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Abstract: Estimating maximum possible rainfall is of great value for flood prediction and protection,
particularly for regions, such as Canada, where urban and fluvial floods from extreme rainfalls have
been known to be a major concern. In this study, a methodology is proposed to forecast real-time
rainfall (with one month lead time) using different number of spatial inputs with different orders
of lags. For this purpose, two types of models are used. The first one is a machine learning data
driven-based model, which uses a set of hydrologic variables as inputs, and the second one is an
empirical-statistical model that employs the multi-criteria decision analysis method for rainfall
forecasting. The data driven model is built based on Artificial Neural Networks (ANNs), while
the developed multi-criteria decision analysis model uses Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) approach. A comprehensive set of spatially varying climate
variables, including geopotential height, sea surface temperature, sea level pressure, humidity,
temperature and pressure with different orders of lags is collected to form input vectors for the
forecast models. Then, a feature selection method is employed to identify the most appropriate
predictors. Two sets of results from the developed models, i.e., maximum daily rainfall in each
month (RMAX) and cumulative value of rainfall for each month (RCU), are considered as the target
variables for forecast purpose. The results from both modeling approaches are compared using a
number of evaluation criteria such as Nash-Sutcliffe Efficiency (NSE). The proposed models are
applied for rainfall forecasting for a coastal area in Western Canada: Vancouver, British Columbia.
Results indicate although data driven models such as ANNs work well for the simulation purpose,
developed TOPSIS model considerably outperforms ANNs for the rainfall forecasting. ANNs show
acceptable simulation performance during the calibration period (NSE up to 0.9) but they fail for the
validation (NSE of 0.2) and forecasting (negative NSE). The TOPSIS method delivers better rainfall
forecasting performance with the NSE of about 0.7. Moreover, the number of predictors that are used
in the TOPSIS model are significantly less than those required by the ANNs to show an acceptable
performance (7 against 47 for forecasting RCU and 6 against 32 for forecasting RMAX). Reliable and
precise rainfall forecasting, with adequate lead time, benefits enhanced flood warning and decision
making to reduce potential flood damages.

Keywords: real time rainfall forecasting; large scale climate signals; artificial neural networks;
multi-criteria decision analysis

1. Introduction

All around the world, floods are known as a severe natural disaster with significant social,
economic and environmental consequences. The consequences can be property losses and destruction
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of infrastructure or in some cases loss of lives. Moreover, flood events cause social and economic
disruption and environmental degradation. After earthquakes and tsunamis, flood has the most
fatality rate, affecting millions of people, among natural disasters [1,2]. In the endmost decade of
the last century, about 100,000 people were killed and more than 1.4 billion people were adversely
affected by floods [3]. Taking into account climate change impacts, residential development in coastal
areas as well as increased frequency and magnitude of extreme climatic events, damages from floods
are expected to increase [4–6]. In coastal regions, flooding has been always of concerns. In these
areas, natural and built properties, and residents are threatened by not only inland flooding caused by
heavy rainfall and river overbanking, but also coastal flooding due to the high water levels and storm
surges [7].

In Canada, flooding has been recognized as the most common, largely distributed natural hazard
which threatens lives, properties, economy, infrastructure, and environment. Numerous instances
of disastrous flood events in Canada highlight that Canada is significantly vulnerable facing flood
incidents. Examples of these events are Saguenay flood of 1996 in Quebec with damages in excess of
$1 billion, the Red River flood of 1997 as the worst flooding event in Manitoba since 1852, Manitoba
flood of 2011 with the estimated costs of about $1.2 billion [8], and Calgary flood of 2013 with damage
losses and recovery costs estimated to exceed $6 billion [9]. The key point in all of these events is that
they are all linked with the river flooding and intense rainfalls, which in comparison with the other
types of floods, such as urban flash floods and thunderstorms, are easier to be forecasted [10].

While, in most cases, it is not possible to stop flood events from happening, mitigation strategies
must be implemented to alleviate the adverse effects of flooding to some extent [11]. Application
of operational mitigation practices requires a comprehensive understanding of the flood causes,
the frequency of events, and the ability of forecasting with an acceptable accuracy and adequate
lead time. An important factor in developing flood warning systems is to forecast heavy rainfalls
ahead of time. Rainfall forecasting has been one of the challenging hydro-meteorological issues due to
the rainfall variability in space and time as well as many multidimensional and nonlinear data and
processes are involved in it [12,13]. In many studies, relationship between large scale climate signals
and seasonal/inter-annual rainfall are investigated to forecast rainfall [14]. Based on the previous
studies, there could be a meaningful relationship between the spatially distributed climate signals
and rainfall in a study site of interest (e.g., [15,16]). For example, Nicholson et al [17] investigated the
effects of La Nina and El Niño events on the rainfall intensity in southern Africa and showed that
Sea Surface Temperature (SST) in the Atlantic and Indian Oceans has a significant effect on African
rainfall; Mariotti et al. [18] indicated that large scale signals including El Niño Southern Oscillation
(ENSO) substantially affect inter annual variability of rainfall in the Euro-Mediterian; Verdon and
Franks [19] suggested that anomalous SSTs over the Indonesian area provide a good indication of
winter rainfall variability in eastern Australia; Ashok et al. [20] showed ENSO Modoki in the central
equatorial Pacific significantly affects rainfall for Japan, New Zealand and western coast of the U.S.;
and Preethi et al. [21] studied the impacts of ENSO, ENSO Modoki, Indian Ocean Dipole (IOD),
and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability.

Application of data mining methods for simulation and forecasting purposes has been widely
practiced in hydrologic studies. A popular example for rainfall simulation and forecasting, using
the large scale climate signals and meteorological variables as input, is artificial neural network
(ANN) model [22–24]. Houng et al. [25] used current and past data from multiple rain gauge stations
as well as a combination of meteorological parameters for short term (1–3 h) rainfall forecasting.
Janga Reddy et al. [26] proposed an ANN model for the monthly and seasonal rainfall forecasting
over Orissa state, India, based on the relation between regional rainfall and large scale climate
indices such as ENSO, EQUitorial INdian Ocean Oscillation and Ocean-Land Temperature Contrast.
Karamouz et al. [27], as another example, used statistically downscaling and ANN models with
SST, Sea Level Pressure (SLP), SLP differences (∆SLP), ENSO and SOI (Southern Oscillation Index)
as predictors for long lead monthly rainfall prediction over the western parts of Iran. Similarly,
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Mekanik et al. [28] developed several machine learning methods such as ANNs to forecast spring
rainfall for southeast Australia using large scale climate signals including ENSO, IOD and Inter-decadal
Pacific Ocean (IPO). In some studies, rainfall has been used as the only input to the neural networks for
rainfall forecasting. For example, Luk et al. [29] used the current and past rainfall values from a couple
of rainfall gauges with different lags (15 min intervals) as inputs to three alternative types of ANNs
for short term rainfall forecasting. Although ANNs have been the most popular data-based models
for rainfall forecasting, a limited number of studies has also been observed in the literature for using
the other types of machine learning methods. One example is Nasseri et al. [30] that investigated the
application of ANNs coupled with coupled with genetic algorithm to train and optimize the networks
for short term rainfall forecasting. Hong et al. [31], as another instance, used support vector machines
for rainfall forecasting.

In this study, a methodology is proposed to forecast long term rainfall for Vancouver city, British
Columbia (a Western Canadian province), using a set of spatially varying large scale climate signals
with different lag times. Here, two different modeling approaches are developed and compared for
rainfall forecasting. At the first step, MRMR (Maximum Relevance Minimum Redundancy) feature
selection method picks the most effective signals as predictors [32]. Then, the two approaches are
employed to build the forecast models. The first approach is an artificial neural network model
(which has extensively been applied in the literature for hydrologic simulations) that uses the
selected predictors to forecasts rainfall one month ahead of time. The second approach is based
on TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), a multi-criteria decision
making method, which tests different combinations of predictors, among those identified by MRMR,
and investigates all the possible sets of data for rainfall modeling. TOPSIS has been more employed
in social studies and for decision making (e.g., [33–35]), however, is has recently been shown to be
powerful in hydrologic and weather forecasting as well [16,36]. Finally, the ANN and TOPSIS models
with the best forecasting performance and their corresponding sets of predictors are identified and
compared to propose a promising approach for long lead monthly rainfall forecasting.

The paper starts with an introduction to the study area and then the description of the
methodology. Thereafter, results are provided and discussed, and finally, a summary and conclusion
is given.

2. Study Site

To verify the skill of the proposed methodology to forecast rainfall, it is applied to a real world
case study: Vancouver, British Columbia, Canada. Vancouver is a coastal city located in the Lower
Mainland region of British Columbia with an area of 115 km2. It is the most populous city in the
province of British Columbia with more than 630,000 people recorded in 2016 census. Communities
located on the southwest of British Columbia have been affected by a number of flood events [37].
Examples of severe weather events in this region are the storm on 15 December 2006, flooding on 24
and 27 November 2011 and the landfall of Typhoon Freda on 12 October 1962 [38]. Flood vulnerability
in Vancouver is expected to be increased due to sea level rise and climate change impacts [39,40].

Here, to perform the analysis to develop models for extreme rainfall forecasting, daily rainfall data
are obtained from the British Columbia River Forecast Centre (BCRFC) database (bcrfc.env.gov.bc.ca).
Characteristics of the rainfall gauge station are presented in Table 1.

Table 1. Characteristics of the rainfall gauge station in the study area.

Name of the Station Latitude (◦) Longitude (◦) Elevation (m) Data Type and Length

Vancouver Harbour CS 49.3 −123.12 2.5 daily precipitation (1925–present)

The maximum value of daily rainfall is 203.2 mm recorded in December 1972. The maximum
amount of monthly cumulative precipitation is observed in November 2006 and reported about

bcrfc.env.gov.bc.ca
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481.2 mm. Table 2 shows long-term averages of maximum daily rainfall in each month (RMAX) and
cumulative value of rainfall for each month (RCU) for VANCOUVER HARBOUR CS gauge station
over the period of 1925 to 2016.

Table 2. Long term average for RMAX and RCU per mm based on the historical records of the observed
data in Vancouver Harbour CS gauge station.

Month
Long Term Average

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

RMAX 42.2 32.4 34.2 25.6 20.7 20.6 18.3 18.3 24.0 37.6 44.0 44.0 30.2
RCU 211.9 149.2 156.1 107.2 75.6 65.6 43.6 49.9 74.2 157.8 228.4 228.4 129.0

3. Methodology

Proposing a methodology for reliable real time rainfall forecasting is the main focus of this study.
Two modeling approaches are used and compared for this purpose. The methodology uses a set
of large scale climate signals as well as the historical rainfall events as input for the two models,
i.e., artificial neural network and TOPSIS. Prior to use the signals for rainfall modeling, MRMR method
is employed to choose the most effective prediction features among the climate signals. To measure the
forecasting performance of the models, several evaluation criteria are used. A coastal city in Western
Canada has been selected for the real application of the proposed approach.

The flowchart presented in Figure 1 shows the proposed scheme of this study to forecast rainfall.
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3.1. Data Gathering and Preparation

Two sets of rainfall timeseries i.e., maximum daily rainfall (RMAX) in a month, and monthly
cumulative rainfall (RCU) in a month, are considered as the forecasting targets. These rainfall timeseries
are formed using the daily data obtained from the gauge station presented in Table 1. In order to
constitute the rainfall models’ input set, monthly timeseries of large scale climate signals, including
geopotential height eight (GH), wind speed (W), air temperature (AM), SST, relative humidity (RH),
SLP, and precipitation rate (PR) are attained from the National Ocean and Atmospheric Administration
(NOAA) website (monthly/seasonal mean time series from the NCEP Reanalysis Dataset from http:
//esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl). Climate signals data are available from
March 1948 to present.

There is a high correlation between the large scale climate signals over the North-Eastern Pacific
and the extreme hydrologic events across the North America West Coast [15,41]. One example is the
SLP over the North Pacific Ocean which is dominated by the “North Pacific High” (a well-developed
high pressure system located in the northeastern part of the Pacific Ocean) [42]. This high pressure
system has the strongest effects on the storms during the northern hemisphere summer and causes dry
summers and falls, and wet winters and springs over the western parts of Unites States [43]. According
to Bonsal et al. [44], there is a strong relation between large scale teleconnections (patterns of pressure
and circulation anomalies that span long distant geographical areas) and Canadian climate. In this
study, to investigate the relationship between the large scale climate signals over the North Pacific
Ocean and extreme rainfall for the study area, climate data are downloaded for four different regions
(here called characteristic locations). One of these regions covers the study area (i.e., 110◦–130◦ W
longitude and 48.6◦–54.4◦ N Latitude, shown by L1), and the rest of them (indicated by L2, L3, and L4)
cover low and high pressure points on the North Eastern Pacific Ocean, with coordinates 120◦–150◦ W
and 50◦–70◦ N, 140◦–180◦ W and 40◦–60◦ N, and 100◦–120◦ W and 40◦–50◦ N, respectively. Figure 2
shows the locations of the selected regions for acquiring large scale climate signals.
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Figure 2. Location of the selected areas to obtain large scale climate signals for rainfall forecasting
for Vancouver.

The list of climate variables for location L1 is shown in Table 3 (rows 1 to 9). SST and SLP monthly
anomalies (rows 6 and 8 in Table 3) are calculated by subtracting long-term average of SST and SLP
over each month from the observed SST and SLP for the corresponding month. Likewise, SST and SLP
seasonal anomalies (rows 7 and 9 in Table 3) are calculated by subtracting seasonal SST and SLP for all
seasons from the monthly values of observed SST and SLP corresponding to each season.

Four lag times (1 month, and 2, 3 and 12 months) are considered. Based on these lag times, a total
of 47 predictors for location L1 are constructed (shown by L11 to L147 in Table 3). Therefore, for four
locations, a total of 188 (47 × 4) timeseries of climate signals are developed. In addition to the large
scale climate signals with various lag times, historical rainfalls (historical RMAX and RCU) are also
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incorporated in constructing the predictors’ sets (the last four rows in Table 3). This means that for
example, to forecast rainfall for April 2016, rainfall values for March, February and January 2016,
as well as April 2015, may be used (i.e., RMAX1–RMAX4 and RCU1–RCU4). RMAXL and RCUL in
Table 3 signify the long term average of monthly rainfalls for 12 months (i.e., January to December).
Therefore, for RMAX and RCU, by averaging the data for the entire time period, 12 values are obtained,
and then for each month, the corresponding long term average of rainfall is used in the predictors’ set.
Adding the timeseries built from the historical rainfall to the large scale climate signals, 198 (188 + 10)
predictors will be considered for rainfall forecasting.

Table 3. List of the large scale climate and precipitation variables considered to develop the rainfall
forecasting model.

ID Variable

L11–L17 GH, W, AM, SST, RH, SLP, and PR with 1 month lag time
L18–L114 GH, W, AM, SST, RH, SLP, and PR with 2 months lag time
L115–L121 GH, W, AM, SST, RH, SLP, and PR with 3 months lag time
L122–L128 GH, W, AM, SST, RH, SLP, and PR average for the previous 3 months
L129–L131 SST monthly anomalies with 1 month, and 2 and 3 months lag time
L132–L134 SST seasonal anomalies with 1 month, and 2 and 3 months lag time
L135–L137 SLP monthly anomalies with 1 month, and 2 and 3 months lag time
L138–L140 SLP seasonal anomalies with 1 month, and 2 and 3 months lag time
L141–L147 GH, W, AM, SST, RH, SLP, and PR with 12 months lag time
L21–L247 Identified variables for location L2 (as similarly named by L11 to L147 for location L1)
L31–L347 Identified variables for location L3 (as similarly named by L11 to L147 for location L1)
L41–L447 Identified variables for location L4 (as similarly named by L11 to L147 for location L1)

RMAX1–RMAX4 RMAX with 1 month, and 2, 3 and 12 months lag time
RCU1–RCU4 RCU with 1 month, and 2, 3 and 12 months lag time

RMAXL Long term monthly averages of RMAX (from January to December)
RCUL Long term monthly averages of RCU (from January to December)

3.2. Rainfall Forecasting

Two rainfall values are considered to be forecasted: monthly maximum daily rainfall (RMAX)
(the maximum value of daily rainfall in a month) and monthly cumulative value of rainfall (RCU)
(cumulative values of daily rainfalls for a month).

One of the main issues in developing predictive tools is to select the most appropriate set of
predictors. Taking into account four locations (L1–L4), and monthly and seasonal climate signals with
different lag times (1, 2, 3 and 12 months), a large set of possible combinations of predictors can be
built. Different feature selection methods, such as Mutual Information [45], stepwise regression [46]
and Max-Relevance and Min-Redundancy [45,47] can be used for selecting the optimal input variables.
Considering the findings of the previous studies and the efficiency of these methods, in this study
Max-Relevance and Min-Redundancy (MRMR) method is employed to select the most appropriate
predictors’ set with efficient number of climate signals. MRMR considers the correlation between
input variables (predictors) and rainfall (predictant), as well as inter-correlation between the inputs.
The forecasting models use the identified variables by MRMR as input (predictors) and, RMAX and
RCU as target (predictant).

3.2.1. Predictors’ Selection for Rainfall Forecasting: Application of MRMR Method

For data driven models, inputs have substantial effect on the model simulation performance.
Mutual information (MI)-based methods are tools used to select the most suitable inputs. MRMR is an
example of these methods. It selects a set of predictors among a large number of predictors (features)
that are related to a predictant. This method can pick out a set of appropriate inputs based on the
desired number of predictor variables. The selected predictors have the highest MI with predictant
(target) and the lowest MI among themselves.
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MI for two random variables of a and b is shown by I(a; b). I(a; b) is defined based on their
probabilistic density functions represented by p(a), p(b), and p(a, b), respectively:

I(a; b) =
x

p(a, b) log[p(a, b)/p(a)p(b)] da db (1)

The purpose of MI is to find a set of predictors (called A) with k features that jointly have the
largest dependency on the target class c:

max D(A, c), D = [(ai, i = 1, . . . , k); c] (2)

MRMR is represented by the criteria of maximum relevance (Max-R) and minimum redundancy
(Min-R). In Max-R, selected features (ai) among the predictors are required to individually have the
largest MI with predictant (c). This reflects a large dependency with the target. Max-R means to find
predictors satisfying Equation (3). This equation approximates D(A, c) with the mean value of all MI’s
between ai (the ith feature) and c:

max D(A, c), D = (|A|)−1 ∑
ai∈A

I(ai; c) (3)

In the feature selection, selecting combinations of individually good features do not necessarily
lead to a good performance for the classification. This is due to the redundancy among features.
Therefore, the following Min-R condition is added to select mutually exclusive features with
minimum redundancy:

min R(A), R = (|A|2)
−1

∑
ai ,bj∈A

I(ai; bj) (4)

MRMR merges the above two max and min constraints. Then, the Φ operator combines D and R
to maximize D and minimize R simultaneously:

max Φ(D, R), Φ = D− R (5)

Here, the maximum number of features (k) in the predictors’ set is considered to be 50
(i.e., 4 ≤ k ≤ 50). In the MRMR method, predictors are selected based on their order of correlation with
the predictant. In other words, by increasing the value of k, a new predictor is added to the previous
set of inputs.

3.2.2. Models’ Development

Two modeling approaches are employed for rainfall simulation and forecasting. The first approach
is based on the application of artificial neural network (ANN) machine learning method. The second
model uses a multi-criteria decision analysis method, called Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS).

• Data driven models for rainfall forecasting: application of artificial neural network (ANN)

ANNs are composed of a system of interconnected neurons that fed by predictors (inputs) and
compute outputs by feeding information through layers of neurons in the network (Figure 3).
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In this study, Multi-Layer Perceptron (MLP) neural network models (feedforward networks that
consists of the input layer, the hidden layers and the output layer, and process the information from
the input layer to the hidden layer and then the output layer) with various structures are tested:

yt = f1[
J

∑
j=1

wj f2

(
I

∑
i=1

wixi + bi

)
+ bj] (6)

f2 =

{ 2
(1+exp(−2x)) − 1 tansig(Log− sigmoid)transferfunction

1
(1+exp(x)) logsig(Hyperbolictangentsigmoid)transferfunction

(7)

f1(x) = x (8)

where yt is the output, xi is the input, and wi and wj are the weights between neurons of the input and
hidden layer and between the hidden layer and output, respectively. bi and bj are the bias vectors for
the input and hidden layers, and f1 and f2 are the activation functions for the output layer and the
hidden layer, respectively. Also, I and J signify the number of nodes in the input and hidden layer [28].

Networks with 1 hidden layer with the number of neurons allowed to vary between 2 and 40 are
built [48]. To test if the network simulation performance could be improved, models are checked with
logsig (Log-sigmoid) and tansig (Hyperbolic tangent sigmoid) non-linear transfer functions for the
hidden layer ( f2 in Equation (7)). Moreover, different training functions including traingdm (Gradient
descent with momentum backpropagation), trainlm (Levenberg-Marquardt backpropagation) and
traingdx (Gradient descent with momentum and adaptive learning rate backpropagation) are also
examined. For the MLP networks, output unit is selected to be the linear purelin (pure linear) function
( f1 In Equation (8)). The number of inputs in each time step is equal to the number of the selected
predictors by MRMR. The initial weights are randomly selected, and then to obtain the best simulation,
weights are adjusted during the network training. More information about the application of artificial
neural networks can be found in [49]. A vector composed of historical observed rainfall is used for
supervised network training using the back propagation algorithms. 70% of data is used for calibration,
20% for validation, and 10% for forecasting.

Set of the input data for the networks is built by choosing predictors from the first 50 variables
selected among the 198 predictors by MRMR. The minimum number of predictors in the input set is 4
and the maximum number of predictors is 50. To automate the process of constructing the models (with
different structures and number of input predictors) and find the model with the highest simulation
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performance, the whole process is scripted in MATLAB. Several metrics (Equations (17)–(22)) are used
to evaluate the goodness of fit of the models’ performance, and finally choose the ANN model with an
optimized structure.

• Multi-criteria decision analysis method for rainfall forecasting: Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS)

TOPSIS is a multi-criteria decision analysis ranking technique. The efficiency of TOPSIS method
to forecast rainfall is investigated in this study. In this technique, the chosen alternative (here is the
rainfall event) should have the shortest and longest distances from the positive ideal and negative ideal
solutions (selected among the historical rainfall events), respectively. With m alternatives (number of
the events in the time series of historical rainfall) and n criteria (number of the selected predictors),
a decision matrix (D = (xij)m×n) should be built. Given the large number of identified variables
(i.e., 198), MRMR method is employed for the selection of the variables to form the predictors’ set
(MRMR is set up to select the first 50 most relevant variables). It is decided to test different sets of
criteria by letting n changes between 1 and 50. Then, all possible combinations of variables based on the

selection of n criteria among 50 variables are checked (i.e.,

(
50
n

)
where 1 ≤ n ≤ 50). Consequently,

with different values of n, a large number of decision matrices could be developed. Developed
modeling approach based on TOPSIS is applied for both timeseries of rainfall, i.e., RMAX and RCU.

Based on n criteria and m alternatives, the decision matrix D can be transformed to a
non-dimensional normalized decision matrix (R = (rij)m×n):

rij = xij

/√
m

∑
i=1

x2
ij , i = 1, 2, . . . , m, j = 1, 2, . . . , n (9)

Thereafter, the weighted normalized decision matrix (T) is built:

T = (tij)m×n = (Wj × rij)m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n (10)

where Wj, which is the weight given to each predictor (criteria), is considered to be 1. Then, the
worst and the best alternatives (negative ideal and positive ideal solutions), Aw and Ab respectively,
are determined:

Aw =
{
[max( tij

∣∣i = 1, 2, . . . , m )|j ∈ J−], [min( tij
∣∣i = 1, 2, . . . , m )|j ∈ J+]

}
≡ (twj, j = 1, 2, . . . , n) (11)

Ab =
{
[min( tij

∣∣i = 1, 2, . . . , m )|j ∈ J−], [max( tij
∣∣i = 1, 2, . . . , m )|j ∈ J+]

}
≡ (tbj, j = 1, 2, . . . , n) (12)

where J+ = {j = 1, 2, . . . , n|j} and J− = {j = 1, 2, . . . , n|j} are associated with the criteria having a
positive and negative impact, respectively. In the following, distances between alternative i and Aw

and Ab, (shown by diw and dib, respectively) are calculated:

diw =

√√√√ n

∑
j=1

(tij − twj)
2, i = 1, 2, . . . , m (13)

dib =

√√√√ n

∑
j=1

(tij − tbj)
2, i = 1, 2, . . . , m (14)

Finally, the relative closeness to Aw and Ab is determined:

siw = dib/(dib + diw), 0 ≤ siw ≤ 1, i = 1, 2, . . . , m (15)
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siw is equal to 0 or 1, if and only if the identified solution has the worst or the best conditions, respectively.
Among the observed events in the rainfall timeseries (i.e., m alternatives), the last 10% of the

events are kept to check the performance of the forecasting models. The rest of observed data are used
to build the models. In other words, for each of the last 10% of the events, the model will look into
the rest of the events (i.e., m − 10% × m events) to find the worst and the best alternatives and then
identify the alternative with the highest value of relative closeness based on Equation (15).

To improve the performance of the TOPSIS models for the rainfall forecasting, instead of
identifying only one alternative as the solution, 10 rainfall events with the highest values of relative
closeness are selected. For this purpose, a set of alternatives is ranked according to the descending
order of siw. Then, the ten alternatives with the highest values of siw are selected and combined using
their corresponding relative weights:

VP = (
10

∑
i=1

Vi × wi)

/
10

∑
i=1

wi (16)

where VP is the forecasted value of rainfall with one month lead time by TOPSIS, Vi , i = 1, . . . , 10 are
the rainfall events with the highest values of relative closeness, and wi , i = 1, . . . , 10 are the values
of relative closeness corresponding to the identified rainfalls. This procedure is repeated for all of
the rainfall events kept for checking the models’ performance, while models have different decision
matrices. To identify the model with the ideal number of criteria (n), the models’ performance for
rainfall forecasting should be compared.

3.3. Evaluation of the Forecasting Models’ Performance

The following metrics are used to analyze and compare the power of the developed models for
rainfall simulation and forecasting:

Nash-Sutcliffe Efficiency : NSE = 1− [
n

∑
i=1

(Oi − Si)
2

/
n

∑
i=1

(Oi − Õ)
2
] (17)

Mean Bias Error : MBE = (n)−1
n

∑
i=1

(Si −Oi) (18)

Mean Absolute Error : MAE = (n)−1
n

∑
i=1
|Si −Oi| (19)

Index of agreement : d2 = 1− [
n

∑
i=1
|Si −Oi|

2/ n

∑
i=1

(
∣∣∣Si − Õ

∣∣∣+ ∣∣∣Oi − Õ
∣∣∣)2 ] (20)

Common Mean Correlation : CMC =
n

∑
i=1

(Si − S̃)(Oi − Õ)

/√
n

∑
i=1

(Si − S̃)2
n

∑
i=1

(Oi − Õ)
2

(21)

Mean Squared Error : MSE = (n)−1
n

∑
i=1

(Si −Oi)
2 (22)

where Oi and Si are observed and forecasted monthly rainfall in month i, respectively. Õ and S̃ are
the long term mean values of observed and forecasted monthly rainfall for the entire time period,
respectively. NSE represents a measure of the proportion of the initial variance accounted for the model,
and ranges between−∞ to +1 for a perfect correlation. MBE is a measurement of accuracy. MBE shows
the difference between the expected value of rainfalls (forecast) and its true value (observation). MBE
could be negative or positive, while values closer to zero are more preferable. MAE measures residual
errors and provides information about the difference between the observed and forecasted values,
while smaller values are more preferable. d2 compares the difference between the simulated and
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observed rainfall means and represents the degree of error in simulations [50–52]. d2 varies between
0, for complete disagreement, and 1 for perfect agreement between the observed and predicted data.
CMC provides an informative measure of prediction performance and varies between 0 for weak and 1
for perfect performance [53]. MSE, the second moment of the bias (where bias is defined as an average
of all errors), measures the average squares of the errors or deviations, which is the difference between
the observed and forecasted rainfall. The MSE is a non-negative measure and values closer to zero
are preferable.

4. Results and Discussion

In this section, results, for selecting the set of predictors, models’ development for rainfall
simulation and then comparing the models’ performances, are presented according to the order of the
methodology steps introduced in Figure 2.

4.1. MRMR Method: Selecting the Most Effective Predictors for Rainfall Forecasting

Tables 4 and 5 list the selected 50 predictors identified using the MRMR method to forecast RMAX
and RCU. In these Tables, rank represents the preference order of the variable relative to the rainfall
forecast, i.e., the lower ranks are associated with more appropriate predictors.

Tables 4 and 5 confirm that among the large scale climate signals, geopotential height (GH) is
repeated more than the other signals (for all characteristic locations L1 to L4). Then, SST and SLP
signals and anomalies are reported more frequently. Moreover, these tables suggest that historical
values of rainfall (i.e., RMAX and RCU with different lag times) could be of significant effect for rainfall
forecasting. For RMAX variables, the most repeated lag times are 1 and 12, while for RCU variables,
lag times of 3 and 12 months are repeated more than the others. Among the characteristic locations,
for both RMAX and RCU, L4 is repeated more frequent than the other locations (14 times for RMAX
and 19 times for RCU).
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Table 4. Rank and list of the most effective predictors for forecasting RMAX selected based on MRMR method.

Rank Predictor ID Variable Name Lag Time Characteristic Location Rank Predictor ID Variable Name Lag Time Characteristic Location

1 RCU1 RCU 1 Study gauge 26 L341 GH 12 L3
2 L447 PR 12 L4 27 L38 GH 2 L3
3 RCU2 RCU 2 Study gauge 28 L315 GH 3 L3
4 L415 GH 3 L4 29 L37 PR 1 L3

5 L128 PR average over the
previous 3 months _ L1 30 L11 GH 1 L1

6 RCU3 RCU 3 Study gauge 31 RMAX3 RMAX 3 Study gauge
7 RCU4 RCU 12 Study gauge 32 L141 GH 12 L1
8 L347 PR 12 L3 33 L12 UW 1 L1
9 L48 GH 2 L4 34 L18 GH 2 L1
10 L41 GH 1 L4 35 RMAX4 RMAX 12 Study gauge
11 L329 SST monthly anomaly 1 L3 36 L115 GH 3 L1
12 L441 GH 12 L4 37 L147 PR 12 L1

13 L123 UW average over the
previous 3 months _ L1 38 L322 GH average over the

previous 3 months _ L3

14 L422 GH average over the
previous 3 months _ L4 39 L19 UW 2 L1

15 L241 GH 12 L2 40 L122 GH average over the
previous 3 months _ L1

16 L331 SST monthly anomaly 3 L3 41 L445 RH 12 L4
17 L21 GH 1 L2 42 L119 RH 3 L1
18 L28 GH 2 L2 43 L44 SST 1 L4
19 L215 GH 3 L2 44 L446 SLP 12 L4
20 L421 PR 3 L4 45 L45 RH 1 L4

21 L222 GH average over the
previous 3 months _ L2 46 L218 SST 3 L2

22 RMAX1 RMAX 1 Study gauge 47 L419 RH 3 L4
23 RMAX2 RMAX 2 Study gauge 48 L412 RH 2 L4
24 L31 GH 1 L3 49 L444 SST 12 L4
25 L242 UW 12 L2 50 L129 SST monthly anomaly 1 L1
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Table 5. Rank and list of the most effective predictors for forecasting RCU selected based on MRMR method.

Rank Predictor ID Variable Name Lag Time Characteristic Location Rank Predictor ID Variable Name Lag Time Characteristic Location

1 RCU1 RCU 1 Study gauge 26 L11 GH 1 L1
2 L347 PR 12 L3 27 L141 GH 12 L1

3 RCU2 RCU 2 Study gauge 28 L322 GH average over the
previous 3 months _ L3

4 L415 GH 3 L4 29 L44 SST 1 L4
5 RCU3 RCU 3 Study gauge 30 L419 RH 3 L4

6 L48 GH 2 L4 31 L122 GH average over the
previous 3 months _ L1

7 RCU4 RCU 12 Study gauge 32 L445 RH 12 L4
8 L41 GH 1 L4 33 L412 RH 2 L4

9 L422 GH average over the
previous 3 months _ L4 34 L45 RH 1 L4

10 L441 GH 12 L4 35 L443 AT 12 L4
11 RMAX1 RMAX 1 Study gauge 36 L418 SST 3 L4
12 L28 GH 2 L2 37 L446 SLP 12 L4
13 L215 GH 3 L2 38 L410 AT 2 L4
14 RMAX2 RMAX 2 Study gauge 39 L46 SLP 1 L4
15 L241 GH 12 L2 40 L217 AT 3 L2

16 L21 GH 1 L2 41 L426 RH average over the
previous 3 months _ L4

17 L341 GH 12 L3 42 L413 SLP 2 L4

18 L222 GH average over the
previous 3 months _ L2 43 L243 AT 12 L2

19 RMAX3 RMAX 3 Study gauge 44 L420 SLP 3 L2
20 L38 GH 2 L3 45 L211 SST 2 L4
21 L315 GH 3 L3 46 L117 AT 3 L1
22 L31 GH 1 L3 47 L23 AT 1 L2
23 L18 GH 2 L1 48 L119 RH 3 L1
24 RMAX4 RMAX 12 Study gauge 49 L444 SST 12 L4
25 L115 GH 3 L1 50 L434 SST monthly anomaly 3 L4
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4.2. Rainfall Forecasting and Comparison of the Models’ Performance

4.2.1. Application of ANNs

Using the automated script in MATLAB, different possible structures of ANN models (various
transfer functions, training algorithms and input variables) are tested and their performances to
simulate the rainfall timeseries are reported and compared. Number of inputs to the networks is
allowed to vary between 4 and 50. In other words, initially, the first 4 variables, listed in Table 4
(for RMAX) and Table 5 (for RCU), are used for simulation, and then the number of variables
is increased until all the variables shown in these tables are used as inputs to the ANN models.
Comparing the simulation results based on the performance metrics indicate that the models with
“logsig” transfer function and “traingdx” back propagating algorithm perform better than other
structures for simulation of RMAX. However, for the simulation of RCU, ANN models with “tansig”
transfer function and “traingdx” back propagation algorithm revealed better simulation performance.

Figure 4 illustrates the NSE values for different ANNs with varying input variables and the
above mentioned structures to simulate the RCU and RMAX. This figure is intended to depict how
changes in the number of predictors could affect the modeling performance. The NSE metric shows
the overall simulation performance of the model in the calibration and validation periods. Based on
Figure 4a for RCU, the model with the first 47 predictors listed in Table 5 has the maximum value of
NSE. Similarly, as shown in Figure 4b, the best ANN model uses the first 32 predictors listed in Table 4
for the simulation of RMAX. Number of neurons in the hidden layer for both models is 10.
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Table 6 indicates the simulation performance of selected ANN models for the simulation of RCU
and RMAX.
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Table 6. Performance of the ANN model with the best structure for the simulation of rainfall as target.

Target RCU RMAX

Metric Calibration Validation Calibration Validation
NSE 0.903 0.240 0.78 0.21

MBE (mm) −0.006 0.580 0.005 0.356
MAE (mm) 21.235 57.623 5.160 11.765

d2 0.974 0.755 0.877 0.65
CMC 0.950 0.579 0.876 0.495

MSE (mm) 764.423 5926.177 131.183 1022.52

As Table 6 shows, although the simulation performance of the models in the calibration period is
noticeably high, during the validation period the models do not perform well, particularly considering
the NSE metric. Moreover, the number of selected predictors is relatively high (47 for RCU and
32 for RMAX). As mentioned in the methodology section, 10% of data are used for testing the
models’ performance for forecasting rainfall. The structure of the models with the highest simulation
performance in the calibration and validation period is saved. These models are then used with the
testing data, as input, for forecasting rainfall. The results indicate that the performance of ANN
models for the test period is not acceptable since they forecast negative values for rainfall. The models’
functionality in the validation and during the test periods confirms that machine learning ANN models
fail in forecasting rainfall.

4.2.2. Application of TOPSIS

Data from April 1949 to December 2015 are used to build the decision matrix. From these data,
the last 10% of the rainfall events are not used in the building of the matrix. Data in this period are
considered as the forecasting targets (TOPSIS will look for the closest alternatives to these events
among the other historical rainfalls, based on comparing the distance between the corresponding sets
of predictors).

All possible combinations of input criteria (i.e.,

(
50
n

)
where 1 ≤ n ≤ 50), as predictors, are

investigated to build the decision matrices for forecasting RCU and RMAX. Criteria are selected among
those 50 predictors selected by MRMR shown in Tables 4 and 5. For each value of n, the evaluation
metrics are estimated for each individual combination and the best combination with the highest
evaluation metric is picked.

Results show that increasing n improves the modeling performance. Variations of d2, CMC and
NSE performance metrics against the number of predictors for RCU and RMAX are shown in Figure 5.
It can be seen that for n > 5, increases in the values of metrics are not significant. Moreover, running the
models to check the performance of different combinations takes a considerable time (e.g., simulation

run time can take up to a month for 15,890,700 combinations of variables when n = 6 →
(

50
6

)
).

Therefore, given the negligible increase in the simulation performance after n = 5, the maximum value
of n is deemed to be 7.
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Figure 5. Increasing the rainfall forecasting performance by increasing the number of variables in the
predictors’ set for TOPSIS method, (a) RCU and (b) RMAX.

Seven variables that are shown to result in the best performance of the TOPSIS model for
forecasting RCU are shown in Table 7. Same wise, Table 8 indicates the six variables that resulted in
the highest simulation performance of TOPSIS for RMAX.

Table 7. List of the variables as criteria in TOPSIS model with the best simulation performance for
forecasting RCU.

Row Predictor ID Variable Name Lag Time (Month) Characteristic Location

1 RCU3 Cumulative precipitation 3 Study gauge
2 L41 GH 1 L4
3 RMAX2 Maximum precipitation 2 Study gauge
4 L21 GH 1 L2
5 L341 GH 12 L3
6 L141 GH 12 L1
7 L44 SST 1 L4

Table 8. List of the variables as criteria in TOPSIS model with the best simulation performance for
forecasting RMAX.

Row Predictor ID Variable Name Lag Time (Month) Characteristic Location

1 L422 GH Average for the previous 3 months L4

2 L331 SST monthly
anomaly 3 L3

3 L21 GH 1 L2
4 L28 GH 2 L2
5 L341 GH 12 L3
6 L141 GH 12 L1
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Tables 7 and 8 show how effective are GH and SST climate signals (with different lag times and at
different characteristic locations) on rainfall forecasting. As for RCU, historical rainfall (cumulative
precipitation with 3 months lag time and maximum precipitation with 2 months lag time) are also
among the selected set of predictors. GH, SST and historical rainfall were also observed among the
most repeated variables for rainfall simulation with the ANN models.

Figure 6 compares the observed monthly rainfalls (from November 2011 to November 2015)
with those forecasted by TOPSIS (i.e., selected alternatives among the historical rainfall events from
April 1949 to October 2011) for RCU and RMAX. To find these alternatives, TOPSIS finds the best
and worst ideal solutions among the sets of predictors (i.e., timeseries of 7 criteria for RCU shown in
Table 7, and timeseries of 6 criteria for RMAX shown in Table 8). These solutions have, respectively,
the minimum and maximum distance from the values of the same criteria corresponding to each
rainfall event subjected for forecasting. Forecasting rainfall by TOPSIS is based on comparing the
current teleconnection conditions (the values of climate signals) with those already occurred in the
past, then finding the most similar conditions and expecting the corresponding value of past rainfall
to occur for the considered current conditions. This method works well when, on average, similar
weather conditions happen through time. As shown in Figure 6, for both RCU and RMAX, some of the
peak observed values are not caught by TOPSIS. This means that the recorded historical events do not
incorporate weather conditions similar to those correspond to the extreme observed events.
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Figure 6. Comparison of the observed rainfall with the forecasted values by TOPSIS for (a) RCU and
(b) RMAX.

Table 9 further illustrates the numerical performance of TOPSIS model for rainfall forecasting
based on several evaluation metrics. Comparing the results with those obtained from ANN model
shows that both modeling approaches outperform the simulation of monthly cumulative rainfall
against maximum daily rainfall in a month.
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Table 9. Values of different performance evaluation metrics for the forecasted RCU by TOPSIS.

Metric RCU RMAX

NSE 0.743 0.59
MBE (mm) −1.844 1.16
MAE (mm) 34.742 7.17

d2 0.913 0.83
CMC 0.870 0.77

MSE (mm) 1666.172 88.53

Since, as explained in the methodology and shown by Equation (13), for each observed rainfall
event, TOPSIS identifies the 10 of the closest alternatives, it is possible to determine a range of variation
(a confidence interval) for future rainfall looking into these 10 alternatives. To determine the lower and
upper values for this range, the minimum and maximum values of rainfall among the 10 alternatives
are identified and used. Figure 7 shows the obtained range of variation as the forecasted window for
values of RCU and RMAX, from November 2011 to November 2015. Then, it is investigated if the
observed value of rainfall, at each time step, falls within the identified forecasted window.Hydrology 2018, 5, 10  18 of 21 
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Results show that 48 out of 50 events for RCU and 46 out of 50 events for RMAX fall in the
identified range at each time. Therefore, the developed TOPSIS model, not only performs relatively
well in forecasting the individual values of rainfall, but also is capable of estimating a forecasting
window for future RCU and RMAX with the accuracy of 96% and 92%, respectively.

5. Summary and Conclusions

In this study, a framework is suggested for forecasting rainfall for Vancouver area, BC, Canada.
The monthly and seasonal large scale climate signals, at the identified low and high pressure
characteristic locations in the North Pacific Ocean, and the extreme and cumulative monthly rainfall
for the study area are investigated to develop long lead rainfall forecasting models. A feature selection
method (MRMR) is used to select the most effective predictors among the set of climate variables
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identified for forecasting rainfall for western Canadian regions. Then, two approaches are examined
for rainfall forecasting. The first approach is based on MLP data driven models (i.e., ANNs) and
the second one is designed using a multi-criteria decision analysis method (i.e., TOPSIS). ANNs are
known as powerful tools when used for the aim of modeling and simulation. However, based on the
results, they fail for forecasting purposes. Although ANNs’ performance in the calibration period
is promising, they do not show acceptable performance in the validation and then testing period
(which corresponds to the data that are not used for the networks training in the calibration and
validation periods). Moreover, a large number of predictors (47 for RCU and 32 for RMAX) have to be
used to obtain a high simulation performance for ANNs. In contrast, the developed TOPSIS model,
TOPSIS, performed well for rainfall forecasting with a few number of predictors (6 for RCU and 7 for
RMAX). The TOPSIS model also shows high capability in forecasting the domain of rainfall occurrence
(future confidence interval).

Occurrence of flooding is an un-stoppable reality, and reliable flood forecasting is a serious
challenge that most of the Canadian provinces are dealing with. Heavy rainfall events are one of
the main reasons for river overbanking, extreme freshets and surface runoff flooding in urban areas.
Given the great uncertainty associated with hydro-meteorological predictions, the development of
models for real time (e.g., one month lead time in this study) extreme rainfall forecasting provides an
insight to the evaluation of possible weather conditions in a region. These forecasts, with an acceptable
accuracy, are beneficial in short-term operation and management of water resources. This paper, as a
pioneer study in forecasting long lead rainfall for western Canadian watersheds, shows how large
scale climate signals can be effectively used to provide a reliable estimate for future rainfall. Forecasted
maximum rainfall provides valuable information for the prediction of surface runoff and potential
inland flood. The predicted range of variation for rainfall can also offer input for hydrologic modeling
when uncertainties are considered to be incorporated in the analysis.

A small catchment has been selected in this study to develop the methodology. However,
to expand this study, larger areas with multiple rainfall gauge stations can be selected to investigate
the application of more rainfall data as input as well as if the proposed method could successfully
forecast the range and value of an average value for rainfall for the whole study area. The data driven
model which is used in this study, i.e., FFNN, showed low simulation performance in the validation
period and not acceptable performance in the forecasting time. Other structures of artificial networks
are suggested to be developed and checked for rainfall forecasting. Considering thousands of different
combinations of predictors that result in a long run time for the TOPSIS model, desktop computers
with higher speed configuration could be used to afford the computational efforts and investigate all
possible combinations. Moreover, in constructing the decision matrix in the TOPSIS method, assigning
unequal weights to the predictors could be analyzed. In addition to investigating the forecast of
maximum daily rainfall, application of monthly large scale climate signals for forecasting average
monthly rainfall could also be analyzed.
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