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Abstract: Finite element discretization of the pressure head form of the Richards equation leads
to a nonlinear model, which yields numerical convergence difficulties. When the numerical
solution to this problem has either an extremely sharp moving front, infiltration into dry soil,
flow domains containing materials with spatially varying properties, or involves time-dependent
boundary conditions, the corrector iteration used in many time integrators can terminate prematurely,
which leads to incorrect results. While the Picard and Newton iteration methods can solve this
problem through tightening the tolerances provided to the solvers, there is a more efficient approach
to overcome the convergence difficulties. Four tests examples are examined, and each test case
is solved with five sufficiently small tolerances to demonstrate the effectiveness of convergence.
The numerical results illustrate that the methods greatly improve the convergence and stability.
Test experiments show that the Newton method is more complex and expensive on a per iteration
basis than the Picard method for simulating variably saturated–unsaturated flow in one spatial
dimension. Consequently, it is suggested that the resulting local and global mass balance is exact
within the minimum specified accuracy.

Keywords: saturated–unsaturated flow; Richards equation; nonlinear processes; iteration method;
error tolerance; heterogeneity

1. Introduction

Fluid flow through variably saturated–unsaturated porous media is usually described by the
classical Richards equation [1]. It is defined by coupling a statement of mass conservation with
Darcy’s equation. It is a highly nonlinear partial differential equation that can be represented in three
standard forms, depending on whether pressure, moisture, or both are used as dependent variables.
For one-dimensional vertical flow, the pressure head-based Richards equation is written as

C(Ψ )
∂Ψ
∂t

=
∂

∂z

(
K(Ψ)

(
∂Ψ
∂z

+ 1
))

(1)

where, Ψ is the pressure head (L), t is time (T), z denotes the vertical distance from reference elevation,
which is assumed positive upward (L), K(Ψ) is the hydraulic conductivity (LT−1), C(Ψ) = dθ

dΨ is the
specific fluid capacity (L−1), and θ is the moisture content.

Numerical schemes for solving Equation (1) on the basis of grid resolution techniques, and/or time
discretization procedures including other dynamic approaches for different forms of Richards equation
are available. The choices of these techniques greatly influence the computational efficiency, numerical
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stability, and accuracy of water flow problems. The moisture content of the Richards equation is limited
to unsaturated flow problems due to θ not being a smooth function for layered soils, and discontinuous
near saturation. As a result, severe numerical convergence difficulties, numerical oscillations, and stability
problems result in the failure of subsurface solvers. Thus, this form may be useful only for homogeneous
flow conditions. On the other hand, a pressure head formulation of Richards equation is continuous in
both saturated and unsaturated zones, and can be used for homogeneous and non-homogeneous soils.
However, numerical approaches based on this form can suffer large mass balance errors [2–4]. Small step
size coupled with mass lumping effectively ensures the improvement of the mass balance of the pressure
head-based Richards equation [2].

Due to the shape of the soil water retention and hydraulic conductivity curves, the Richards equation
is highly nonlinear. For the less sharp region of the moisture content or moisture capacity, many iterations
are required to achieve a robust and accurate solution of the Richards equation with relatively large
tolerance. For the portion of the soil water curve where the profile is very sharp, a much smaller
specified accuracy should be used to avoid the numerical errors as well as computational challenge [5].
Therefore, the numerical solution of the Richards equation is very sensitive to the value of the convergence
tolerance. An adaptive and heuristics time-stepping scheme [6], a mass-conservative algorithm [2],
and a nested-Newton algorithm [7] with small nonlinear tolerance have been successfully applied for
different soil properties with different initial and boundary conditions depending on the formulation of the
Richards equation. Besides a mining geostatical approach [8] for disordered soil’s structure, a fully analytical
model in case of nonstationary of unsaturated flow variables has been introduced [9]. Therefore, the flow
problems that involve extremely sharp front in space- and/or time-varying boundary conditions flow into
layered soil, making them difficult to solve accurately unless tight tolerance is used.

The highly nonlinear model (1) is solved using common constitutive relations and standard
approximation methods such as finite differences [2,3,10], finite elements [2,11–13], and finite
volumes [12,14,15]. Standard algorithms that employ the numerical solution of sharp front problems
with poor accuracy are computationally expensive and lead to less accurate results. The solution
of the resulting large nonlinear algebraic systems that arise in implicit numerical discretizations of
the Richards equation has been the subject of significant research, and hence, one needs efficient
and robust linearization techniques that maintain not only the accuracy of the solution, but also its
mass conservation property. Typical linearization methods, such as the Picard, Newton, fast-secant
and relaxation methods, as well as non-iterative methods, such as the implicit factored schemes and
three-level Lees schemes, have been proposed [4,11,16–18].

In the process of linearization, two iterative schemes, Picard and Newton, are characterized by
different convergence behavior. The Picard iterative scheme is more popular than the Newton due
to its simplicity and satisfactory performance [2]. Theoretically, the Newton method converges one
order faster than the Picard method, but under certain flow conditions, the Picard method is more
efficient than the Newton method [16]. Generally, the Picard method is less expensive per iteration
basis, and preserves the symmetry of the discrete system of equations. However, it suffers from
slow convergence, or may diverge for cases of gravity drainage, complex time-varying boundary
conditions, strongly nonlinear characteristic equations, and saturated–unsaturated interfaces [16].
The Newton method has better convergence properties, but creates nonsymmetric system matrices
and involves the computation of derivatives, which leads to a complex and expensive linearization
technique. This study concerns the comprehensive behavior of two linearization methods, Picard and
Newton, with tighter accuracy for efficiently solving the Richards equation in saturated–unsaturated
porous media based on backward Euler finite difference in time and finite elements in space with
mass lumping.

The objectives of this work are: to assess the lack of robustness of solution of the Richards
equation when using common solution approaches with very small tolerances, to investigate the effect
of different tolerances, and to compare a set of alternative tolerances for a wide range of porous media
conditions to test robustness and efficiency with minimum accuracy limit.
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2. Numerical Formulation

2.1. Finite Element Model

To develop a finite element approximation of (1), a Galerkin finite element method is used
to discretize the spatial domain with linear basis function. Solutions are obtained by solving the
discretized Richards equation using a mass-lumping linear Galerkin finite element method, which
has been proved to be a mass conservation formulation [2]. The time discretization is carried out with
implicit backward Euler finite difference method, and mass lumping is used for the mass accumulation
term. Discretization yields a system of nonlinear equations:

f
(

Ψk+1
)
= A

(
Ψk+1

)
Ψk+1 + F

(
Ψk+1

)Ψk+1 − Ψk

∆tk+1 − q
(

tk+1
)
+ b
(

Ψk+1
)
= 0 (2)

where Ψ is the vector of the pressure head at each node, k denotes the time step, and A, F, b and q
are the stiffness matrix, mass matrix, gravitational gradient component, and Darcy’s flux boundary
conditions, respectively.

2.2. Linearization Techniques

To obtain a cost-effective solution of the system of nonlinear Equation (2), Picard iterative and
a more strongly convergent Newton iterative schemes are employed. The later one is designed
especially to avoid the convergence difficulties usually encountered when certain nodes are being
desaturated. However, this technique is computationally more expensive and algebraically complex
than the Picard scheme.

2.2.1. Newton and Picard Schemes

Letting superscript (m) be an iteration level, using (2), the Newton scheme [16] can be written as

f′
(

Ψk+1, (m)
)

h = −f
(

Ψk+1, (m)
)

(3)

where h = Ψk+1, (m+1)−Ψk+1, (m), and the Jacobian for the system is
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The simplest formulation of the Picard scheme [16] of the Richards equation is[
λA
(

Ψk+1, (m)
)
+

1
∆tk+1 F

(
Ψk+1, (m)

)]
h = −f

(
Ψk+1, (m)

)
(4)

2.3. Characteristic Equations

Solving Richards equation requires constitutive relationships relating the dependent variable
pressure head and the nonlinear terms, such as moisture content, moisture capacity, and conductivity.
The most commonly used soil characteristic models, van Genuchten [19] and Brooks–Corey [20],
are employed in this work, and these models are illustrated below.

2.3.1. Van Genuchten Model

The most frequently used constitutive relationships were derived by van Genuchten [19] and are
given by:

θ(ψ) = θr +
θs− θr[

1 + |αψ|n
]m if ψ ≤ 0 (5a)
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θ(ψ) = θs if ψ > 0 (5b)

K(ψ) = Ks

[
θ− θr

θs− θr

] 1
2

1−
[

1−
(

θ− θr

θs− θr

) 1
m
]m


2

if ψ ≤ 0 (6a)

K(ψ) = Ks if ψ > 0 (6b)

c(ψ) = αmn
θs− θr[

1 + |αψ|n
]m+1 |αψ|n−1 if Ψ ≤ 0 (7a)

c(ψ) = 0 if ψ > 0 (7b)

where, m = 1− 1
n is a pore-size distribution index, θs is the saturated moisture content, and θr is the

residual moisture content.

2.3.2. The Brooks-Corey Model

Another common form of the constitutive relationships proposed by Brooks and Corey [20] are
given by:

θ(ψ) = θr + (θs− θr)

(
ψd
ψ

)n
if ψ ≤ ψd (8a)

θ(ψ) = θs if ψ > ψd (8b)

K(ψ) = Ks

[
θ(ψ)− θr

θs− θr

]3+2/n
if ψ ≤ ψd (9a)

K(ψ) = Ks if ψ > ψd (9b)

c(ψ) = n
θs− θr

|ψd|

(
ψd
ψ

)n+1
if ψ ≤ ψd (10a)

c(ψ) = 0 if ψ > ψd (10b)

where ψd = − 1
α is the bubbling or air entry pressure head (L).

2.4. Implementation

Numerical results were obtained by implementing the Picard and Newton iteration techniques into the
computer code CATHY (CATchment Hydrology) [21]. It is a coupled physically-based spatially-distributed
model for surface–subsurface simulations. The model simulates the three-dimensional equation for
subsurface flow in variably saturated porous media (i.e., Richards equation) using Galerkin finite elements
in space, a weighted finite difference scheme in time, and linearization via Newton or Picard iteration.
In the Picard and Newton iterative schemes, convergence is achieved when the termination criterion
‖ Ψk+1, (m+1)−Ψk+1, (m) ≤ Tol ‖ is satisfied, where Tol is the specified tolerance/accuracy, and in
this work, five sufficiently small enough values (10−2, 10−3, 10−4, 10−5 and 10−6) are used. In all of
the runs, the time-step size is adaptively adjusted according to the convergence behavior of the previous
nonlinear iteration [16] in order to optimize convergence and CPU efficiency. The simulation begins with
a time step size of ∆t0, and continues until reach the ending time Tmax. At each time step of the simulation,
the current time-step size is increased by a factor of ∆tmag (=1.20) to the specified maximum size of
∆tmax if convergence at the previous iteration is achieved in fewer iteration than maxit1 (=5), but it is left
unchanged if convergence requires between maxit1 and maxit2 (=8). When the scheme is not convergent
within the iteration maxit2, the time step is decreased by a reduction factor of ∆tred (=0.5) to a minimum
of ∆tmin. If convergence is not achieved (maxit exceded), the time-step size is repeated (‘back-stepping’)
using a reduced time-step size (factor ∆tred, to a minimum of ∆tmin). The values of the ∆ts and maxits are
chosen. The main advantage of the dynamic time marching is that it avoids undesirable abrupt changes
in time step. Linear solvers for large sparse nonsymmetric systems arising from the Newton scheme are
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generally inefficient, but presently consistent, and efficient conjugate gradient-type algorithms are available
for solving such systems. Biconjugate gradient stabilized algorithm (BICGSTAB), minimum residual
algorithm (GRAMRB), generalized conjugate residual method (GCRK), and transpose-free quasi-minimal
residual algorithm (TFQMR) are reliable, large, sparse nonsysmmetric solvers. Detailed descriptions of
the various algorithms can be found in the works Axelsson, Pini et al., van der Vorst, and Freund [22–25].
The solutions of the linear systems obtained by using BICGSTAB algorithm in modeling flow problems
have shown best performance [17]. Another important feature of this solution’s employed algorithms is
the use of an analytical differentiation for the evaluation of the gradient of the soil moisture characteristic
curves. To measure the accuracy of the solution of the subsurface solver, mass balance error (MBE) is
calculated. According to the mass continuity equation, the MBE is defined as the difference between the
net amount of water added to the system, and the change in the amount of water stored in the system after
a given elapsed time, and it is evaluated by the following formula [2].

MB
(

tk+1
)
=

∑E
i=1

(
θk+1

i − θo
i

)
(∆z) +

(
θk+1

o − θo
o

)(
∆z
2
)
+
(

θk+1
E − θo

E

)(
∆z
2
)

∑k+1
j=1

(
qj

o− qj
N

)
(∆t)

(11)

with N = E + 1 nodes {z0, z1, z2, . . . , zE}, constant nodal spacing ∆z is considered, and qo and
qN are boundary fluxes calculated from the finite element equations associated with the boundary
nodes z0 and zN .

For this study, the simple procedure given above has been proved to be effective and sufficient.
All of the numerical simulations were executed on personal machine, Dell INSPIRON 2.5 GHz with
4 GB RAM of intel Core 2 processor.

3. Numerical Results

Four one-dimensional test simulations with different soil characteristics were performed
for evaluating the performance of two iterative schemes for five sufficiently small accuracies.
The numerical results needed to meet the objective of this work; we focus our attention on the analysis
of how much the small tolerance will affect the efficiency, accuracy, and convergence properties of
the numerical solution to the Richards equation. However, the performance of the simulations is
more difficult to judge, as there are a number of factors that control the efficiency and robustness
of the model. Such factors include total central processing unit (CPU), total number of time steps,
average nonlinear (NL) iterations (Iter) per time step, cumulative mass balance error (Cum. MBE),
the number of backstepping, etc. The most significant parameters, depending on the physical and
numerical characteristics of the specific simulations, will be selected to better convey the performance
of the Picard and Newton iterative schemes.

3.1. Problem 1

This one-dimensional test problem consists a soil column of 0.3 m length discretized with a fine
vertical resolution ∆z = 0.0024 m. This test case is a standard test problem [26], and substantially easier
than remaining test problems because the domain is much shorter, media is nonuniform, and saturated
conditions are not developed. However, it is a common test case and very helpful in clearly illustrating
the analysis of nonlinear performance of the proposed methodology. The initial pressure head is
−10 m, and constant pressure head boundary conditions are applied at the bottom and top of the
soil column; these are −10 m and −0.75 m, respectively. The soil hydraulic properties are described
by the van Genuchten model with θs = 0.368, θr = 0.102, α = 3.35/m, n = 2.0, and Ks = 7.970 m/day.
As a result, simulation conditions yield a difficult sharp-front problem.

Computed pressure head profiles for different tolerances of two iterative schemes are
presented in Figure 1. Both the constant pressure head and initial condition of this test problem
are easily noted. Figure 1 shows that it is very difficult to distinguish the solutions obtained
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with various tolerances for two iterative schemes, and all of the profiles are very similar to the
published results [26–29]. However, slight numerical oscillations are observed in the bottom of
the soil column for the Picard scheme with error tolerance 10−2 m.

Figure 1. Computed pressure head profile of the Picard (left) and Newton (right) schemes at time
21,600 s for various tolerances.

The computational performance of this test problem of two linearization techniques can be compared
with the results of different tolerances, as shown in Table 1. It is clear that the cumulative mass balance
errors for all of the runs are very close and remarkably small throughout the entire simulation, confirming
the consistency of the schemes and reliability of the accuracies. The measures of other computational
efforts used in this study are the total number of time steps and average nonlinear iterations per time step.
Usually, these results vary with the size of time steps, because the step sizes are strongly influenced by the
convergence of the nonlinear solver. When we reduce the tolerance by a factor of 10−1 m, the number of
time steps increases approximately 50–80%. Central processing unit (CPU) time is a common measure,
but it is dependent on machine, compiler, program, system load, and algorithm. It is the most meaningful
measure for evaluating the relative efficiency for solving the Richards equation, and the results in Table 1
indicate that CPU time is greatly influenced by the reduction of tolerance. For this simple test, the Picard
method is characterized by a lower (approximately one-fifth for the same tolerance) computational cost
with respect to the Newton technique because of the differences in the per iteration costs of the two
approaches, as can be seen in the last row of Table 1. Almost the same number of average nonlinear
iterations is required for all of the cases. We note that both the schemes resulted in significantly fewer
backstepping occurrences. Convergence behavior and MBE plots for the Picard and Newton schemes are
presented in Figures 2 and 3, respectively. The results of the two iterative schemes with tolerance 10−3 m
are indistinguishable from all of the solutions within the simulation and hence, we can say that it has
sufficient error tolerance to achieve an accurate, efficient, and robust solution under such flow conditions.
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Table 1. Computational performances of the Picard and Newton schemes for various tolerances. MBE: mass balance error; CPU: central processing unit.

Technique

Picard Newton

Tolerance (m)

10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

MBE (m3) 1.439× 10−4 1.331× 10−4 1.299× 10−4 1.295× 104 1.283× 10−4 1.403× 10−4 1.310× 10−4 1.292× 104 1.294× 10−4 1.288× 10−4

MBE (%) 1.779× 10 1.653× 10 1.681× 10 1.614× 10 1.601× 10 1.744× 10 1.630× 10 1.610× 10 1.612× 10 1.605× 10
No. of time steps 413 802 1458 2622 4779 859 1673 3216 6130 11,365

Average ∆t (s) 5.230× 10 2.693× 10 1.481× 10 8.238 4.520 2.515× 10 1.291× 10 6.716 3.524 1.901
NL. Iter/time step 4.99 5.01 5.01 5.02 5.01 4.92 5.24 5.10 5.02 5.01
No. of back steps 1 2 2 3 3 2 3 3 4 4

CPU (s) 162.91 324.28 572.31 1041.50 1881.01 832.13.28 1508.64 2746.24 5171.76 9180.59

Figure 2. Comparison of convergence and mass balance errors of the Picard scheme for various tolerances.
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Figure 3. Comparison of convergence and mass balance errors of the Newton scheme for various tolerances.

3.2. Problem 2

This one-dimensional test case concerns a difficult vertical infiltration problem of a 10 m-high
soil column. It will be solved, and has already been analyzed in detail by many researchers [26,28–30].
This soil column is parameterized by the van Genuchten model with the soil parameters θs = 0.301,
θr = 0.093, α = 5.47/m, n = 4.264, and Ks = 5.040 m/days.

Constant head boundary conditions at both the top (ψ(10, t) = 0.1) and bottom (ψ(0, t) = 0.0)
boundaries, and a hydrostatic equilibrium initial condition (ψ(z, 0) = −z), are applied. These forcing
conditions, along with the constitutive relationships, lead to the development of a sharp infiltration
front and induce large gradients in the solution. This type of problem provides a rigorous test case
for time integrators, and is well suited for the analysis of numerical convergence and efficiency with
accuracy. As a result, it is a meaningful test problem to measure the limit of accuracy.

Due to the expense involved in accurate computing, a sufficient number of nodes in a grid is
important to approximate the Richards equation. Since our objective is to achieve accurate results with
the highest possible tolerance, the dense grid solutions for this test problem were made on a uniform
grid of 401 nodes.

The solutions from these dense grid simulations at time T = 17,280 s for the Picard and Newton
methods with different tolerances are shown in Figure 4. A sharp infiltration front between the
saturated and unsaturated zones and the drained-to-equilibrium initial condition are noted, which are
the trademark of this test problem. It is evident from these figures that the same accuracy is obtained
for each of the five tolerances, and the results show good agreement with that of the published
reports [26,28–30].
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Figure 4. Computed pressure head profile of the Picard (left) and Newton (right) schemes at time
17,280 s for various tolerances.

The results obtained by two iterative techniques with different tolerances are compared in Table 2
and Figures 5 and 6. A low mass balance error is necessary, but is not a sufficient condition to ensure
the accuracy of the solution. In other words, accurate solutions ensure a small mass balance error.
The MBE results for the two iterative schemes with five tolerances confirm the accurate numerical
solutions. Errors are not significantly decreased for all of the runs if the tolerances are decreased,
which are almost same for all of the runs performed in this work. For the Picard and Newton runs,
the reduction in the magnitude of the tolerance in the nonlinear solver does not significantly affect the
overall accuracy of the solution. There are very little differences for the nonlinear iterations per time
step. For both the Picard and Newton schemes, approximately 1.5 times and three times more steps
are required to converge to the final solution compared with each of the previous head tolerances,
respectively. The same inclinations are observed in CPU time for all of the given levels of iteration
tolerances, which drastically increases for the convergence of the Newton scheme. The oscillations
of nonlinear convergence (Figures 5 and 6) and the number of backsteppings are comparatively very
high for the case of 10−2 m, which can be attributed to a sharp infiltration front produced at top of the
soil column. Therefore, as far as the accuracy of the solution of the Richards equation is concerned,
10−3 m is enough as a level of tolerance to achieve a reliable and robust solution.

Figure 5. Comparison of convergence and mass balance errors of the Picard scheme for various tolerances.
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Table 2. Computational performances of the Picard and Newton schemes for various tolerances.

Technique

Picard Newton

Tolerance (m)

10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

MBE (m3) 5.029× 10−2 5.024× 10−2 5.022× 10−2 5.021× 10−2 5.020× 10−2 5.037× 10−2 5.027× 10−2 5.022× 10−2 5.020× 10−2 5.019× 10−2

MBE (%) 8.282× 10 8.274× 10 8.275× 10 8.274× 10 8.273× 10 8.284× 10 8.279× 10 8.275× 10 8.273× 10 8.272× 10
No. of time steps 2783 4028 6641 10,053 17,950 1124 2539 7641 17,616 34,975

Average ∆t (s) 6.209 4.290 4.745 1.719 9.627× 10−1 1.537 6.806 2.261 9.809× 10−1 4.941× 10−1

NL. Iter/time step 5.24 5.60 5.51 5.67 5.34 5.24 5.56 5.09 5.04 5.07
No. of back steps 360 21 22 22 23 63 29 23 23 23

CPU (s) 4644.83 7057.22 11,467.73 17,767 29,438.61 3754.03 8911.04 23,707.95 53,058.00 10,352.78

Figure 6. Comparison of convergence and mass balance errors of the Newton scheme for various tolerances.
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3.3. Problem 3

In order to attain our objective, our present test study consists of one-dimensional vertical infiltration
with redistribution in a 5 m soil column [29–31]. A vertical discretization of 0.0125 m is used. Constant head
boundary condition ψ(0, t) = 0.0 at the bottom of the domain, and a time-dependent boundary condition
ψ(10, t) = −10

(
1.0− 1.01e−t) at the top of the domain with hydrostatic equilibrium initial conditions

ψ(z, 0) = −z are applied. The time-varying boundary condition yields a difficult two-front problem.
The van Genuchten model was fitted to the water retention curves, and the soil properties θs = 0.301,
θr = 0.093, α = 5.47/m, n = 4.264.0, and Ks = 5.040 m/days were used.

Comparison of pressure head profiles in the Picard and Newton methods by using all values of
the head tolerances are shown in Figure 7. Due to the dynamic boundary conditions at the top of the
domain, there is rapid infiltration of water from the surface, followed by a period of redistribution of
the water. The simulated results in each of the two schemes with five tolerances closely agree with the
previous studies [29–31].

Figure 7. Computed pressure head profile of the Picard (left) and Newton (right) schemes at time
17,280 s for various tolerances.

A major problem in solving the Richards equation is to maintain good MBE concerning its
nonlinear nature, especially for flow involving extremely sharp two-front and rapid infiltration of
water from the surface with dynamic boundary conditions. A small mass balance does not guarantee
an appropriate numerical solution; for an accurate solution, it is usually required to satisfy the mass
conservation property, and the evaluated MBE results presented in Table 3 attest to this proposition.
It can be seen from the computational results for all of the runs that the two iteration methods precisely
conserved the mass. Very closed MBE results are obtained for all cases; however, some differences are
observed in terms of average nonlinear iterations per time steps, except the case of 10−2 m, it should
be noted from Table 3 that both numerical techniques have taken the largest average time step size
during the simulation; as a result, the number of iterations becomes smallest for the head tolerance
10−3 m. For this test problem, the Picard and Newton schemes need on average four to five iterations
per time step throughout the simulation period for all of the head tolerances. This explains why
remarkable differences are not shown by the Picard and Newton schemes in terms of convergence
behavior, as we observed on the plots of Figures 8 and 9 (including MBE behavior). The number of
backstepping increased dramatically compared with the previous examples due to the strong nonlinear
nature of the soil hydraulic properties with time-varying surface boundary conditions. Also, both the
Picard and Newton iterative methods for the case of 10−2 m failed to converge several times (56 for
Picard and 48 for Newton) during the course of simulation. It can be inferred from these discussions
that the head tolerance of 10−3 m bears consistent head distribution profiles, as well as perfect mass
conservation nature.
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Table 3. Computation performances of the Picard and Newton schemes for various tolerances.

Technique

Picard Newton

Tolerance (m)

10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

MBE (m3) 1.643× 10−2 1.342× 10−2 1.612× 10−2 1.611× 10−2 1.610× 10−2 1.655× 10−2 1.342× 10−2 1.611× 10−2 1.642× 10−2 1.610× 10−2

MBE (%) 9.037× 10 9.753× 10 8.871× 10 8.869× 10 8.868× 10 9.120× 10 9.755× 10 8.869× 10 9.047× 10 8.867× 10
No. of time steps 3987 3579 7426 11,572 18,681 3333 2865 8954 18,512 34,915

Average ∆t (days) 8.151× 10−5 8.382× 10−5 4.377× 10−5 2.809× 10−5 1.740× 10−5 9.751× 10−5 1.047× 10−4 3.630× 10−5 1.756× 10−5 9.308× 10−6

NL. Iter/time step 2.63 4.37 4.41 4.61 4.84 3.53 4.13 4.45 4.78 4.93
No. of back steps 56 14 53 56 54 48 6 52 54 53

CPU (s) 2914.02 4276.15 8973.47 14,565.64 24,645.02 4821.05 5967.86 20,579.44 43,493.02 83,722.34

Figure 8. Comparison of convergence and mass balance errors of the Picard scheme for various tolerances.
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Figure 9. Comparison of convergence and mass balance errors of the Newton scheme for various tolerances.

3.4. Problem 4

This case involves vertical drainage through a layered soil from initially saturated conditions.
At time t = 0, the pressure head at the base of the column is reduced from 2 m to 0 m. During the
subsequent drainage, a no-flow boundary condition is applied to the top of the column. This problem
is considered to be a challenging test for numerical methods, because a sharp discontinuity in the
moisture content occurs at the interface between two material layers [7,15,32].

During downward draining, the middle coarse soil tends to restrict drainage from the upper fine
soil, and high saturation levels are maintained in the upper fine soil for a considerable period of time.
The Brooks–Corey model is used to prescribe the pressure–moisture relationship. The hydraulic properties
of the soils are given in Table 4. The soil profile is Soil 1 for 0 < z < 60 cm and 120 cm < z < 200 cm, and Soil 2
for 60 cm < z < 120 cm. A Dirichlet boundary condition is imposed at the base of the bottom boundary.

Table 4. Soil hydraulic properties used in Test Problem 4.

Parameters Soil 1 Soil 2

θs 0.35 0.35
θr 0.07 0.035

α
(
cm−1) 0.0286 0.0667

n 1.5 3.0
Ks (cm/s) 9.81× 10−5 9.81× 10−3

Simulations are performed by the Picard and Newton methods on a fine mesh of 150 elements
with five very small head tolerances. The evolution of saturation distribution in the soil column
while drainage occurs is illustrated in Figure 10 for all of the cases of head tolerances at an elapsed
time of 1,050,000 s (approximately 12 days). All of the solutions are in excellent agreement with the
published results [7,15,32], except the Newton runs for error tolerance 10−2 m. Desaturation takes
place at early times in both the middle medium sand and upper fine sand layers, as clearly shown in
this plot. A physical implication of the Richards equation, as this figure demonstrates, is that air is
freely available to all parts of the water flow system, irrespective of the saturation distribution.
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Figure 10. Computed saturation profiles of the Picard (left) and Newton (right) schemes at time
(approximately) 12 days for various tolerances.

At the intermediate times, desaturation in the upper fine sand layer decelerates significantly,
as the middle medium sand keeps desaturating. It is clear from the figure that the base of the middle
medium sand is mostly desaturated, and the drying front has begun to move downward into the
lower fine sand layer. At later times, desaturation occurs very slowly in the upper fine sand layer.
Finally, a new hydrostatic saturation distribution will be formed in the column. A compelling feature
of this simulation is that the middle medium sand layer tends to limit drainage from the overlying
fine sand. High saturations are presented in the upper fine sand layer for significant periods of
time. This test example demonstrates the efficacy of coarser-grained layers as capillary barriers in
unsaturated flow.

Numerical simulations for layered soil under vertical drainage are generally much more
complicated than those under homogeneous porous media, and require more CPU time with
large number of iterations, thus representing a challenging computational task. Table 5 compares
the computational requirements by the two iterative schemes with five values of head tolerances.
Since numerical oscillations occurred in the Newton scheme for 10−2 m, this case will be excluded
in the numerical discussion, and not shown in the plot (Figure 11) of convergence and MBEs.
Simulations scenarios such as MBE, the total number of iterations used for each simulation, the average
nonlinear iterations required for each step for the various simulations, the largest time stepping,
and CPU time are included in this table. As shown in the table, the number of iterations for both
iterative methods increases with the reduction of head tolerances. A perfect mass balance is guaranteed
by the two schemes for all of the numerical experiments. We note here that 1147 and 46,165 steps are
required to complete the simulation with head tolerance 10−3 m for the Picard and Newton techniques,
respectively. As compared with the Picard method, the Newton scheme required more than 46 times the
iterations and 174 times the CPU time for simulating the 12-day drainage event. Furthermore, for the
Newton method, the total steps and computational time increase severely with the reduction of
tolerance. This is because discontinuity arises across the boundaries between different soil layers,
and saturation gradients are steep on each side of the interface. The calculation of three derivative
terms in the Jacobian makes the Newton scheme more costly; as a result, the numerical model needs
to recompute (backstepping) many times than the current solution. A comparison of the behavior of
convergence and MBEs for the Picard and Newton schemes is shown in Figures 11 and 12, respectively.
The results are broadly representative, in that for most of the simulations, very little difference
was found among the saturation predictions. Moreover, the MBEs usually follow parallel paths.
Therefore, to avoid the excessive CPU time without significantly affecting convergence difficulties,
one can use 10−3 m of head tolerance.
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Table 5. Computational performances of the Picard and Newton schemes for various tolerances.

Technique

Picard Newton

Tolerance (m)

10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

MBE (m3) −2.961× 10−4 −6.590× 10−5 −3.861× 10−5 −3.174× 10−5 −1.918× 10−5 1.718× 10−4 9.602× 10−5 −4.012× 10−5 −1.081× 10−5 −3.150× 10−6

MBE (%) 2.263 5.281× 10−1 3.054× 10−1 2.513× 10−1 1.520× 10−1 −1.075 −7.787× 10−1 3.172× 10−1 8.569× 10−2 2.498× 10−2

No. of time steps 1109 1147 1565 1962 2623 1,445,671 46,165 385,744 515,932 743,781
Average ∆t (s) 9.468× 102 9.154× 102 6.709× 102 5.352× 102 4.003× 102 7.263× 10−1 2.274× 10 2.722 2.035 1.412

NL. Iter/time step 1.16 1.61 3.78 4.98 5.66 4.75 3.61 3.63 3.67 4.09
No. of back steps 12 28 149 155 202 372,457 11,943 101,364 133,895 163,735

CPU (s) 141.5 359.60 668.23 1070.44 1628.36 539,363.19 62,557.76 378,278.25 403,718.38 531,572.38

Figure 11. Comparison of convergence and mass balance errors of the Picard scheme for various tolerances.
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Figure 12. Comparison of convergence and mass balance errors of the Newton scheme for various tolerances.

4. Conclusions

A realistic computational approach is presented that effectively addresses the minimal head
tolerance to solve the Richards equation accurately for four difficult test problems in combination with
Picard and Newton linearization techniques. The tested examples and computational results presented
illustrate clearly that the finite element formulation developed in this work is effective in handling
severely nonlinear flow problems, including time-varying boundary conditions, nonhomogeneous soil
hydraulic parameters, and an extremely sharp infiltration front in space. Simulations of redistribution,
infiltration, and drainage problems in a one-dimensional soil column were used to evaluate the
performance of the two schemes. An adaptive time-stepping scheme was incorporated easily in
the Newton and Picard iteration techniques. The performance efficiency of the study is compared
on the basis of MBE, CPU, the total number of time steps, and the average number of nonlinear
iterations required by the algorithm to achieve the convergent solution within the specified tolerance.
Accuracy and convergence profiles were generated to demonstrate the behavior of the two iterative
techniques over a wide range of head tolerances. The main characteristic of the present formulation is
to determine the least value of the head tolerances for the Picard and Newton iterative methods to
obtain a stable and accurate solution with perfect mass balance. It has been shown that the schemes are
extremely simple to implement, and such a procedure can greatly enhance the convergence properties
of the iterative solution process with the head tolerance 10−3 m. The numerical assessment has shown
that the Picard scheme requires less CPU time per iteration than the Newton technique, because it
needs to evaluate the Jacobian and produces a nonsymmetric coefficient matrix, which requires
more computational effort. The procedure implemented in this work is very straightforward,
and we believe its simplicity makes it an attractive approach for numerical simulations of variably
saturated–unsaturated flow problems, and can easily be extended in more complex flow cases.
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