
hydrology

Article

Assessment of Changes in Flood Frequency Due to
the Effects of Climate Change: Implications for
Engineering Design

Felipe Quintero 1,* ID , Ricardo Mantilla 1 ID , Christopher Anderson 2, David Claman 3

and Witold Krajewski 1 ID

1 Iowa Flood Center, University of Iowa, Iowa City, IA 52242, USA; ricardo-mantilla@uiowa.edu (R.M.);
witold-krajewski@uiowa.edu (W.K.)

2 SkyDoc LLC, Ames, IA 50010, USA; sky.doc.llc@gmail.com
3 Iowa Department of Transportation, Ames, IA 50010, USA; david.claman@dot.iowa.gov
* Correspondence: felipe-quintero@uiowa.edu; Tel.: +1-319-384-1727

Received: 1 February 2018; Accepted: 1 March 2018; Published: 3 March 2018

Abstract: The authors explore the uncertainty implied in the estimation of changes in flood frequency
due to climate change at the basins of the Cedar River and Skunk River in Iowa, United States.
The study focuses on the influence of climate change on the 100-year flood, used broadly as a
reference flow for civil engineering design. Downscaled rainfall projections between 1960–2099 were
used as forcing into a hydrological model for producing discharge projections at locations intersecting
vulnerable transportation infrastructure. The annual maxima of the discharge projections were used
to conduct flood frequency analyses over the periods 1960–2009 and 1960–2099. The analysis of
the period 1960–2009 is a good predictor of the observed flood values for return periods between 2
and 200 years in the studied basins. The findings show that projected flood values could increase
significantly in both basins. Between 2009 and 2099, 100-year flood could increase between 47%
and 52% in Cedar River, and between 25% and 34% in South Skunk River. The study supports a
recommendation for assessing vulnerability of infrastructure to climate change, and implementation
of better resiliency and hydraulic design practices. It is recommended that engineers update existing
design standards to account for climate change by using the upper-limit confidence interval of the
flood frequency analyses that are currently in place.
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1. Introduction

Climate change can increase the likelihood of occurrence and strength of extreme weather such as
extreme precipitation events [1], which might lead to cause more flooding in some regions. Changes
in the frequency and intensity of flooding events may produce serious impacts on society, such as
enormous economic, societal and environmental damage, including loss of lives. There were 539,811
deaths (range: 510,941 to 568,680), 361,974 injuries and 2,821,895,005 people affected by floods between
1980 and 2009 [2]. Many of the economic impacts of flooding are related to the damage on civil
engineering infrastructure. There is a growing interest in learning about the impact of climate change
on the engineering design of structures like bridges and culverts that are sited at the outlet of small
and medium watersheds. According to projections, climate change is likely to concentrate rainfall
into more intense storms [3–5]. Heavy rains can result in flooding, which could disrupt traffic, delay
construction activities, and weaken or wash out the soil and culverts that support roads, tunnels, and
bridges. For road transport infrastructures, weather stresses might represent from 30% to 50% of
current road maintenance costs in Europe [6]. About 10% of these costs are associated with extreme
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weather events alone, in which extreme heavy rainfalls & floods events represent the first contribution.
Traffic disrupted by flooding also has consequences in loss of lives. The primary cause of flood-related
mortality in developed countries is drowning being in a motor-vehicle [2]. In the United States and
other countries, civil engineers typically refer to historical data when designing hydraulic structures
and transportation systems. For example, bridges are often designed to withstand storms that have a
probability of occurrence of 1% every year, i.e., the 100-year return period flood [3].

Several authors have reported that the frequency and magnitude of important flows are being affected
by the changes in climate conditions, land use and land cover among other factors [7–10]. [11] found that
the frequency of 100-year return period floods increased substantially during the twentieth century in
basins larger than 200 thousand square kilometers all around the world, and that there is a statistically
significant positive trend in risk of great floods. These findings in the literature support the importance
of taking into account the impacts of the climate change in the assessment of flood frequencies from
river discharge projections.

Two approaches are found commonly in the literature to address this problem. The first is based
on creating projections of discharge and/or flood frequency values based on observations from the
past by means of statistical models [12]. The second approach is based on modeling the physical
processes involved in the conversion from rainfall into runoff. In the latter, the assessment of changes
in discharge projections is implicitly accounted by forcing a hydrologic model with rainfall projections
that consider climate change. This approach, however, has some limitations. Using rainfall projections
with coarse spatial and temporal resolution provided by General Circulation Models (GCM) might be
sufficient for analyzing river discharge changes on a global scale [8,13–16], but it is not satisfactory
for analyzing changes at smaller and medium size basins (100 to 10,000 km2). To provide meaningful
results at small or medium basin scales, it is necessary to produce rainfall projections with adequate
spatial and temporal scales that can be used as forcing in fine resolution hydrologic models [17–20].

The process of downscaling rainfall projections at higher spatial and temporal scales has an
inherent uncertainty. That uncertainty propagates through the chain of processes required for
transforming rainfall projections to peak flow discharge estimates. Additionally, other sources of
uncertainty need to be taken into account. These include: the uncertainty of the hydrological model;
the uncertainty of each climate model to reproduce the projections of precipitation; the dispersion
among the projections from different climate models; the uncertainty on the emission scenarios in the
climate models; and the uncertainty of the flood frequency assessment which arises from the fitting
procedure, and the assumptions about the statistical distribution to be used. Further, the accuracy of
procedures is challenged by the uncertainty related to future changes of additional factors affecting
hydrologic simulation, such as evapotranspiration and land use. All these sources of error produce
considerable uncertainty that must be taken into account, but their individual study is out of the scope
of this paper. The authors aim to focus on factors where more uncertainty relies, considering the errors
of climate models projections [21,22] and the flood frequency analysis procedure [23]. Sensitivity to
hydrologic model parameterization is important, but not addressed in this paper, considering that
most of the contribution to total uncertainty comes from the model inputs [24]. The study accounts for
the uncertainty in the flood frequency assessment and evaluates the sensitivity to the assumption of
stationarity, length of data series, and the spatio-temporal resolution of the downscaled rainfall data.

The authors attempt to assess the expected changes in the frequency of floods in two watersheds
in Iowa due to climate change. Rainfall projections obtained from 19 climate models in a region that
includes Iowa were forced into a distributed hydrological model to produce discharge projections.
The setup of the experiment requires taking into account special considerations for providing
meaningful results at the desired spatial and temporal scales. For that purpose, the used rainfall
projections are downscaled in both spatial and temporal scales using an algorithm capable of
reproducing the tails of historical daily precipitation distribution with relatively low sensitivity to
non-stationarity in climate model projections of precipitation [25–27]. Next, flood frequency analysis of
the hydrologic model generated data was made using the software Peak Flow Frequency (PeakFQ) [28],
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the software adopted by United States Geological Survey (USGS) to provide flood magnitudes and
their corresponding variance, using the log-Pearson Type III frequency distribution. The approach
implies assuming stationarity of discharge projections, following the guidelines for determining flood
flow frequency reported by USGS in the Bulletin 17B [29]. In Section 2 is described the data and the
area of study. Section 3 describes the applied methodology. Section 4 presents the results, and Section 5
summarizes the conclusions and discussion.

2. Study Area and Data

2.1. Selected Basins and Observed Streamflow

The study area is the South Skunk River Basin in Central Iowa and the Cedar River Basin
in Northeast Iowa (see Figure 1). Within these basins, six locations were selected where the river
intersect major interstate highways and passes under a bridge. The three bridges along the Cedar
River are collocated with United States Geological Survey (USGS) gauges where historical streamflow
observations are available. The bridges of the South Skunk river also have collocated USGS gauges,
except for the bridge marked with number 5 in Figure 1, which is just a few kilometers downstream of
bridge number 4. Table 1 summarizes the information about the location of the bridges, the available
streamflow gauges and their upstream areas.Hydrology 2018, 5, x  4 of 16 
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Table 1. Bridge locations and available stream gauges.

Map (No.) * Bridge Location USGS Gauge (No.) Drainage Area
of Gauge (km2)

1 Cedar River: US 20 in Waterloo 05464000 13,294
2 Cedar River: US 151 in Cedar Rapids 05464500 16,814
3 Cedar River: I-80 near West Branch 05465000 20,080
4 Skunk River: US 30 in Ames 05471000 1458
5 Skunk River: I-35 south of Ames 05471000 1458
6 Skunk River: I-80 in Colfax 05471050 2105

* Corresponds to numbered locations in Figure 1 map.

2.2. Rainfall Data Sets

The study uses the precipitation of climate projections from the High-Resolution National Climate
Change Dataset [26]. The database consists of daily projections from 1960 to 2099 from global models
archived by the Coupled Model Intercomparison Project version 3 (CMIP3) [30]. The projections are
simulations from multiple climate models of multiple future greenhouse gas concentration scenarios,
which are summarized in Table 2. The native grid of climate projection data ranges from 1-degree to
2.5-degrees latitude by longitude, which is too coarse to represent rainfall within basins that range
from 500 to 20,000 km2 in this evaluation. The models were downscaled using the asynchronous
regional regression model (ARRM, [25,26]), resulting in a spatial partitioning of 1/8-degree cells
and temporal daily increments. Unfortunately, CMIP5 downscaled data was not available when our
research was conducted.

Because frequent practice with the hydrology model used in this study is to use rainfall estimates
with 4-km cells and hourly increment, there were designed a series of data degradation experiments,
starting from Stage IV radar rainfall [31], to show the sensitivity of hydrological simulation for flood
prediction to data coarseness. The experiments are detailed in Section 3.

Table 2. Global climate modeling groups and their models. Source: High-Resolution National Climate
Change Dataset. Those marked with * begin in 1961. All other models contain daily time series from
1960 to 2099.

Origin CMIP3 Model Scenarios

National Center for Atmospheric Research CCSM3 A1FI, A2

Canadian Centre for Climate Modelling and Analysis CGCM3.1-T47 *
CGCM3.1-T63 *

A2, A1B
A2, A1B

Centre National de Recerches Meteorologiques CNRM-CM3 A2, A1B
Max Planck Institute for Meteorology ECHAM5 A2, A1B
National Institute for Meteorological

Research/Korea Meteorological Administration ECHO-G A2, A1B

NOAA Geophysical Fluid Dynamics Laboratory GFDL–CM2.1 A2, A1FI

UK Meteorological Office Hadley Centre HADCM3
HADGEM1

A1FI, A2, A1B
A2, A1B

3. Methodology

3.1. Distributed Hydrological Model

The Hillslope-Link model (HLM) distributed model [32,33] was used to transform the rainfall
from the climate projections into discharge simulations. For the setup of the experiments, it is assumed
that there are not changes in projections of evapotranspiration and land use. HLM builds on the
concept of the landscape decomposition into hillslopes and channels [34]. HLM allows for flexible
structure and the representation of the physical processes of runoff generation and water transport;
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the processes include initial abstraction, infiltration, overland flow, percolation, base flow, and channel
routing. HLM is calibration free, i.e., a common configuration of parameters determined a priori
applies to all the hillslopes. Each hillslope contains four water storage components (see Figure 2):
channel storage, water ponded on hillslope surface, effective water depth in the top soil layer, and
effective water depth in hillslope subsurface. The mass conservation equations of the water storage
are defined in terms of ordinary differential equations. Channel streamflow is contributed by several
flow components: (1) overland flow from the water ponded on hillslope surface; (2) interflow from the
water depth in the top soil layer; and (3) baseflow from the hillslope subsurface. The mass transport
for each channel link in the network is defined as a power law relation that describes flow velocity as
a function of discharge and drainage area [35]. HLM has been used extensively as the backbone of
the operational flood forecasting system used by the Iowa Flood Information System IFIS [32]. More
details about the HLM equations, configuration, and numerical solver are provided in [33] and [32].
Examples of HLM applications are provided in [32,33,36–43].
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Figure 2. Schematics of the processes represented by the hydrologic model.

3.2. Model Sensitivity to Spatial and Temporal Resolution of Rainfall Datasets

The use of rainfall with 1/8th degree cells and daily increment may be inadequate for assessment
of peak flows in small and medium watersheds. Coarse spatial and temporal scale of rainfall may
distribute rainfall with unrealistic evenness across watersheds and may result in underestimation
of peak flow values [40]. It was developed a data degradation experiment to test for this possibility.
If forcing coarsened precipitation data into the model resulted in poor peak flow simulation, it would
conclude the resolution of the climate projection data set is inadequate. Peak flows were estimated
at catchments of multiple spatial scales, first by forcing our hydrologic model with Stage IV radar
rainfall estimates at the native scales of ~4 km cells with hourly increment. Subsequently the Stage IV
resolution was degraded to daily accumulation on 1/8th degree cells. Figure 3 shows the differences
in the resulting hydrographs at six catchments in Iowa with different upstream areas. The basins are
sorted by upstream area. Results are shown for a period of intense rainfall events that occurred in the
spring of 2013 in Eastern Iowa. The hydrographs produced with native Stage IV data are shown as gray
lines and the ones produced with daily-1/8th degree degraded Stage IV data are shown as red lines.
In terms of the assessment of peak flows, the magnitude of the differences seems to be related with the
spatial scale of the basin. The smallest basin considered has an upstream area in the order of tenths
of square kilometers, and approximately a −35% difference in the peak assessment. Peak differences
diminish as upstream area increases. The upstream area of the largest basin considered is in the order
of tenths of thousands square kilometers, and the difference in peak assessment is approximately
+5%. The authors acknowledge that is hard to make strong conclusions based on the results of few
basins in a short time period of analysis. The basins of study in the Cedar River and Skunk River
have upstream areas in the order of thousands and tens of thousands square kilometers (see Table 1).
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The results of the degradation experiment show empirical evidence that the limitations on resolution of
rainfall projections will not affect significantly the estimation in the magnitude peak flows on discharge
projections for these basins.
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3.3. Flood Projections Estimates

The model simulations consist of 19 continuous daily discharge time series derived from each
rainfall projection for each site. The series are analyzed in the period between 1 January 1960 and
31 December 2099. An exception is made for the CGCM3 model, which starts in 1 January 1961. For
every year, were produced simulations starting 1 April and ending 1 December, in order to model only
the warm season of the year. Modeling these months avoids the problems caused by precipitation
estimation during the winter and the inability of HLM to simulate snowmelt processes. The model
produced hydrographs at every location of the drainage network of Iowa. The hydrographs obtained
at the six catchments are analyzed in the results section.
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3.4. Flood Frequency Analysis

The annual peaks were extracted from the 19 daily discharge time series simulated by the
hydrologic model. The resulting 19 series of simulated annual maxima were used for performing flood
frequency analysis. The software PeakFQ [28] was used to estimate the discharge of different return
periods, including the 100-yr flood, as used traditionally in bridge design. Two time periods were
selected to perform the flood frequency analysis with PeakFQ. The first period includes simulated
annual peaks between 1960 and 2009. This date range is selected with the aim of performing a
validation of the methodology using observed peaks at USGS gauges. Table 1 shows the available
observed discharge data from the gauges. The flood frequency analysis was extended to the observed
annual peaks and compared with the peaks derived from the simulations in the same period. In the
second period, was taken the whole range of projected discharges, between 1960 and 2099. The findings
of the second period analysis were compared with the results of the first period in order to illustrate
the expected changes in the projections between 2009 and 2099.

3.5. Sensitivity of Flood Frequency Analysis to Selected Period of Analysis and Record Length

It is standard procedure to use all available historical data in flood frequency estimation; however,
a standard procedure has not been established for projections of future periods. The study evaluated
also the sensitivity of the flood frequency analysis to length of period of analysis. Two experiments
were conducted to explore the sensitivity of flood frequency estimation based on the amount of
available data that is used as input into PeakFQ. In the first experiment, PeakFQ was fed with data
over a growing time window, starting with the period 1960–1999 and increasing the upper limit with
increments of one year (i.e., 1960–2000, 1960–2001, and so on) until the window covered the period
1960–2099. Every time the window is expanded, were obtained the 100-yr flood and its 95% confidence
intervals. In the second experiment, PeakFQ was fed with data over a 40-year period, starting with the
period 1960–1999. Subsequently, the 40-year window was moved forward in increments of one year
(i.e., 1961–2000, 1962–2001, and so on), until the window reaches the period 2060–2099. For every time
window were obtained the 100-yr flood and its 95% confidence intervals. The size of the time window
is subjective. It was considered 40 years because it is a common value of data availability. The results
of this analysis are presented in Section 4.3.

4. Results

Here are presented the detailed results of our methodology in the catchment of the Cedar River
at Cedar Rapids (~16,840 km2), and then a summary of the findings at the six catchments selected in
this study.

4.1. Projected Annual Peak Flows and Trends

Figure 4 shows the time series of annual peak flows obtained for the catchment of Cedar River at
Cedar Rapids for each of the climate projections, organized by models and scenarios. One can see that
the magnitude of the projected annual peaks varies in different ways for every projection. The annual
peaks simulated with the hydrologic model when forced with the rainfall projections from CCSM
A1FI, CGCM3T47 A1B and CNRM A1B models reach values of up to 8000 m3/s. These peaks would
correspond to flood values with a return period greater than 500 years when compared to historical
observations [44].
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The Mann-Kendall non-parametric trend test [45,46] was used to detect significant trends in the
mean of annual peak flows at the 5% significance level. The calculations were performed using the
Kendall package in R [47]. The results of the Mann-Kendall test over the 19 annual peak time series
are summarized in Table 3. It shows the tau and p values obtained for each model. In seven out of
19 models, the results show evidence to reject the null hypothesis H0 of no monotonic trend in the time
series at the 5% significance level. However, this statistical evidence of trend in the mean of the annual
peaks appears mostly for the results of the Hadley Centre model (four out of seven), which suggest
that their climate model produce more extreme rainfall values compared to other models.

In this study, it was assumed that the process of translating 19 climate model rainfall projections
into discharge projections is stationary, and then the methodology proposed in Bulletin 17B can be
applied to perform flood frequency analysis. The authors acknowledge that a more comprehensive
study should consider an approach for flood frequency estimation for nonstationary processes, and that
results can be severely affected (see [48,49] for additional discussion in this topic). For the purposes of
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this study, our assumption reveals results from a pragmatic perspective, which follows the guidelines
of traditional engineering practice.

Table 3. Parameters obtained after a Mann-Kendall test with alpha = 0.05 for detection of trends in the
projected annual peak flows in the bridge of US 151 in Cedar River at Cedar Rapids.

Model and Scenario Mann-Kendall’s Tau p-Value p-Value < 0.05

CCSM A1FI 0.278 1.07 × 10−6 true
CCSM A2 0.273 1.79 × 10−6 true

CGCM3T47 A1B 0.129 0.024 true
CGCM3T47 A2 0.183 0.0013 true

CGCM3T63 A1B 0.031 0.58 false
CGCM3T63 A2 0.095 0.095 true

CNRM A1B 0.300 1.19 × 10−7 true
CNRM A2 0.242 2.37 × 10−5 true

ECHAM5 A1B 0.131 0.021 true
ECHAM5 A2 0.205 0.00033 true
ECHO A1B 0.124 0.029 true
ECHO A2 0.059 0.30 false

GFDL A1FI 0.053 0.35 false
GFDL A2 0.120 0.035 true

HADCM3 A1B 0.091 0.11 false
HADCM3 A1FI 0.224 9.18 × 10−5 true
HADCM3 A2 −0.003 0.96 false

HADGEM A1B −0.017 0.77 false
HADGEM A2 −0.017 0.77 false

4.2. Projected Floods for Different Return Periods

The series of projected annual peak flows were used to run a flood frequency analysis using
PeakFQ. These analyses generated 19 different values (one for each climate model) of the estimated
discharge for the 2, 5, 10, 25, 50, 100 and 200-year return periods, including their 95% confidence
intervals. The methodology was validated by comparing the flood frequency analyses of the projected
discharge from 1960 to 2009 and the annual peak values observed at the corresponding USGS station
in the same period. The period 1960 to 2009 was picked up with the purpose of using at least 50 years
of observed data for the validation of the methodology. Figure 5 shows the results of the validation
analysis. The figure in the right panel compiles the results obtained with the 19 climate projections
by plotting the median of the discharge values for different return periods and the median of the
confidence intervals. The election of using the median to summarize the magnitude of the discharge
values and the confidence intervals is made to provide simplicity to the comparison of observations
and simulations and as a means to communicate a representative value of the discharge projections.
The values of the simulated discharges are in the same order of magnitude to the observed flood
values, especially for the lower return periods. As stated previously, the authors do not aim to obtain
exact values with the simulations, but expect these to be in the same order of magnitude of the
flood frequency values derived from observations. These observations are also subject to a lot of
uncertainty due to the limited record length, especially for large return periods. The envelope of
the 95% confidence interval of the flood estimator is given in the gray shaded area. The envelope
of the simulations ensemble contains the envelope of the observational uncertainty. The historical
observations are contained by possible realizations of the models. From the previous result, it will
be assumed that the simulations for the period 1960–2009 are a valid predictor of the observed flood
frequencies on that period.
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A second set of data analysis addresses the question of how the flood frequencies will change
between 2009 and the end of the 21st century. In some manner, this experiment addresses the question
of what is the change in flood frequency values from present time to future in the basins of the Cedar
and South Skunk River. For that purpose, were assessed the flood frequencies of the year 2099 by
analyzing the data in the period 1960–2099 and compare those to the frequencies derived for 1960–2009.
Figure 6 compares the distribution of flood frequencies in the period 1960–2009 derived from model
simulations (solid black line is the median and gray envelope are the 5–95% confidence intervals) with
the distribution of flood frequencies in the period 1960–2099 (solid blue line is the median and dashed
blue lines are the 5–95% confidence intervals). Figure shows that by the end of the 21st century, there
could be an increase in the magnitude of the flow values of all the return periods, as well as for the
confidence intervals of these estimates. According to these results, the median of the flood frequencies
by the year 2099 will be very similar to the upper confidence interval of the flood frequency values in
the present period. This particular result is interesting from an engineering design perspective, since it
provides some guidance about how in present time, policy makers could incorporate consideration of
climate change in regulations for design, by using the upper limit confidence interval of the current
flood frequency analyses as an updated, climate-change-ready design standard.
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4.3. Changes in the 100-yr Flood Estimates and Their Sensitivity to Availability of Information

It is of particular interest in this study to evaluate the results of the previous analysis for the 100-yr
flood return period, given its importance in engineering design. Table 4 summarizes the changes that
could experience the 100-yr flood between 2009 and 2099 at the six catchments of this study. The results
show that the median of the 100-yr flood could increase between 47% and 52% in the catchments of the
Cedar River, and between 25% and 34% for the South Skunk River. The upper and lower confidence
intervals of these estimates could increase as well, as reported in Table 4. Although the results obtained
at the Cedar River show an inverse relationship between the upstream area and the change in the
median of the 100-yr flood, it would require this kind of analysis at basins of multiple scales to produce
a statement about the relationship of these two variables.

In order to provide a context for the magnitude of the changes of the 100-yr flood it was performed
a sensitivity analysis for the estimator with respect to the selected period of analysis and the record
length. Additionally, it was studied the sensitivity of the 100-yr flood assessment to the amount of
information that is used for its estimation.

Table 4. Differences in the estimation of the 100-yr flood and their 95% confidence intervals over the
periods 1960–2009 and 1960–2099 at the selected bridges.

100 yr-Flood (5%, Median, 95%)

Basin 1960–2009 1960–2099 Difference (%)

Cedar River: US 20 in Waterloo (05464000) 2378, 3219, 4884 4004, 4915, 6266 68, 52, 28
Cedar River: US 151 in Cedar Rapids (05464500) 2558, 3480, 5150 4306, 5173, 6705 68, 48, 30
Cedar River: I-80 near West Branch (05465000) 2607, 3514, 5218 4332, 5196, 6773 66, 47, 29

Skunk River: US 30 in Ames (05471000) 444, 635, 1019 652, 820, 1075 46, 29, 5
Skunk River: I-35 south of Ames (05471000) 466, 665, 1070 676, 836, 1105 44, 25, 3

Skunk River: I-80 in Colfax (05471050) 532, 738, 1168 793, 995, 1310 49, 34, 12

In Figure 7 we calculated the 100-yr flood and their 95% confidence intervals for every year
between 2000 and 2099, using a growing window, as described in Section 3.5. For example, for the
year 2000, the 100-yr flood is estimated as the median of the 19 values of 100-yr flood estimates using
data from 1960 to 1999 (40 years of data); in 2001 using data from 1960 to 2000 (41 years of data),
etc. The 100-yr flood increases gradually, without exhibiting drastic changes, as new data is included
for the analysis. The spread of the uncertainty envelopes remains more-or-less constant. Moreover,
these envelopes could tend to be narrower as more data is used because the reduction of the standard
deviation of the estimates.
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The study also shows the sensitivity of the estimation of the 100-yr flood to the selected period of
analysis by using portions of the available information. In Figure 8 was calculated the 100-yr flood and
their 95% confidence intervals for every year between 2000 and 2099, using only the most recent 40
years of data, as described in the second experiment of Section 3.5. For example, for the year 2000, the
100-yr flood is estimated as the median of the 19 values of 100-yr flood estimates using data from 1960
to 1999; for 2001, using data from 1961 to 2000, etc. The same procedure is applied for the 5% and 95%
confidence intervals. When using this approach, estimates are very sensitive to the extreme values
contained in this relatively short amount of available data (40 years), and in consequence the metric
sometimes exhibits large increases and decreases over the time, as well as their confidence intervals.
This effect is especially notable between 2050 and 2055, where one can see how the peaks in the upper
confidence intervals increases and decreases drastically in a short period of time.
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5. Discussion

The aim of this study on hydrological climate change projections is to evaluate procedures for
accuracy of data they produce, their strengths and weaknesses, and veracity of stated and unstated
assumptions. The simulation data flow involves a series of simulation systems, each with their own
assumptions and sensitivity to data input quality. The simulation chain starts with global climate
model simulations-based upon multiple scenarios of future (unknowable) human greenhouse gas
emissions, proceeds with a single downscaling method to generate rainfall on 1/8th degree grid
with daily increment, and completes with hydrological modeling. The output is simulated discharge
projections that are used as input to flood frequency analysis. The uncertainty evaluation is focused on
the sensitivity to the assumption of non-stationarity, length of data series, and the spatio-temporal
resolution of the downscaled rainfall data.

Even though the choice of downscaling method is known to create variability in discharge
projections [50], a single credible method can be justified or several methods can be inter-compared
systematically if an error analysis is conducted with precipitation measurements to establish the
minimum spatial and temporal resolution needed for accurate streamflow simulation. For these Iowa
study basins (500–20,000 km2), peak annual streamflow is accurately simulated by rainfall data on
1/8th degree grid with daily increment. Downscaled data (or high-resolution global climate model
data) must, at minimum, reproduce rainfall statistics at this resolution to avoid systematic error in
simulation of peak annual flow.

Climate projection simulations do not reproduce historical rainfall sequences, so that care must
be taken when applying the minimum engineering standard for acceptable climate simulations,
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namely, reproducibility of historical observations [51]. For these Iowa study basins, a collection of
19 downscaled climate projections was used to evaluate the variability of annual peak flow simulations
and estimated projected discharge quantiles to rainfall sequence. Systematic error was evaluated
for quantile estimates by comparing historical streamflow data to median of projected discharge
obtained with the model forced with climate data for a common period (1960–2009). Sensitivity to
the length of the common period is not explored, though it does merit exploration. Furthermore,
uncertainty is quantified with confidence intervals. The 95th and 5th percentiles of confidence
intervals from streamflow measurement and the median values of discharge derived from climate
projection are compared. The choice of median values is subjective and was used as a means to
communicate a representative value of the discharge projections; however, several methods for
uncertainty quantification exist and a standard procedure has not been established. The comparison
quantifies the uncertainty from using a short data series in measurements and the combined uncertainty
in climate projection data from short data series and alternative rainfall sequence. Neither substantial
systematic error nor substantially larger uncertainty from rainfall sequence was found.

Standard procedures for flood frequency assessment assume stationarity (Bulletin 17B) but it does
not specify whether stationarity must be adhered to for all moments of the data distribution or whether
the nonstationarity must present itself as gradual, abrupt, or asymptotic change. The time series of
simulated annual peaks were analyzed statistically for trend. Seven of out nineteen series showed
statistical evidence of trend in the mean. A more comprehensive future study requires proposing an
approach for flood frequency analysis considering nonstationary [49,52,53].

6. Conclusions

The proposed methodology allowed us to make an assessment of how flow values for different
return periods could change during the 21st century. Due to climate change, by the end of the century,
the magnitude of the flow values for return periods between 2 and 200 years could be very similar to
the values of the upper confidence interval from historical streamflow during 1960 to 2009. It was also
found that by the end of the current century, the 100-yr flood could increase between 47% and 52% in
the catchments of Cedar River and increase between 25% and 34% in the catchments of South Skunk
River in Iowa. The number of validation sites used in this study are not sufficient for claiming that
the change in the 100-yr flood scales with the upstream area. This topic is included in our agenda for
future research. It was found also that the assessment of the change in the 100-yr flood is very sensitive
to the amount historical information used to compute this metric.

The authors conclude with several recommendations. Though climate scientists have placed
moderate confidence in “broad-scale features of precipitation as simulated by the climate models”
outside of the Tropics, several layers of analysis are required to have confidence in engineering practice.

• Historical measurements should be used to identify minimum spatio-temporal scales needed to
reproduce with acceptable accuracy the historical rainfall distributions and streamflow data.

• The use of multiple climate models and future scenarios is recommended even though it may
increase substantially the computational expense and require capacity building to enable data
delivery and processing. Future work include exploring the results of applying the methodologies
presented in this study over CMIP5 and CMIP6 datasets.

• Engineers should develop standards for non-stationarity that clarify the importance of abruptness
and permanence as well as whether these are relevant for all moments of distributions.

• The use of confidence intervals is recommended as a means to compare scales of uncertainty at
least until standard procedure for uncertainty integration is developed.

• Including all the available information of projected discharges into flood frequency analysis
procedures is recommended, instead of using a limited amount of projected data.
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