 
the relationship between the metrics with stream distance and drainage area. Additionally, natural 
stream constraints such as bedrock may be mapped and graphed to explore relationships with stream 
metrics individually or in combination. 

Analyses of the data collected during the rPHA will vary depending upon the objectives and 
expertise of the investigators. A primary goal of the analysis should be to compare longitudinal 
differences in physical habitat metrics to determine whether there are variations from expected 
patterns and if so, where the variations occur. This relatively simple descriptive and visual analysis 
is often most useful for identifying beneficial locations for mitigation activities. For example, the 
bankfull width analysis shown in Figure 7 exhibits very little variability in the 36 to 40 km range of 
the graph. With additional consideration (i.e., photographic database) it is apparent that this area of 
the stream is constrained by bedrock thus limiting the ability of the stream to adjust to upstream 
stressors. Another example may be seen in Figure 8 where the steepness of the width:depth curve 
increases suddenly at approximately 40 km from the headwaters. Additional analysis reveals the 
influence of a large urban area (and potential accompanying urban stream syndrome [12]) in the 
lower third of the watershed. As trends are noted in graphs of single or grouped metrics, multiple 
correspondence analyses may be used to determine the relative influence of individual metrics on 
stream physical habitat or to predict habitat suitable for aquatic biota. With clearly stated 
assumptions, multiple linear regression and principal component analysis are additional statistical 
techniques (see the literature for other techniques) that may be applied [33,34]. These techniques can 
be used to quantify and statistically assess the relative influence of various metrics and may help to 
prioritize features of the stream bed or channel to target in stream restoration efforts. Finally, given 
that rivers and streams are reflections of upland and instream processes and distance, the spatial and 
temporal inter-relationship of survey sites are arguably not independent [35]. In fact, one benefit of 
the rPHA may be to illustrate where upstream sites are affecting those downstream due to any variety 
of factors including land use changes, the presence of woody debris, etc. The potential for 
autocorrelation of the data highlights the importance of the collection of information about special 
features during the rPHA (see Section 2.4 Special Features). 

Figure 8. Width to depth ratio as a function of stream distance and drainage area, with 100 pt moving
average showing in red. The major tributary confluence points are marked for reference.

Selections of two or more metrics can be graphed with stream distance to model the combination
longitudinally. For example, bank height and thalweg depth, two metrics which are important
determinants of urban stream syndrome [12], can be graphed together (surface of the water can be set
at zero, with bank height as a positive y-axis, and thalweg depth as a negative y-axis) to analyze the
relationship between the metrics with stream distance and drainage area. Additionally, natural stream
constraints such as bedrock may be mapped and graphed to explore relationships with stream metrics
individually or in combination.

Analyses of the data collected during the rPHA will vary depending upon the objectives and
expertise of the investigators. A primary goal of the analysis should be to compare longitudinal
differences in physical habitat metrics to determine whether there are variations from expected
patterns and if so, where the variations occur. This relatively simple descriptive and visual analysis
is often most useful for identifying beneficial locations for mitigation activities. For example, the
bankfull width analysis shown in Figure 7 exhibits very little variability in the 36 to 40 km range of the
graph. With additional consideration (i.e., photographic database) it is apparent that this area of the
stream is constrained by bedrock thus limiting the ability of the stream to adjust to upstream stressors.
Another example may be seen in Figure 8 where the steepness of the width:depth curve increases
suddenly at approximately 40 km from the headwaters. Additional analysis reveals the influence of
a large urban area (and potential accompanying urban stream syndrome [12]) in the lower third of
the watershed. As trends are noted in graphs of single or grouped metrics, multiple correspondence
analyses may be used to determine the relative influence of individual metrics on stream physical
habitat or to predict habitat suitable for aquatic biota. With clearly stated assumptions, multiple linear
regression and principal component analysis are additional statistical techniques (see the literature
for other techniques) that may be applied [33,34]. These techniques can be used to quantify and
statistically assess the relative influence of various metrics and may help to prioritize features of the
stream bed or channel to target in stream restoration efforts. Finally, given that rivers and streams are
reflections of upland and instream processes and distance, the spatial and temporal inter-relationship
of survey sites are arguably not independent [35]. In fact, one benefit of the rPHA may be to illustrate
where upstream sites are affecting those downstream due to any variety of factors including land use
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changes, the presence of woody debris, etc. The potential for autocorrelation of the data highlights the
importance of the collection of information about special features during the rPHA (see Section 2.4).

4. Conclusions

The use of biotic indices to identify impairment in streams may not provide useful information
about causes of impairment, which may lead to unsuccessful mitigation strategies. A physical
habitat assessment (PHA) can yield greater information about potential causes of impairment,
particularly in mixed-land-use watersheds where multiple land use practices interact in complex ways
to confound water quality mitigation attempts. Often, field work for a PHA can be time-consuming
and labor intensive. The method described here provides a thorough, economical, science-based, rapid
methodology achievable in low gradient, riffle-pool, mixed-use watersheds with limited or focused
budgets. Physical habitat metrics were chosen based upon relevance in mixed-land-use systems, and
the ability to compare expected variability with stream distance to actual measurements. The metrics
selected are intended to provide a broad data set that characterizes the availability and condition of
physical habitat in-stream (along the continuous length of the stream) as well as potential habitat
available in the riparian corridor, while reducing time of collection and thereby reducing assessment
cost. Other methods of data collection may be more revealing about stream physical habitat (and more
costly), but the methods in the current rPHA provide a broad field-based dataset in a shorter fiscally
responsive timeframe. The impetus for the current method paper was to demonstrate a rapid method
that can serve as a practitioner’s management tool. For example, the pebble count method used here is
just one of a set of simplified indices that collectively take a systems approach in relatively complex
mixed-land-use watersheds. Many questions remain about the appropriate spatial scales for such
surveys to yield cost-effective returns for managers and the greatest limiting factor, is often quantity of
data. A saturation approach (higher number of data points in a smaller area), while perhaps not as
precise, may be more spatially informative and within the bounds of necessary accuracy to achieve
conservation goals. Data collected can be analyzed to inform understanding of stream response to
stressors and help to identify sites with ongoing degradation, thereby supplying detailed information
about variability in physical habitat characteristics at a range of spatial scales. After data analysis,
repeated assessments at strategic “problem sites” can further inform the need for specific management
actions. For example, the suite of photographs collected during the rPHA are a valuable source of
data regarding stream conditions at a specific moment in time and may provide a simple comparative
indices to future photographs. Temporal variability of rapid physical habitat assessment (rPHA)
indices can be assessed at various intervals (e.g., three to five years in a rapidly changing system),
thereby informing adaptive management efforts in streams with ongoing impacts and impairment.
Collection of stream habitat data using the rPHA methods described here can provide site-specific
data expeditiously, and at relatively low cost, resulting in a reduced cost, highly effective methodology
to guide mitigation and restoration efforts.

Acknowledgments: Funding provided via collaborative agreement between the University of Missouri,
Boone County Resource Management, and the City of Columbia in support of the Hinkson Creek Collaborative
Adaptive Management Program, improving and sustaining water quality using science-based approaches guided
by local stakeholder committees. Results presented may not reflect the view of sponsors or stakeholders and no
official endorsement should be inferred.

Author Contributions: J.H. and L.H. conceived and designed the experiments; L.H. performed the experiments;
J.H. and L.H. analyzed the data; J.H. contributed reagents/materials/analysis tools; L.H. and J.H. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Hydrology 2016, 3, 37 15 of 17

Appendix A. Sample Data Sheet

Hydrology 2016, 3, 37  15 of 17 

 

Appendix A. Sample Data Sheet 

 

References 

1. United States Environmental Protection Agency. Monitoring and Assessing Water Quality—Volunteer 
Monitoring. Available online: http://water.epa.gov/type/rsl/monitoring/vms40.cfm (accessed on 16 
September 2015)  

2. United States Environmental Protection Agency. Fiscal Year 2014–2018 EPA Strategic Plan; United States 
Environmental Protection Agency: Washington, DC, USA, 2014. 

3. Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. 
Science 1997, 277, 494–499. 

4. Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol 
Evol. Syst. 2004, 35, 257–284. 

Flag

Channel width (m)
Wetted width (m)

Bank height (m)

FLAG:

  < 20 m from bank (circle one)   < 20 m from bank (circle one)

FLAG:

Left
Right

< 0.5 0.5 - 1 1 - 2 > 2

Species:
Bankfull width (m)

Left
Right

5

FLAG:

Cen-Up

3Station:

Depth (cm)

Channel Unit

Substrate size

1

% %

Type/Spp:_____________________

_____________________________
Cattle:    Tracks / In stream

9

Herbs:

8

Canopy Flag(0 - 17) 

Periphyton P/A

Horizontal position

0.5 - 1
Distance from Bank (m)

< 0.5 0.5 - 1 1 - 2 > 2

2

Embed %

Woody:

LEFT BANK
Rip. Zone 

Width
< 5 m 5-10 m 10-20 m > 20 m Rip. Zone 

Width
< 5 m

< 10

Woody: % Herbs: %
Rd.    /    Bldg. Rd.    /    Bldg.

> 20 m

Upstream

Embed %

Center

6 7

Width (X)(cm)

Coordinates SB: ________________  ___________________

Downstream

BANK MEASUREMENTS
Bank Angle Undercut Flag

(0  - 360º) Dist (m)

CANOPY COVER

Coordinates LB: ________________  ___________________

ROOTMAT

Loc. On  Up-Lft  Up-Rt Flag
Bank:  Dn-Lft  Dn-Rt

Coordinates SP: ________________  ___________________

Coordinates RP: ________________  ___________________

Height (Y)(cm)

Survey point: _____________ Date: ___/___/______

SUBSTRATE: (Pebble Count)

Cen-Lft
Cen-Dn
Cen-Rt

WILDLIFE USE
Signs of Use:

_____________________________

Distance from Bank (m)

Width (X)(cm)

Tree Diameter (DBH) (cm)
< 10 11-30 31-60 > 60

Width (X)(cm)

Station

10-20 m5-10 m

Transect: Lft-Bank Lft-Cen Center Rt-Cen Rt-Bank

Embed %

ROOTMAT

Loc. On  Up-Lft  Up-Rt Flag
Bank:  Dn-Lft  Dn-Rt
Width (X)(cm)

1 - 2 > 2

Species:Species:

Height (Y)(cm)

% Fine (<2mm)
Tree Diameter (DBH) (cm)

Depth (Z)(cm)
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< 10 11-30 31-60 > 60 11-30 31-60 > 60

Height (Y)(cm)

Depth (Z)(cm)

Height (Y)(cm)

 Dn-Lft

Distance from Bank (m)

% Fine (<2mm)

0.5 - 1 1 - 2 > 2

 Dn-Rt

Distance from Bank (m)

< 0.5

 

Depth (Z)(cm)

10

ROOTMAT

Loc. On  Up-Lft  Up-Rt Flag
Bank:  Dn-Lft  Dn-Rt

ROOTMAT

Loc. On  Up-Lft  Up-Rt Flag
Bank:

Coordinates RB: ________________ ___________________

RIPARIAN ZONE SURVEY
RIGHT BANK

THALWEG PROFILE
4

< 0.5

Species:

% Fine (<2mm)
Tree Diameter (DBH) (cm)

< 10 11-30 31-60 > 60

Depth (Z)(cm)

References

1. United States Environmental Protection Agency. Monitoring and Assessing Water Quality—Volunteer Monitoring.
Available online: http://water.epa.gov/type/rsl/monitoring/vms40.cfm (accessed on 16 September 2015).

2. United States Environmental Protection Agency. Fiscal Year 2014–2018 EPA Strategic Plan; United States
Environmental Protection Agency: Washington, DC, USA, 2014.

3. Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science
1997, 277, 494–499. [CrossRef]

4. Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol
Evol. Syst. 2004, 35, 257–284. [CrossRef]

http://water.epa.gov/type/rsl/monitoring/vms40.cfm
http://dx.doi.org/10.1126/science.277.5325.494
http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122


Hydrology 2016, 3, 37 16 of 17

5. Roy, A.H.; Rosemond, A.D.; Leigh, D.S.; Paul, M.J.; Wallace, J.B. Habitat-specific responses of stream insects
to land cover disturbance: Biological consequences and monitoring implications. J. N. Am. Benthol. Soc. 2003,
22, 292–307. [CrossRef]

6. Peck, D.V.; Herlihy, A.T.; Hill, B.H.; Hughes, R.M.; Kaufmann, P.R.; Klemm, D.J.; Lazorchak, J.M.;
McCormick, F.H.; Peterson, S.A.; Ringold, P.L.; et al. Environmental Monitoring and Assessment
Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams; EPA/620/R-06/003;
U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2006.

7. Piégay, H.; Schumm, S.A. Systems approach in fluvial geomorphology. In Tools in Fluvial Geomorphology;
Kondolf, G.M., Piégay, H., Eds.; John Wiley and Sons: Chichester, UK, 2003; Volume 1, pp. 103–132.

8. Elliott, C.M.; Huhmann, B.L.; Jacobson, R.B. Geomorphic Classification of the Lower Platte River, Nebraska;
U.S. Geological Survey: Reston, VA, USA. Available online: http://pubs.usgs.gov/sir/2009/5198/ (accessed
on 28 September 2015).

9. Turowski, J.M.; Hovius, M.; Wilson, A.; Horng, M.J. Hydraulic geometry, river sediment and the definition
of bedrock channels. Geomorphology 2008, 99, 26–38. [CrossRef]

10. Rabeni, C.F.; Doisy, K.E.; Zweig, L.D. Stream invertebrate community functional responses to deposted sediment.
Aquat. Sci. 2005, 67, 395–402. [CrossRef]

11. Nichols, J.R. Macroinvertebrate Assemblage Composition along a Longitudinal Multiple-Land-Use Gradient
in a Midwestern Stream. Master’s Thesis, University of Missouri, Columbia, MO, USA, 2012.

12. Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream
syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [CrossRef]

13. Jacobson, R.B.; Gran, K.B. Gravel routing from widespread, low-intensity landscape disturbance, Current
River Basin, Missouri. Earth Surf. Proc. Land. 1999, 24, 897–917. [CrossRef]

14. Jacobson, R.B.; Johnson, H.E., III; Reuter, J.M.; Panfil-Wright, M.; Johnson, H.E. Physical Aquatic Habitat
Assessment Data, Ozark Plateaus, Missouri and Arkansas. DS-94. Available online: http://pubs.er.usgs.
gov/usgspubs/ds/ds94 (accessed on 28 September 2015).

15. Thomson, J.R.; Taylor, M.P.; Fryirs, K.A.; Brierley, G.J. A geomorphological framework for river characterization
and habitat assessment. Aquat. Conserv. 2001, 11, 373–389. [CrossRef]

16. Resop, J.P.; Hession, W.C.; Wynn-Thompson, T. Quantifying the parameter uncertainty in the cross-sectional
dimensions for a stream restoration design of a gravel-bed stream. J. Soil Water Conserv. 2014, 69, 306–315.
[CrossRef]

17. Miller, S.W.; Budy, P.; Schmidt, J.C. Quantifying macroinvertebrate responses to in-stream habitat restoration:
Applications of meta-analysis to river restoration. Restor. Ecol. 2010, 18, 8–19. [CrossRef]

18. Mueller, M.; Geist, J. Conceptual guidelines for the implementation of the ecosystem approach in biodiversity
monitoring. Ecosphere 2016, 7, e0130. [CrossRef]

19. Lemmon, P.E. A new instrument for measuring forest overstory density. For. Sci. 1957, 2, 314–310.
20. Mulvey, M.L.; Caton, L.; Hafele, R. Oregon Nonpoint Source Monitoring Protocols: Stream Bioassessment

Field Manual for Macroinvertebrates and Habitat Assessment; Oregon Department of Environmental Quality,
Laboratory Biomonitoring Section: Portland, OR, USA, 1992.

21. Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; W.H. Freeman and Company:
San Francisco, CA, USA, 1964.

22. Harrelson, C.C.; Rawlins, C.L.; Potyondy, J.P. Stream Channel Reference Sites: An Illustrated Guide to Field
Technique; GTR RM-245; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range
Experiment Station: Ft. Collins, CO, USA, 1994.

23. Armantrout, N.B. Lossary of Aquatic Habitat Inventory Terminology; American Fisheries Society: Bethesda, MD,
USA, 1998.

24. Dodds, W.K.; Biggs, B.J. Water velocity attenuation by stream periphyton and macrophytes in relation to
growth form and architecture. J. N. Am. Benthol. Soc. 2002, 21, 2–15. [CrossRef]

25. Lamberti, G.A.; Gregory, S.V.; Ashkenas, L.R.; Steinman, A.D.; McIntire, C.D. Productive capacity of
periphyton as a determinant of plant-herbivore interactions in streams. Ecology 1989, 70, 1840–1856. [CrossRef]

26. Rosemond, A.D.; Mulholland, P.J.; Brawley, S.H. Seasonally shifting limitation of stream periphyton:
Response of algal populations and assemblage biomass and productivity to variation in light, nutrients,
and herbivores. Can. J. Fish. Aquat. Sci. 2000, 57, 66–75. [CrossRef]

http://dx.doi.org/10.2307/1467999
http://pubs.usgs.gov/sir/2009/5198/
http://dx.doi.org/10.1016/j.geomorph.2007.10.001
http://dx.doi.org/10.1007/s00027-005-0793-2
http://dx.doi.org/10.1899/04-028.1
http://dx.doi.org/10.1002/(SICI)1096-9837(199909)24:10&lt;897::AID-ESP18&gt;3.0.CO;2-6
http://pubs.er.usgs.gov/usgspubs/ds/ds94
http://pubs.er.usgs.gov/usgspubs/ds/ds94
http://dx.doi.org/10.1002/aqc.467
http://dx.doi.org/10.2489/jswc.69.4.306
http://dx.doi.org/10.1111/j.1526-100X.2009.00605.x
http://dx.doi.org/10.1002/ecs2.1305
http://dx.doi.org/10.2307/1468295
http://dx.doi.org/10.2307/1938117
http://dx.doi.org/10.1139/f99-181


Hydrology 2016, 3, 37 17 of 17

27. Wolman, M.G. A method of sampling coarse river-bed material. Trans. Am. Geophys. Union 1954, 35, 951–956.
[CrossRef]

28. Rabeni, C.F.; Sarver, R.J.; Wang, N.; Wallace, G.C.; Weiland, M.; Peterson, J.R. Development of Regionally
Based Biological Criteria for Streams of Missouri; A Report to the Missouri Department of Natural Resources;
Missouri Cooperative Fish and Wildlife Unit, University of Missouri: Columbia, MO, USA, 1997.

29. Gregory, S.V.; Swanson, R.J.; McKee, W.A.; Cummins, K.W. An ecosystem perspective of riparian zones.
Bioscience 1991, 41, 540–551. [CrossRef]

30. Kauffman, J.B.; Beschta, R.L.; Otting, N.; Lytjen, D. An ecological perspective of riparian and stream
restoration in the western United States. Fisheries 1997, 22, 12–24. [CrossRef]

31. Trimble, S.W.; Mendel, A.C. The cow as geomorphic agent—A critical review. Geomorphology 1995, 13,
233–253. [CrossRef]

32. Collins, R.; Rutherford, K. Modelling bacterial water quality in streams draining pastoral land. Water Res.
2004, 38, 700–712. [CrossRef] [PubMed]

33. Lammert, M.; Allan, J.D. Assessing biotic integrity of streams: Effects of scale in measuring the influence of
land use/cover and habitat structure on fish and macroinvertebrates. Environ. Manag. 1999, 23, 257–270.
[CrossRef]

34. Meffe, G.K.; Sheldon, A.L. The influence of habitat structure on fish assemblage composition in southeastern
blackwater streams. Am. Midl. Nat. 1988, 120, 225–240. [CrossRef]

35. Braun, A.; Auerswald, K.; Geist, J. Drivers and spatio-temporal extent of hyporheic patch variation:
Implications for sampling. PLoS ONE 2012, 7, e42046. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/TR035i006p00951
http://dx.doi.org/10.2307/1311607
http://dx.doi.org/10.1577/1548-8446(1997)022&lt;0012:AEPORA&gt;2.0.CO;2
http://dx.doi.org/10.1016/0169-555X(95)00028-4
http://dx.doi.org/10.1016/j.watres.2003.10.045
http://www.ncbi.nlm.nih.gov/pubmed/14723940
http://dx.doi.org/10.1007/s002679900184
http://dx.doi.org/10.2307/2425994
http://dx.doi.org/10.1371/journal.pone.0042046
http://www.ncbi.nlm.nih.gov/pubmed/22860053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Field Protocol for Rapid Assessment of Physical Habitat in Wadeable Streams 
	Identifying Survey Locations 
	Developing Study Plot Locations in the Field 
	Photographic Database 
	Special Features 
	Estimating Canopy Cover 
	Bank and Channel Measurements 
	Longitudinal Thalweg Depth Profile 
	Substrate Characterization (Pebble Count) 
	Rootmat Survey 
	Riparian Zone Assessment and Determination of Dominant Vegetation Type 
	Wildlife and Cattle 

	Data Analysis 
	Conclusions 
	Sample Data Sheet 

