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Abstract: Drought is a stochastic natural feature that arises due to intense and persistent shortage of
precipitation. Its impact is mostly manifested as agricultural and hydrological droughts following
an initial meteorological phenomenon. Drought prediction is essential because it can aid in the
preparedness and impact-related management of its effects. This study considers the drought
forecasting problem by developing a hybrid predictive model using a denoised empirical mode
decomposition (EMD) and a deep belief network (DBN). The proposed method first decomposes the
data into several intrinsic mode functions (IMFs) using EMD, and a reconstruction of the original data
is obtained by considering only relevant IMFs. Detrended fluctuation analysis (DFA) was applied
to each IMF to determine the threshold for robust denoising performance. Based on their scaling
exponents, irrelevant intrinsic mode functions are identified and suppressed. The proposed method
was applied to predict different time scale drought indices across the Colorado River basin using a
standardized streamflow index (SSI) as the drought index. The results obtained using the proposed
method was compared with standard methods such as multilayer perceptron (MLP) and support
vector regression (SVR). The proposed hybrid model showed improvement in prediction accuracy,
especially for multi-step ahead predictions.

Keywords: detrended fluctuation analysis; empirical mode function; intrinsic mode functions;
drought forecasting; deep belief network

1. Introduction

Among all extreme climate events, drought is considered the most complex phenomenon [1].
This may be due to its slow development, the difficulty of detection, and the many unique facets that
it exhibits in any single region [2]. It differs from other natural hazards because it has a wide spatial
coverage, and it is very difficult to determine its onset, duration, and recovery [1]. Drought occurrences
cause substantial damages to a wide array of sectors, including agriculture, energy generation,
recreation, and ecosystems [3]. For instance, the United States witnessed a significant increase with
regard to the number and severity of drought events over the last two decades affecting more people
than any other natural phenomenon [1,4]. As reported by the US National Climatic Data Center
database (2002), the United States experienced either severe or extreme drought during the last century,
with nearly 10% of the total land area affected. Droughts and related heat waves accounted for 10
out of the 58 weather-related disasters recorded within the period [5]. The 2011 Texas drought [6],
the 2012 central U.S. drought [7], the 2012–2014 California drought [8], and the 2010–2011 East
Africa drought [9] are severe droughts that have occurred over the last decade. These droughts
have led to substantial damages in a wide array of sectors, including agriculture, energy generation,
recreation, and ecosystems [3]. The success of any drought preparedness and mitigation strategy
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depends, to a large extent, upon timely information on drought onset, duration, and spatial extent [2].
This information may be obtained through continuous drought monitoring, which also relies on
accurate predictions from models.

A plethora of drought prediction methods have been proposed in literature, including time series
models, regression models, probabilistic models, machine learning models, physical models such
as the Global Integrated Drought Monitoring and Prediction System(GIDMaPS) [10], and a host of
hybrid models. Regression or autoregressive models are flexible and are commonly used for drought
prediction. However, these traditional methods suffer from their linearity relationship assumption
between predictand and predictors and may be insufficient for real application problems. In an effort to
improve drought prediction accuracy, different models have been explored recently [11,12]. A seasonal
drought prediction model based on a Bayesian framework was proposed in [11] to characterize
hydrologic droughts with different severities across the Gunnison River Basin in the upper Colorado
River Basin, using a standardized streamflow index (SSI) as the drought variable. A wavelet-linear
genetic programming (WLGP) model was explored in [13] for long lead-time drought forecasting in
the state of Texas with 3-, 6-, and 12-month lead times. The authors demonstrated that the classical
linear genetic programming model is unable to learn the non-linear structure of drought phenomenon
in lead times longer than three months [13]. A linear stochastic model (ARIMA), a recursive multistep
neural network (RMSNN), and a direct multi-step neural network (DMSNN), as indicated in [12],
have also been used for drought forecasting. In another study, three machine learning techniques were
explored to forecast long-term drought at the Awash River Basin in Ethiopia. These techniques include
artificial neural networks (ANNs), support vector regression (SVR), and coupled wavelet ANNs [14].
Although all of these methods have shown promising results in terms of improving accuracy of
drought forecasts, the impact of climate change on droughts and other climate extremes across various
regions of the globe, especially in recent decades, has highlighted the need for more advanced methods
for predicting these events [15]. Artificial neural network (ANN), a type of machine learning model,
which can be used to learn from observations to establish complicated relationship between inputs
and outputs has been explored as an alternative to modeling complex systems. Due to its advantage
in modeling the complex and nonlinear relationship between variables, it has proven to be effective
for drought prediction [16]. The potential disadvantages of the ANN model include, its proneness to
over-fitting resulting from poor weights initialization issues [17] and the difficulty in training multiple
hidden layers for learning complex problems, among others [18]. Several studies have also used
global circulation models (GCM) or regional circulation models (RCM) outputs for assessment of
drought characteristics [19,20]. Generally, drought is influenced by several factors, including large
scale climate variables and can be estimated using current climate characteristics [20]. The relation
between historical drought sequences and the current climate can be used in conjunction with climate
projections from global or regional circulation models to simulate future drought conditions.

The present work is interested in exploring the applicability of a deep belief network (DBN),
a form of deep learning architecture for prediction of drought indices. The DBN is used as a pretraining
step for a supervised back-propagation neural network. The idea of pretraining using DBN is to aid in
obtaining better initial weights for the network instead of random initialization. Recent studies using a
DBN as a deep learning algorithm have had great successes in applications such as image classification,
computer vision, and speech recognition problems [21,22]. However, the use of deep learning in time
series prediction problems is relatively new and is gaining much attention. Some applications of
DBN for time series modeling can be found in [23–25]. Zhang et al. applied deep belief networks
to forecast foreign exchange rates and found better performance with the DBN than with other
classical approaches [23]. A deep belief network model optimized by particle swarm optimization
(PSO) was proposed in [25] to forecast time series. The proposed model was found to outperform
conventional neural network models such as multi-layer perceptron (MLP), self-organizing fuzzy
neural networks (SOFNN), and the mathematical linear model ARIMA. Chen et al. also used a deep
belief network model to predict the short-term drought index of the Huaihe River Basin in China [24].
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The performance of the DBN-based model was found to be superior to that of the traditional back
propagation neural network in terms of accuracy and efficiency.

In recent years, hybrid models involving signal decomposition have also been shown to be
effective in improving prediction accuracy of time series prediction methods, as indicated in [26].
Wavelet analysis is one of the widely used signal decomposition methods for hydrological time series
prediction [26]. Wavelet analysis has been employed in several hydrological time series studies, as
shown in [13]. Decomposition of time series reduces the difficulty of forecasting, thereby improving
forecasting accuracy. Though wavelet analysis is mostly used in hydrological time series, its efficiency
is usually affected by certain factors. First, accurate wavelet decomposition of time series is still a
problem due to its heavy dependence a priori on the choice of wavelet basis functions [26]. Additionally,
some experience is required to determine the level of decomposition needed to extract the original
series. Huang et al. proposed a signal decomposition method called empirical mode decomposition
(EMD), which is suitable for both nonlinear and nonstationary time series [27]. Hybrid models using
EMD as a series decomposition technique have gained great interest among time series prediction
researchers. Unlike wavelet decomposition, empirical mode decomposition is an adaptive data-driven
method that can extract the oscillatory mode components present in data without the need to specify a
priori the basis functions or the level of decomposition [27,28]. These are generated internally by the
analyzed signal and therefore overcomes the intrinsic limitations present in wavelet approaches [28].
EMD can be used to decompose any complex signal into finite intrinsic mode functions and a residue,
resulting in subtasks with simpler frequency components and stronger correlations that are easier
to analyze and forecast. Another important feature of empirical mode decomposition is that it can
be used for noise reduction of noisy time series, which can be effective in improving the accuracy
of model predictions. This work presents a hybrid method involving a denoised empirical mode
decomposition and a deep belief network to improve the accuracy of the single DBN-based time
series prediction model. Different EMD-based denoising methods have been proposed and applied in
many studies for different purposes [29,30]. A common method for EMD-based denoising algorithms
usually eliminates the noise by using one of the intrinsic mode function (IMF) components. However,
the decision as to which IMF to eliminate is still an ongoing research problem [31]. Since the nosiest
components are usually at the top, most studies also consider the first IMF as noise and eliminate it
when reconstructing the original signal. This may not be an optimal way of eliminating noisy IMFs
because EMD decomposes a given signal into several IMFs with different frequency levels. As a result,
other lower order IMFs may contain noise as well. In this work, a technique based on Hurst exponent
thresholding is used to determine noisy IMFs. Instead of using the popular rescale (R/S) analysis to
directly estimate the Hurst exponents for the various IMFs, detrended fluctuation analysis (DFA) was
used for this purpose. Unlike R/S analysis, DFA can be used for nonstationary time series. Detrended
fluctuation analysis is a technique that has proven to be useful in measuring the extent of long-range
correlations in time series [32,33]. It can measure the same power law scaling observed through R/S
analysis [32].

The rest of the paper is structured as follows. The next section presents the methodology which
includes a brief overview of the structure of the deep belief network and the proposed approach.
In Section 3, the study area and the dataset used for evaluation of the proposed method is presented.
Section 4 presents the results and discussion, and the conclusion is presented in Section 5.

2. Methodology

This section will first give a brief description of the general structure of the restricted Boltzmann
machine (RBM), which forms the building blocks of the DBN: a composition of several stacked RBMs.
This is followed by an overview of the EMD process and noise reduction based on a detrended
fluctuation analysis. Finally, the overall work flow of the proposed hybrid EMD-DBN model with
series denoising is presented.
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2.1. Restricted Boltzmann Machines

An RBM is a type of neural network model used for unsupervised learning. It can also be used as
a feature extraction method for supervised learning algorithms [34]. A typical RBM consists of a single
layer of hidden units with undirected and symmetrical connections to a layer of visible units [35].
The visible units represent the data, and the hidden units act as the outputs that are used to increase
learning capacity. The configuration simply defines the state of each unit. They only allow connections
between a hidden unit and a visible unit—no connections between two visible units or between two
hidden units. The restriction is that their units must form a bipartite graph, as depicted in Figure 1.
RBMs represent a special type of generative energy-based model that is defined in terms of the energies
of configurations between visible and hidden units. The energy of the joint configuration (v, h) of the
visible and hidden units of an RBM is defined as [18,25,36,37]:

E(v, h) = − ∑
i=visible

aivi − ∑
j=hidden

bjhj −∑
ij

vihjwij (1)

where vi, hj are the binary states of the visible unit i and the hidden unit j, ai, bj are the biases, and wij
is the weight between them.

Figure 1. An example of a restricted Boltzmann machine (RBM).

The configuration energy indicates the state of the network. For instance, a lower energy shows
that the network is in a more desirable state and therefore has a higher probability of occurring.
The energy function is used to calculate the probability that is assigned to every possible pair of visible
and hidden units. The energy of configuration determines the probability of a configuration of a
possible pair and is given by:

P(v, h) =
1
Z

e−E(v,h) (2)

where Z is a partition function (normalization constant), which is a sum of the energies over all possible
configurations of the visible and hidden units:

Z = ∑
v,h

e−E(v,h). (3)

The RBM is trained using the contrastive divergence algorithm [35] by presenting a training
vector to the visible units and alternatively sampling the hidden units, p(h|v), and visible units,
p(v|h). The hidden unit activations are mutually independent, given the visible units activations
and vice versa. The RBM, in this case, is called a conditional restricted Boltzmann machine (CRBM).
The conditional probabilities of hidden and visible units with binary values are therefore calculated
using the following equations:

P(h|v) =
n

∏
j=1

P(hj|v) (4)

P(v|h) =
m

∏
i=1

P(vi|h) (5)

where n and m are the numbers of hidden and visible units, respectively.
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For a single binary hidden and visible unit, the conditional probabilities are given by

P(hj = 1|v) = σ
(

cj + ∑ wijvi

)
(6)

P(vi = 1|h) = σ
(

bi + ∑ wijhj

)
(7)

where σ is the activation transfer function. cj and bi are the biases, vi and hj are the states of the visible
and hidden units, and wij represents the connection weight between units i and j.

In RBM training, the main objective is to be able to obtain optimal parameters b, c, w for the
network. This can be realized by optimizing the gradient function:

δlogp(v)
δwij

= 〈vihj〉data − 〈vihj〉model (8)

where 〈vihj〉data expresses the distribution of raw data input to the RBM, and 〈vihj〉model is the
distribution of data after the model has been reconstructed. The gradient function represents the log
probability of a training vector with respect to a weight.

The weights and biases can be updated using contrastive divergence, Figure 2, as follows:

4 wij = α
(
〈vihj〉data − 〈vihj〉recon

)
(9)

4 cj = α
(
〈hj〉data − 〈hj〉recon

)
(10)

4 bi = α
(
〈vi〉data − 〈vi〉recon

)
(11)

where α is a learning rate.

Figure 2. A single step of contrastive divergence.

2.2. Deep Belief Network

A DBN is a probabilistic generative model that consists of multiple hidden layers. The multiple
layers can be used to learn more complex patterns of data in a progressive manner from low-level
features to high-level features. One important feature of the learning algorithm for a DBN is that of its
greedy layer-wise training, which can be repeated several times to efficiently learn a deep hierarchical
model [38]. Other key features of DBN models include their ability to efficiently learn from large
amounts of unlabeled data that can be discriminatively fine-tuned for classification and regression
problems using the standard backpropagation algorithm [38]. They can also be used to make nonlinear
autoencoders that work considerably better than standard feature reduction methods, such as principal
component analysis (PCA) and singular value decomposition (SVD) [22,38]. A DBN is constructed
by stacking multiple RBMs on top of each other [18,35]. The structure of a DBN with two RBMs is
shown in Figure 3. The layers are trained efficiently by using the feature activations of one layer as
the training data for the next layer. Better initial values of weights in all layers can be obtained by the
layer-wise unsupervised training, compared to random initialization [18]. A DBN is trained using two
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steps: pre-training and fine-tuning. First, unsupervised pre-training is performed layer by layer, from
low-level to high-level RBMs, to obtain reasonable parameter values of the network. Second, the entire
network is fine-tuned in a supervised manner according to the target value using back-propagation.

Training a DBN is simply done by training the individually stacked RBMs constituting the
network. An RBM is trained using contrastive divergence, which is an algorithmic procedure for the
efficient estimation of RBM parameters. A standard way of estimating the RBM’s parameters from
a training set x1, ..., xn with respect to a given weight is carried out by finding the parameters that
maximize the average log probability.

δlogp(v)
δwij

= 〈vihj〉data − 〈vihj〉model (12)

where 〈vihj〉data expresses the distribution of raw data input to the RBM, and 〈vihj〉model is the
distribution of data after the model has been reconstructed.

This can be summarized in the following few steps:

1. set initial states to the training data set (visible units);
2. sample in a back-and-forth process

Positivephase : P(hj = 1|v) = σ
(

cj + ∑ wijvi

)
Negativephase : P(vi = 1|h) = σ

(
bi + ∑ wijhj

)
(13)

3. update all of the hidden units in parallel starting with visible units, reconstruct visible units from
the hidden units, and finally update the hidden units again;

4. repeat with all training examples and update the weights using Equation (9).

Figure 3. Architecture of a deep belief network (DBN) with two RBMs [37].

2.3. Empirical Mode Decomposition

EMD is a signal preprocessing algorithm that was introduced by Huang et al. in 1998 [27].
EMD is an adaptive data processing method that can be used for the decomposition of both nonlinear
and nonstationary time series and has found applications in various domains. The method was
developed based on the assumption that any time series data consists of different simple intrinsic
modes of oscillation, i.e., IMFs. The essence of EMD is to empirically identify these intrinsic oscillatory
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modes by their characteristic time scales in the data and then decompose the data accordingly.
It converts an irregular signal into a stationary signal process by continuously eliminating the
average envelope of the sequence, thereby making the sequence smooth. It considers oscillations
of the signal at a very local level and separates the signal into locally non-overlapping, zero-mean,
stationary time scale components through a sifting process. The advantage of EMD over other signal
decomposition techniques is that it does not need to be constrained by conditions, which often only
apply approximately. Several hybrid models based on the principle of ‘decomposition and ensemble’
have been proposed. For instance, hybrid forecast approaches have been applied in hydrology research,
as shown in [26,39–41]. A wavelet transform technique with ANN was employed in [39] and [40] to
predict rainfall and streamflow time series respectively. In [41], Sang developed a method for discrete
wavelet decomposition of time series and proposed an improved wavelet model for hydrologic time
series forecasting. The results of these studies have proven that the ‘decomposition and ensemble’
principle-based forecasting methods can reduce the difficulty of forecasting and can outperform
the single models [26]. Unlike wavelet transforms that have been widely used as decomposition
techniques, EMD is a heuristic technique that is based on the properties of the data on a local scale.
It decomposes the time series without the need of an a-priori-defined basis function in which the
signal is expressed [27].

The necessary conditions of the IMFs are symmetry with respect to the local zero mean and the
same number of zero crossings and extrema [27]. In order for an EMD to decompose a signal x(tn))

into the different IMFs, the following two properties must be met:

1. an IMF has only one extremum between two subsequent zero crossings—i.e., the number of local
extrema and zero crossings differs at most by one;

2. the local average of the upper and lower envelopes of an IMF has to be zero.

The sifting process locally filters pure oscillations, starting with the highest frequency oscillation
in an iterative procedure [27]. Hence, the sifting algorithm decomposes a data set x(t) into cj IMFs,
where j = 1, ..., n and a residue rn as shown in the following equation [42]. A more detailed procedure
on how IMFs are calculated can be found in Wu et al. [42].

X(t) =
n

∑
j=1

cj + rn (14)

where cj represents the IMF components, and rn is a residual component. The residual rn could be a
constant, or a function that contains only a single extrema and from which no more oscillatory IMFs
can be extracted [42].

2.4. The EMD Algorithm

At the beginning of the proposed hybrid model, the EMD-based decomposition is employed to
decompose the original signal into the various components. The main steps followed in the time series
decomposition using EMD are as follows:

1. identify all of the local extrema of x(t);
2. create the upper envelope eup(t) and the lower envelope elo(t) by the cubic spline

interpolation, respectively;
3. compute the mean value m(t) of the upper and lower envelopes: m(t) = [eup(t)− elo(t)]/2;
4. extract the mean envelope m(t) from the signal x(t), where the difference is defined as d(t):

d(t) = x(t)−m(t);
5. check the properties of d(t):

(a) if d(t) satisfies the requirements of IMF Conditions (1) and (2), then d(t) is denoted as the
ith IMF, and x(t) is replaced with the residual r(t) = x(t)− d(t); the ith IMF is denoted as
ci(t) , and i is the order number of the IMF;
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(b) if d(t) is not an IMF, replace x(t) with d(t);

6. repeat Steps 1–5 until the residue r(t) becomes a monotonic function or the number of extrema is
less than or equal to one, from which no further IMF can be extracted.

Finally, the original signal x(t) can be expressed as the sum of the IMFs and the residue r(t)
given in Equation (14). The above algorithm is summarized in Figure 4 and an example of EMD
decomposition is illustrated in Figure 5.

Figure 4. Flowchart of the sifting process for the empirical mode decomposition (EMD) algorithm.

Figure 5. Decomposition using EMD.
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2.5. Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a method proposed by Peng et al. [33] for measuring
the intensity of the long-range dependence of a signal. This dependence can be described using three
different classes: long-range dependence, mild dependence, and pure randomness. It can be used to
estimate the scaling exponent of a signal that describes its self-affinity similarly to the Hurst exponent.
The oldest and best-known method for estimation of the Hurst exponent is the so-called R/S analysis
method, proposed by Mandelbrot and Wallis [32]. This method was first based on a previous work by
Hurst on hydrological analysis that allows for the estimation of the Hurst exponent (self-similarity
parameter H). However, the method is not suitable for nonstationary time series, as it can cause
spurious scores [43]. In this work, detrended fluctuation analysis, which is a more suitable method for
obtaining reliable scaling exponents for nonstationary time series is employed [32,43]. The method can
be summarized as follows:

1. for a given time series Xi with length L, divide it into d subseries of length n;
2. for each subseries m = 1, 2..., d,

(a) Create a cumulative time series Yi,m = ∑i
j=1 Xi,m for i = 1, ..., n

(b) Fit a least squares line Ȳm = amx+bm to {Y1,m, ..., Yn,m}
(c) Calculate the root mean square fluctuation (i.e. standard deviation) of the integrated and

detrended time series:
F(m) =

√
1
n ∑n

i=1(Yi,m − Ȳi,m)2

(d) Finally, calculate the mean value of the root mean square fluctuation for all subseries of
length n F̄(n) = 1

d ∑d
m=1 F(m)

Similarly to the R/S analysis, a linear relationship on a double-logarithmic of F̄(n) against the
interval size n indicates the presence of a power-law scaling behavior F̄(n) ∝ nH [32]. Here, H is the
DFA scaling exponent that is identical to the Hurst exponent. The Hurst exponent is related to the
power spectrum exponent η and the autocorrelation exponent γ by η = 2H − 1 and γ = 2− 2H [44].
It is considered an indicator of the roughness of the time series. The larger the value, the smoother
the time series. Smaller slope values are usually associated with rapid fluctuations. If the process is
white noise, then the slope is roughly 0.5. If it is persistent, the slope is >0.5. If it is anti-persistent,
the slope is <0.5. In such cases, significant fluctuations are followed by small ones and vice versa.
Just like the R/S analysis approach, a drawback of the DFA is that no known asymptotic distribution
theory has been derived from the statistics. As such, no explicit hypothesis testing can be performed,
as the significance relies on a subjective assessment [32].

2.6. EMD-Based Denoising Using DFA

The EMD algorithm decomposes any complicated dataset into a finite number of IMFs of different
dominant frequencies and amplitudes. The decomposed IMFs are usually arranged starting with the
highest frequencies at the top and those with the lowest frequencies at the bottom. The original dataset
can be reconstructed accurately by using all of the IMFs. However, some of the components, especially
those with the highest frequencies, may contain irrelevant information about the original data (noise);
therefore, using all the IMFs for reconstruction of the original dataset may affect the performance of
any prediction method. A new series of the original dataset can be suitably reconstructed by using
only a subset of the IMFs. This can be achieved by properly eliminating those IMFs that contain
no relevant information about the original series. Different EMD-based denoising methods have
been proposed and applied in various studies for different purposes [29,30]. An important step in
EMD-based denoising is how to separate the noisy IMFs from the rest of the IMFs. A common method
for EMD-based denoising algorithms is to eliminate the noise by using one of the IMF components.
However, the decision as to which IMF to eliminate is still an ongoing research problem [31]. In this
work, we propose a denoising approach that eliminates the noisy IMFs by using DFA to estimate
the scaling exponents of all the IMFs and comparing them with the Hurst exponent threshold.
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The proposed method eliminates both Gaussian white noise and anti-persistent processes by using a
Hurst exponent threshold of 0.5. A plot of the scaling exponents of the IMFs with a threshold of 0.5 is
shown in Figure 6. The original dataset is therefore reconstructed by summing those IMFs with scaling
exponents above the threshold. Figure 7 shows a plot of the original and the reconstructed dataset.

Figure 6. Scaling exponents of all intrinsic mode functions (IMFs) with a threshold of 0.5.

Figure 7. A plot of the original and reconstructed dataset.

3. Study Area and Observed Dataset

3.1. Study Area

The study area is the Lower Colorado River Basin, shown in Figure 8 (credit: http://web.
mit.edu/12.000/www/m2012/finalwebsite/images/col1.jpg). Ten river sites were used in this
analysis and include the Colorado River and Paria River at Lee’s Ferry Basin, the Little Colorado

http://web.mit.edu/12.000/www/m2012/finalwebsite/images/col1.jpg
http://web.mit.edu/12.000/www/m2012/finalwebsite/images/col1.jpg


Hydrology 2018, 5, 18 11 of 20

River at Cameron, the Virgin River at Littlefield, the Colorado River below the Hoover Dam,
the Colorado River below Davies Dam, the Colorado River near Grand Crayon, the Williams
River below Alamo, the Colorado River below Parker Dam, and the Colorado River above
Imperial Dam. Monthly natural streamflows for the period 1906 to 2014 were used to illustrate
the proposed hybrid EMD-based predictive DBN. This monthly data is from the United States
Geological Survey (USGS) observed gage data that can be obtained from the website of the Upper
Colorado Regional Office of the United States Bureau of Reclamation at Salt Lake City, Utah
(http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html). For long-term drought analysis
and prediction, the 12-month and 24-month drought index scales are normally used. As a preliminary
experiment, the 12-month scale SSI was used as the drought index.

Figure 8. Location of gages at the Colorado River near Lee’s Ferry, Paria River near Lee’s Ferry, Little
Colorado River near Cameron, Virgin River near Littlefield, the Colorado River below the Hoover Dam,
the Colorado River below Davies Dam, and the Colorado below Parker Dam (red dots).

3.2. Standardized Streamflow Index

We followed the concept employed by McKee et al. for the standardized precipitation index
(SPI) [45] to calculate the SSI. Generally, drought indicators that are defined like the SPI are called
standardized indices (SIs). McKee et al. used the Gamma distribution for fitting monthly precipitation
data series and suggested that the procedure can be applied to variables other than precipitation,
provided they are relevant to drought (for instance, streamflow, snowpack, and soil moisture) [45].
The procedure used by Cacciamani et al. [46] was followed in order to calculate the SSI. First, we
modeled the distribution frequency of the total streamflow time series cumulated over different
time scales (e.g., 3 months, 6 months, and 12 months) using a probability density function. Then,
the probability density function was transformed into a normal standardized distribution. The values

http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html
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of the resulting standardized index could then be used to classify the category of drought characterizing
each place and time scale [46]. Madadgar et al. [11] used a similar procedure to characterize the
hydrological droughts of the Gunnison River Basin. Since the SSIs are calculated over different
streamflow accumulation periods and scales, they can be used to estimate various potential impacts
of a hydrological drought. For instance, the 12-month SSI shows a comparison of the streamflow for
12 consecutive months against the same 12 consecutive months of all the available data from previous
years. A drought event is said to occur when the SSI is continuously negative for a certain period of
time. The event is said to end when the index becomes positive. The SSI 12 and SSI 24 monthly scale
drought indices are often tied to long-term drought conditions. Longer-term drought forecasts can
serve as useful information about drought conditions that affect streamflow, groundwater, or other
hydrological systems within the Colorado River basin.

3.3. Feature Extraction

For time series prediction, the prediction is usually carried out using previous values of the series
as features for the training model. The selection is based on their correlation with the output variable.
In this work, the number of input neurons was selected using autocorrelation analysis. An example is
illustrated in Figure 9 with lags of 1–7,9,13 showing different high levels of significance to the output.
Based on the significance levels of the individual lags and experimentation, a lag of 6 was chosen.
Hence, the past five observations and the current value (St−5, St−4, St−3, St−2, St−1, St) were used as
inputs to predict the next observation (St+1), as illustrated in Figure 10. These were somehow different
for the various stations. For long-term targets, a recursive procedure was employed. The models
were used to predict one step ahead, and the outputs from these models were used as inputs for
subsequent predictions.

Figure 9. Partial autocorrelation of features.
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Figure 10. An example of a recursive network.

3.4. Evaluation of Model Performances

Although the Pearson correlation coefficient (r) and the coefficient of determination (r2) have been
widely used for model evaluation, they have been identified as inappropriate performance metrics
for hydrological models [47,48]. They are oversensitive to extreme values and insensitive to additive
and proportional differences between model predictions and observed data [48,49]. In order to have a
complete assessment of model performance, Legates et al. [49] suggested that at least one absolute
error measure, such as root mean square error (RMSE), mean absolute error (MAE) or mean absolute
percentage error (MAPE), be included as performance metrics. Additionally, the Nash Sutcliffe model
efficiency coefficient (NSE) [50] is a good alternative to r or r2 [47]. Hence, the following three metrics
were used for model comparison:

RMSE =

√
∑T

i=1(yi − ŷi)2

T
(15)

MAE =
∑T

i=1 |yi − ŷi|
T

(16)

NSE = 1− ∑T
i=1(yi − ŷi)

2

∑T
i=1(yi − ȳi)2

(17)

where yi is the observed data, ŷ represents the predicted values, ȳi is the mean of the observed data,
and T is the length of the data.

3.5. Summary of the Proposed EMD based Predictive Deep Belief Network

The proposed EMD-based Predictive DBN consists of four main steps: (1) EMD decomposition of
data into a finite number of IMFs; (2) noise reduction based on partial reconstruction using only the
relevant IMFs; (3) DBN modeling and training; and (4) prediction using the trained model. A flowchart
of the proposed approach is shown in Figure 11. Two RBMs were used to construct the DBN. The DBN
model is therefore made of one visible (input) layer, two hidden layers, and a final layer (output) for
fine-tuning the entire network as shown in Figure 3. Only two hidden layers (two stacked RBMs) were
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used to construct the DBN model because of the small data sample size. Higher hidden layer sizes
were experimented but they were found to be over-fitting. The use of other meteorological variables as
features in addition to the SSI may increase data size, and this may also necessitate the use of larger
network sizes. The following few steps summarize the procedure of the proposed method:

1. obtain the different time-scale SSI (SSI 12 in this case);
2. decompose the time series data into several IMFs and a residue (Rn) using EMD;
3. reconstruct the original data using only relevant IMF components;
4. divide the data into training and testing sets (80% for training and 20% for testing);
5. construct one training matrix as the input for the DBN;
6. select the appropriate model structure and initialize the parameters of the DBN (two hidden

layers are used);
7. using the training data, pre-train the DBN through unsupervised learning;
8. fine-tune the parameters of the entire network using the back-propagation algorithm;
9. perform predictions with the trained model using the test data.

Because a typical RBM uses binary logistic units for visible nodes, we modified the binary nodes
to the continuous case in order to handle the SSI continuous-valued input data using the technique
presented in [18]. We rescaled the continuous-valued input data to the (0,1) interval and considered
each continuous input value as the probability for a binary random variable to take the value 1.
The transformation is given by:

Xscaled = Xstd ∗ (Xmax − Xmin) + Xmin (18)

where Xstd = Xobs−Xmin
Xmax−Xmin

.

Figure 11. Flowchart of the hybrid EMD-DBN model.

4. Results

The proposed denoising EMD-based predictive DBN was evaluated by applying it to predict
drought indices of different lead times across the Colorado River Basin. Standardized streamflow
index (SSI) was used as the drought index. The forecast errors for predicting SSI 12 one-step-ahead
(one-month lead time) and two-step-ahead (two-month lead time) for the chosen ten stations are
presented in Tables 1 and 2. Six models were compared. They include the MLP, SVR, the DBN, and the
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hybrid versions of these three models using EMD-DFA decomposition. Decomposition and denoising
significantly improved the performance of the three models, with both DBN and SVR showing a
performance far superior to that of MLP. Optimal parameters for both MLP and SVR were obtained
using grid search on the training part of the dataset. Three performance metrics were used to compare
the various models: the RMSE, the MAE, and the NSE. A histogram showing the RMSE and MAE
for the one-step-ahead predictions are shown in Figure 12. The accuracies of both DBN and SVR are
similar for most of the stations in the one-step-ahead prediction. However, in the two-step-ahead
prediction, EMD-DBN outperforms the other models, as it recorded the least prediction errors in all
stations as shown in Table 2. These results emphasize the importance of the unsupervised pretraining
of neural networks using DBN over traditional neural networks. Figure 13 shows the one-month
and two-month lead times forecasts for Lee’s Ferry station. Results of six-month and twelve-month
lead times forecasts are also shown in Figure 14, where it can clearly be observed that the accuracy of
prediction decreases as the prediction horizon increases.

Table 1. Model results: one-step-ahead prediction.

Station Metric DBN EMD-DBN MLP EMD-MLP SVR EMD-SVR

RMSE 0.03609 0.00892 0.05063 0.03638 0.03673 0.00918
Lee’s Ferry MAE 0.022118 0.00647 0.03157 0.02745 0.02104 0.00667

NSE 0.96323 0.99686 0.93207 0.96323 0.96504 0.99766

RMSE 0.056349 0.0103 0.066744 0.025649 0.056196 0.008668
Paria MAE 0.035205 0.007753 0.046733 0.018784 0.032271 0.006369

NSE 0.89618 0.99655 0.84850 0.97231 0.89359 0.99683

RMSE 0.055215 0.0119 0.078347 0.060729 0.063625 0.012007
Little C R MAE 0.034330 0.00899 0.05710 0.049367 0.046197 0.00925

NSE 0.87431 0.99408 0.81794 0.95161 0.86324 0.99403

RMSE 0.036122 0.00814 0.050631 0.034439 0.036642 0.009173
C R Canyon MAE 0.022646 0.006386 0.031531 0.026860 0.034869 0.006455

NSE 0.96486 0.99853 0.93248 0.96803 0.96463 0.99842

RMSE 0.048079 0.00817 0.053033 0.024385 0.046524 0.007942
Virgin R MAE 0.027074 0.005180 0.033781 0.017263 0.025161 0.005616

NSE 0.95914 0.99852 0.95262 0.98986 0.96421 0.99892

RMSE 0.038824 0.00686 0.045099 0.019594 0.039546 0.006937
C R Hoover MAE 0.018958 0.004499 0.021003 0.011846 0.015699 0.003347

NSE 0.95193 0.99827 0.93280 0.98445 0.94833 0.99830

RMSE 0.035912 0.00865 0.051219 0.034183 0.036535 0.008977
C R Davies MAE 0.022693 0.006081 0.032272 0.026294 0.022015 0.006652

NSE 0.96658 0.99722 0.93299 0.96613 0.96590 0.99780

RMSE 0.035366 0.00844 0.049666 0.03132 0.035801 0.006914
Williams R MAE 0.022378 0.006385 0.031253 0.024498 0.021475 0.005218

NSE 0.96553 0.99748 0.93463 0.97234 0.96603 0.99801

RMSE 0.035261 0.00875 0.048665 0.031484 0.037417 0.008185
C R Parker MAE 0.022174 0.007089 0.030343 0.024622 0.021004 0.006305

NSE 0.96085 0.99757 0.93435 0.96991 0.96451 0.99796

RMSE 0.035366 0.00844 0.049666 0.03132 0.035801 0.006914
C R Imperial MAE 0.022378 0.006385 0.031253 0.024498 0.021475 0.005218

NSE 0.96245 0.99756 0.93617 0.96832 0.96540 0.99815
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(a) RMSE (b) MAE

Figure 12. Comparative plots of root mean square error (RMSE) and mean absolute error (MAE) for
the various methods: one step ahead.

Table 2. Model results: two-step-ahead prediction.

Station Metric DBN EMD-DBN MLP EMD-MLP SVR EMD-SVR

RMSE 0.03760 0.01298 0.06858 0.04391 0.03830 0.01797
Lee’s Ferry MAE 0.02314 0.01010 0.05181 0.03321 0.02454 0.01328

NSE 0.95719 0.99540 0.87426 0.94605 0.96204 0.99118

RMSE 0.05824 0.01177 0.07267 0.05547 0.05828 0.017298
Paria MAE 0.04367 0.00924 0.05958 0.04810 0.04053 0.01344

NSE 0.88405 0.99423 0.81943 0.87183 0.88386 0.98754

RMSE 0.06628 0.01693 0.07549 0.04769 0.07102 0.02833
Little C R MAE 0.04955 0.01332 0.06079 0.03727 0.04859 0.02094

NSE 0.77706 0.98729 0.71083 0.89925 0.77409 0.96444

RMSE 0.03742 0.01114 0.06501 0.03640 0.03674 0.01447
C R Canyon MAE 0.02547 0.00815 0.04493 0.02718 0.03057 0.01067

NSE 0.95384 0.99668 0.89088 0.95201 0.94519 0.99440

RMSE 0.04420 0.01053 0.05337 0.03919 0.07664 0.03023
Virgin R MAE 0.02765 0.00775 0.03703 0.03276 0.03963 0.01838

NSE 0.94665 0.99810 0.92137 0.97376 0.89972 0.98438

RMSE 0.04997 0.01049 0.06616 0.04582 0.05298 0.02021
C R Hoover MAE 0.03089 0.00654 0.03266 0.04188 0.02707 0.01010

NSE 0.89898 0.99483 0.82291 0.90135 0.88644 0.98080

RMSE 0.03705 0.01395 0.05359 0.02945 0.04048 0.01529
C R Davies MAE 0.02655 0.01060 0.03440 0.02330 0.02898 0.01128

NSE 0.94084 0.99476 0.92770 0.97102 0.93875 0.99370

RMSE 0.033984 0.01035 0.06008 0.02838 0.03689 0.01502
Williams R MAE 0.02843 0.00780 0.03661 0.02559 0.02966 0.01119

NSE 0.94899 0.99501 0.91175 0.95620 0.92468 0.99376

RMSE 0.03713 0.01237 0.05935 0.02911 0.03905 0.01311
C R Parker MAE 0.02493 0.00920 0.03715 0.02408 0.02535 0.01010

NSE 0.93004 0.99538 0.90386 0.96657 0.92454 0.99480

RMSE 0.03601 0.01230 0.05998 0.02802 0.03729 0.01455
C R Imperial MAE 0.02424 0.00832 0.03834 0.02366 0.02590 0.01063

NSE 0.94935 0.99561 0.90469 0.97006 0.95316 0.99386



Hydrology 2018, 5, 18 17 of 20

(a) One-Month Lead-Time Prediction (b) Two-Month Lead-Time Prediction

Figure 13. Observed and predicted drought Index using the EMD-DBN model for Lee’s Ferry Station.

(a) Six-Month Lead-Time Prediction (b) Twelve-Month Lead-Time Prediction

Figure 14. Observed and predicted drought index using the EMD-DBN model for Lee’s Ferry Station.

5. Conclusions

Drought modeling and prediction has been a topic of interest over the last two decades, generating
interest among researchers around the globe. In order to understand future drought event behavior,
modeling of drought indices is very important. This study explored a DBN for drought prediction.
We proposed a hybrid model (EMD-DBN) for long-term drought prediction. The results were
compared with DBN, MLP, and SVR alone and with EMD-MLP and EMD-SVR. Overall, both
DBN and SVR and their hybrid versions, showed comparatively similar prediction errors for the
one-step ahead predictions as shown in Table 1 . However, DBN and the proposed EMD-DBN
outperformed all other models for the two-step predictions for almost all stations, as shown in Table 2.
Though the performance of MLP improved with the decomposition and denoising of drought indices,
its performance, relative to both DBN and SVR was poor. In all, the improvement in the performance
of the hybrid models over the single models suggests that errors encountered in time series predictions
can be improved significantly by series decomposition using EMD. Pre-processing the original input
dataset with EMD decreases the complexities in the data, allowing the removal of noisy components
and therefore improving prediction accuracy. For long-term predictions, it was observed that, as the
prediction horizon increases, the accuracy of predictions decreases. This was not unexpected because a
recursive approach was employed for higher prediction lead times, where previous predictions were
used as inputs for lead times greater than one. The results obtained from this work are very promising
and pave the way for further works where hybrid models involving empirical mode decomposition
techniques with future selection and other temporal models such as recurrent neural networks or
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variants can be explored. Additionally, due to the good performance of the SVR model, future work
may try to employ the SVR as the last layer of the DBN pretrained model. Optimal parameter search for
SVR can be improved by considering evolutionary optimization algorithms such as genetic algorithms
(GAs) or PSO. This is necessary because the grid search method used in this work may be sensitive to
the selected SVR parameters and might have influenced the results.

Future work will also consider the use of other meteorological variables such as precipitation,
temperature, and large climate variables such as El Nino southern oscillation (ENSO) and North
Atlantic oscillation (NAO) [51]. Drought is a very complex natural phenomenon, as it is known to
be influenced by several meteorological variables. Hence, the use of only one variable may not be
adequate enough to provide reliable forecasts. Additionally, climate change effects are very diverse.
They vary both locally and regionally, in their intensity, duration, and areal extent. Hence, in order to
understand the impact of climate change on drought, GCM outputs are downscaled to model drought
variables on a large scale [17]. Therefore, we will try to adopt this current work to GCM or RCM
outputs to assess drought characteristics.
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