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Abstract: Flooding often has a negative impact on society. In particular, widespread flood events can
cause a lot of damage. These events are often spatially and temporally heterogeneous and should
be duly considered for an appropriate analysis of flooding. Therefore, a conditional multivariate
approach is adapted and applied in order to (i) contribute to a better understanding of the spatial
characteristics of fluvial floods and (ii) to deliver sets of synthetically generated flood events.
The present paper focuses on a simulation procedure consisting of careful data preparation and
selection and the application of a conditional multivariate approach. The conditional approach is
adapted to account for the seasonality of runoff data. Model checks attuned to the model are presented
to ensure the consistence of simulated and observed data. The Austrian Province Vorarlberg was
chosen as the study area. A thorough data analysis of runoff time series showed that the hydrological
behaviour is characterized by a strong seasonality that was considered within the applied modelling
procedure. The analysis of the spatial dependence of high river flows identified regions where
floods likely occur simultaneously and regions with low spatial dependence. The main result of the
modelling procedure, a large set of widespread flood events, was successfully generated.

Keywords: spatially heterogeneous flood events; multivariate modelling procedure; seasonality of
runoff; Heffernan and Tawn model

1. Introduction

Fluvial floods are a natural phenomenon that regularly cause significant losses to property
and human life. Through efficient flood risk management, the adverse consequences of flooding
can be mitigated or even avoided. Therefore, a thorough flood risk analysis provides the basis
for decision making of involved parties, such as flood management agencies, public authorities,
and insurance industries.

In this context, flood risk is usually understood as a combination of the probability of events and
the potential adverse consequences [1–3]. A traditional procedure to derive the probability of flooding
is to apply extreme value statistics to observed runoff series at river gauging stations. By means of this
flood frequency analysis, the return period (T) of flood events in a year is determined for a single point
i.e., gauging station) and being assigned to an entire catchment. In the course of flood risk analyses,
these homogenous flood scenarios, assuming constant return periods of discharges within a river reach
or an entire region, are frequently used.

As flood events in most cases are heterogeneous in space and time [4,5], the use of homogenous
flood scenarios may lead to inaccurate results [6,7]. Therefore, heterogeneous flood scenarios,
which take into account the spatial variability of flood events, should be considered in flood risk
analysis [6,8,9]. As the number of past observed flood events leading to flood damages is usually low,
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the corresponding number of heterogeneous flood scenarios is limited and a statistical evaluation of
the flood risk is difficult to achieve.

A promising approach to overcome this shortcoming is the simulation of synthetic flood events
considering a vast range of possible flooding situations. The flood characteristics within a region of
interest is typically represented by several gauging stations, and therefore a multivariate method,
which is also capable of reproducing the spatial dependence structure in the investigated region, has to
be applied.

In the field of hydrology, a popular approach to combine different marginal distributions and
dependence structures is the copula approach. Although, in recent years, copula-based models have
been applied in hydrology and related fields, such as multivariate frequency analysis, risk assessment,
and multivariate extreme value analysis [8,10–19], most applications are limited to bivariate and
trivariate cases. Jongman et al. [8] used a stepwise conditional copula approach to account for a
higher dimensional case in flood risk analysis. Apart from this study, the semi-parametric conditional
exceedance model introduced by Heffernan and Tawn [20] (henceforth referred to as the HT model) is
able to capture the multivariate nature of widespread flooding and can be used to simulate flood events.

The HT model can be interpreted as a multisite peak-over-threshold approach [21] and is able
to model the joint probability of large sets of variables (e.g., river flow or sea-level data). It is an
appropriate model to describe the probability that one or multiple variables are extreme. Because of
these properties, the HT model is well-suited (i) to show the dependence structure of runoff in a
region and (ii) to describe and reproduce the joint occurrence of high river flows at different sites.
The HT model, thus, delivers high and extreme runoff peaks at one or multiple sites representing
heterogeneous flood situations. A key feature of the HT model is its flexibility in modeling different
dependence structures of extreme events. It can be used for both asymptotically dependent and
asymptotically independent data. None of these two dependence structures should be excluded by the
applied model (as it is done e.g., by a copula model) because it is likely that, for example, two gauges
along the same river are asymptotically dependent, whereas it is possible that not-nested sites are
asymptotically independent. Furthermore, the HT model is able to describe the changing dependence
structure when runoffs become extreme.

The general idea and methodology of this conditional model was introduced by Heffernan and
Tawn in 2004. Since that time, the HT model has been applied successfully particularly in hydrology
and related fields; for example, in order to analyse the spatial dependence of runoff and precipitation
in Great Britain (GB) [22], to simulate various ocean variables for extreme conditions [23–25], and in
the context of flood risk analysis [21,26–31]. These flood risk studies show that the HT model is
an appropriate approach to generate widespread flood events and that it is well-suited to consider
different physical sources of flooding such as high river flows and sea levels. To the authors’ knowledge,
except for one study [27], all previous flood risk studies in which the HT model was applied focused on
flooding in GB. The HT model makes the assumption that flooding in different seasons of the year have
the same spatial dependence [22]. The seasonal features of the processes were not explicitly considered
in the above-mentioned flood related studies, but are taken into account in the present work.

This study introduces a modelling procedure that comprises suitable methods for data review
and preprocessing, the application of the HT model with properly preprocessed and deseasonalized
input data, and model checks attuned to the conditional model. This approach is therefore suitable
to be applied in any setting in which the spatial dependence between seasons differs. The modelling
procedure was applied and tested in a mountainous study area in which the seasonal characteristics of
runoff in summer are different from the characteristics in winter. The main results were synthetically
generated flood events on point scale, or, in other words, a data set of simulated runoff at the spatial
extent of river gauges. A comparison of observed and simulated stream flow data shows the plausibility
of the simulation.

The Austrian Federal Province of Vorarlberg has been chosen as the study area. In the past
decades, Vorarlberg has been affected by serious flood events (e.g., May 1999, August 2002, August
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2005 and June 2013) where each event led to severe economic losses [32]. Thus, a probabilistic flood
risk analysis model was developed to analyse the risk of flooding. The model consists of three major
modules: (i) a hazard module where a data set of synthetic flood scenarios is generated which serves as
surrogate to determine the probability of widespread flooding; (ii) an impact module with results being
loss-probability-relations on a community level representing the potential flood damages; and (iii) a risk
assessment module in which the probability of flood risk in the study area is evaluated statistically [33].
The present paper focuses on the generation of spatially heterogeneous flood events.

The present study is organized as follows. Section 2 consists of a short description of the study
area and the data used in this study. The modelling procedure begins with Section 3, where the focus
lies on the data selection and preprocessing, which is inevitable to account for the seasonality of
runoff. As the second part of the modelling procedure, Section 4 provides a review of the HT model.
In Section 5, results about the seasonal characteristics of runoff, the spatial dependence measure,
the application of the HT model including model checks, and the simulation results are presented.
Finally, in Section 6, conclusions are drawn and future steps are discussed.

2. Study Area and Data Used

The Austrian Federal Province of Vorarlberg has been chosen as the study area (Figure 1).
Vorarlberg is located in the eastern Alps and is characterized by its complex mountainous topography
where elevation ranges from 395 m (Lake Constance) to 3312 m above sea level (Piz Buin). The region
under investigation covers 2601 km2, with 91% of the area belonging to the river Rhine basin and 9%
draining into the river Danube.

Vorarlberg is located north of the Alpine divide and experiences a relatively high amount of mean
annual precipitation; for example, the region Bregenzerwald (mostly drained by the river Bregenzerach)
receives approximately 2000 mm year−1 [34]. A high percentage of the precipitation in winter falls
as snow. Therefore, the seasonality of river flow is characterized by low runoff in winter and high
runoff in spring and summer, especially in the high mountain regions in the southern part of the study
area [35].

Runoff time series from river gauging stations, which are a direct measure for river flooding,
were used as the primary data source for driving the HT model. For the present study, 17 representative
gauges were chosen where time series of daily maximum runoff from 1 January 1976 to 31 December
2013 with no missing data were available (Table 1).

Table 1. Selected River gauging stations, including the ID (station ID) according to the Austrian
Hydrographic Service, and the catchment area (km2).

i Name of Gauges River ID Area

1 Mellau Bregenzerach 200261 228.6
2 Kennelbach Bregenzerach 200329 826.3
3 Hopfreben Bregenzerach 200246 41.7
4 Schönenbach Subersach 200287 31.1
5 Thal Rotach 200311 90.1
6 Lingenau Subersach 200295 111.6
7 Hoher Steg Dornbirnerach 200212 112.9
8 Enz Dornbirnerach 200204 51.1
9 Lustenau (H) Rheintalbinne 200220 77.5
10 Laterns Frutz 200154 33.4
11 Unterhochsteg Leiblach 200394 102.4
12 Schruns Litz 200048 102
13 Garsella Lutz 200105 95.5
14 Gisingen Ill 200147 1281
15 Lustenau (E) Rhein 200196 6110
16 Lech Lech 200378 84.3
17 Lochau Ruggbach 200345 7.2
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A preliminary data analysis helps to understand the hydrological characteristics of the
investigated region. Firstly, daily maximum and mean runoff data were compared. The advantage
of using daily maximum runoff data is that information about peak discharge induced by short
rainfall events (e.g., synoptic weather patterns) is included, which can be relevant in small catchments.
A comparison of annual maximum series (AMS) derived from daily mean data (AMSdm) and from
daily maximum data (AMSdx) for coinciding time period shows that the use of daily mean data would
lead to an underestimation of the flood situation in Vorarlberg. On average, the medians of AMSdx are
87% higher than the medians of AMSdm. The use of daily maximum data is inevitable in the presented
study, although, in most previous flooding related studies [21,26,28], daily mean data were used to
run the HT model.

Secondly, the flood process typology was reviewed that also gives some indication of the length
of flood events. Merz and Blöschl [36] analysed runoff conditions in Austria and classified annual
maximum peaks (time series 1971–1997) in categories such as long-rain floods, short-rain floods,
flash floods, rain-on-snow floods, and snowmelt floods. According to this classification, the flood
events in the 17 watersheds considered in this study were triggered mostly by long-rainfall events (45%),
by short-rainfall events (32%), rain-on-snow events (14%), and others (9%) [36].
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Figure 1. Study area Vorarlberg and the location of river runoff gauges.
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3. Data Review and Preparation

Severe flood events usually have a low probability of occurrence and thus their investigation is
based on a small amount of data. Hawkes et al. [37] emphasized that the data selection and preparation
is probably the most important component when analysing extremes. This section introduces and
reviews some appropriate approaches and aspects of data preparation and selection attuned to the
HT model.

3.1. Event Definition

A key aspect of this study is to analyse widespread flooding i.e., flood events where multiple
stations are affected). A flood event is defined as the maximum runoff of each site that occurs in a
certain time interval of length τ simultaneously—in other words, the maximum value within regularly
spaced blocks. This block maxima are used for further analyses. The choice of length of the time
interval τ rests on the following statistical and hydrological considerations and finally relies on
expert judgment.

1. An analysis of runoff time series, where the consecutive days exceeding a specific threshold
(defined by the pth quantile qp) are counted, provides a first estimation of τ. Denote the daily
maximum runoff at gauge i ∈ [1, . . . , n] and time t by Di,t, and then the probability of peaks of
length L is defined as

R(p, L) =
1
n

n

∑
i=1

Pr(Di,(t,...,t+L) > qp|Di,t > qp ∧ Di,t−1 ≤ qp) (1)

2. The travel- or concentration time provides additional information about the hydrological
response of a watershed and therefore contribute to a thorough event definition. In this context,
the concentration time Tc (in hours) is a possible measure to indicate the time interval in which a
receptor (e.g., flood-prone area) can be affected by simultaneous flooding from two or multiple
tributaries. Grimaldi et al. [38] summarized and presented selected formulas for estimating the
concentration time, such as, the formulas of (a) ‘Department of Public Works’, (b) ‘Giandotti’,
(c) ‘Kirpich’, and (d) ‘Viparelli’, where only few input parameters are necessary. Full details
concerning these formulas of the concentration time and their specified restrictions (e.g., regarding
the catchment size) can be found in Grimaldi et al. [38]. Although the empirical formulas to
estimate the concentration time are associated with large uncertainties [38], they still provide a
valuable instrument to calculate the travel time in investigated watersheds.

3. The event definition (i.e., selection of τ) may also depend on the intended application of the
model, such as reconstruction of flood situations in the past lasting a certain number of days or
application in a distinct (re)insurance context [21].

3.2. Event Categorization

Besides the definition of flood events, the categorization of their severity can be conducted as
follows: a severe flood event (e.g., that causes damage) is defined as the simultaneous occurrence of
high runoff at different sites where at least one site exceeds a certain threshold. The severity of events
can be determined using the proxy called unit of flood hazard (UoFH) [33,39]. The UoFH is defined as
the number of sites that experience runoff that equals or exceeds a certain threshold i.e., a runoff that
corresponds to aspecific T). In this study, a return period T = 30-year was selected as a threshold to
define the UoFH.

3.3. Seasonality of Runoff

The HT model relies on the assumption that fluvial flooding has the same spatial characteristics in
winter months and in summer months [22]. Thus, the knowledge about the runoff seasonality may help
to analyse if this assumption is fulfilled. Directional statistics [40] are a particularly useful approach
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to anaylse the seasonality of high flows. Therefore, the occurrence dates of flood peaks (exceeding a
certain threshold) are translated into a location on a unit circle, where the start of the year is plotted
on the easternmost point and further months are plotted in a counterclockwise sense. Generally,
the starting point depends on the hydrological characteristics of the study area i.e., splitting of high
flow month has to be avoided). The monthly frequency of flood peaks (above a threshold) can be
represented by rose diagrams, which helps to identify high and low flow months [41]. A second
measure for analysing the seasonality is the ‘Burn vector’ [42,43], which consists of the pair θ̄ and r̄.
θ̄i represents the mean occurrence date of flood peaks of a specific site i and r̄i indicates the variability
of the occurrence date (details can be found in [42]).

3.4. Interpretation of Extremes

When analysing several sites with different properties (e.g., catchment size, mean annual runoff),
the use of the probability scale is convenient. In the field of hydrology, the interpretation of probabilities
is usually done using return periods of events instead of quantiles of the variables. For a given quantile
p, the return period (T) is defined as

T =
1

npy(1− p)
(2)

where npy is the average number of events per year. It is calculated as npy = 365 rs
τ , where rs is the ratio

that is required in order to take the type of the data set into account (for an all-year (AY) series rs = 1,
a half-year (HY) series rs = 0.5, and a seasonal series rs = 0.25) and τ is the length (in days) of the
time interval, which is used for event definition (cf. Section 3.1).

4. Heffernan and Tawn Model

This section reviews the measures to characterize the spatial dependence of river runoff,
the statistical model (HT model) used to generate simulated events, and the estimation and simulation
strategy including some details about the simulation procedure for the nonparametric part of the
HT model.

For a set of gauges I, let Qi be the variable representing maximum flow within a time interval τ

at gauge i ∈ I (henceforth real scale). Denote the number of gauges by n and an observation at time
t by Qi,t. For either a set of observations or a random variable X, denote its pth quantile by qp(X),
meaning that qp(X) has a probability p of not being exceeded.

4.1. Spatial Dependence Measures

The first measure of spatial dependence can be interpreted as an exploratory summary measure
of bivariate dependence and is defined as [22]

Pi,j(p) = Pr
(
Qi > qp(Qi)|Qj > qp(Qj)

)
(3)

so Pi,j(p) is the probability that gauge i exceeds qp(Qi) given gauge j is extreme i.e., exceeds qp(Qj)).
The second dependence measure describes the proportion of gauges that are extreme given that gauge
j is extreme and is defined as

Nj(p) =
∑i 6=j Pr

(
Qi > qp(Qi)|Qj > qp(Qj)

)
n− 1

(4)

An efficient method for analysing the spatial dependence has to be able to qualitatively describe
the behaviour of measured data for moderate and high p-values. The calculation of spatial dependence
measures Pi,j(p) and Nj(p) is based on approx. Forty-five and five values in the present study for
moderate i.e., p = 0.99) and high i.e., p = 0.999) p-values, respectively. The information about Pi,j(p)
and Nj(p) over a range of p helps to characterize the dependence structure of different sites for various
levels of extremeness.
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4.2. Statistical Model

The statistical model is built up of a model for the marginal distribution for the runoff series Qi
and a conditional dependence model for the joint distribution of these transformed variables given
one of them is extreme. The model for the marginal distribution is used to transform all data to the
same scale and ensures a relatively simple semiparametric form of the conditional dependence model.

4.2.1. Marginal Model

For the standardisation of the original data, we used a transfomation to Laplace marginal
distribution [44] instead of a Gumbel marginal distribution as it is recommended in the primary
HT model publication [20].

We use Fi to denote the marginal cumulative distribution function (CDF) of the runoff series Qi of
gauge i. Then, the transformation is defined by

Xi =

{
log(2Fi(Qi)) for Qi ≤ F−1(1/2)
− log(2(1− Fi(Qi))) for Qi > F−1(1/2)

(5)

The transformed random variable Xi (henceforth transformed scale) has a Laplace distribution
with both the parameters of location and scale equal to 1. Before applying this marginal model,
an inference on the distribution of Qi has to be done (see Section 4.3.1).

4.2.2. Dependence Model

In order to present the key idea of the conditional dependence model [20], we split the vector of
transformed river runoff series (Xi)i∈I to a one-dimensional conditioning component X = Xj and the
vector of dependent components Y = (Xi)i∈I\{j}.

In the following, vector algebra is to be interpreted as componentwise and (in)equalities involving
vectors should hold for all components. The HT model relies on the assumption that there are
normalising functions a : R+ → Rn−1 and b : R+ → R+

n−1 such that

Pr
(

X− u > x,
Y− a(X)

b(X)
> z|X > u

)
→ exp(−x)G(z) for u→ ∞ (6)

for some non-degenerate distribution function G (with no mass at +∞).
On the one hand, the assumption of the existence of normalising functions is quite common

in extreme value modelling, for example when fitting a Generalized Pareto distribution to one-
dimensional data. On the other hand, this assumption means that, conditional on X > u, the random
variables X− u and Z = Y−a(X)

b(X)
converge to independent random variables for u→ ∞.

For a wide range of copula dependence models, the normalising functions a and b belong to a
simple class of functions. When using the transformation to Laplace marginal distribution, this class
can be represented as [44]

a(x) = αx and b(x) = xβ (7)

for α ∈ [−1, 1]n−1 and β ∈ (−∞, 1)n−1.
When applying the HT model, the asymptotic assumptions are supposed to hold exactly for

X > qpsim , for a high threshold qpsim (which is defined as the empirical quantile of the data for some high
non-exceedance probability psim). Then, the dependence of the components in Y on the conditioning
variable X is given by the parametric model

Y = αX + XβZ (8)
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where X and Z are independent. This represents n − 1 univariate regression type models
Yi = αiX + Xβi Zi, where the dependence of Yi on X is modelled parametrically, but the dependence
structure of the random vector Y is given non-parametrically by the distribution G of Z.

4.3. Estimation and Simulation

The aim of the simulation is to generate a set of synthetic events S such that at least one of the river
flows is extreme—in other words, has an exceedance probability higher than a given psim. Several steps
are involved in fitting the HT model to the data and subsequently to use the fitted model to generate
simulated extreme events. These steps are described in some detail below and examples i.e., of sites
Kennelbach (j = 2) and Thal (i = 5)) are outlined in Figure 2a–d.
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Figure 2. Scatterplot of observed and simulated data from half-year series (May to October) of gauges
Kennelbach (i = 2) and Thal (i = 5), statistical model, and model thresholds: (a) observed data
in real scale; (b) observed data (threshold for marginal distribution qpGP=0.9) in transformed scale,
incl. qpsim=0.98; (c) observed data in transformed scale (values above qpsim ), incl. fitted model (red color
indicates that the GP distribution was applied above the threshold qpGP=0.9; grey color indicates
qpGP=0.98); and (d) observed and simulated data (ny = 38 year) on a real scale.

4.3.1. Estimation of Marginal Distribution

As suggested in [20], estimation of the marginal distribution F̂i of the runoff variable Qi for
1 ≤ i ≤ n is done by using the empirical distribution ECDFi of the data below some threshold
qpGP , where qpGP is the empirical quantile of the data for some high non-exceedance probability pGP .
The Generalized Pareto distribution is fitted to the data above the threshold qpGP using a maximum
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likelihood method. The CDF of this distribution is denoted by GPσ̂i ,ξ̂i
. Here, σi and ξi are the scale and

shape parameter of the Generalized Pareto distribution [45]. Hence,

F̂i(q) =

{
1− (1− pGP)(1− GPσ̂i ,ξ̂i

(q)) for q > qpGP

ECDFi(q) for q ≤ qpGP

(9)

4.3.2. Marginal Transformation

Transformation to Laplace margins is done using the estimated CDF F̂i instead of Fi for the
marginal transformation using Equation (5). When simulation results Xi are available on a transformed
scale, and backwards transformation to real scale is done by

Qi =

{
F̂−1

i (exp(Xi)/2) for Xi < 0
F̂−1

i (1− exp(−Xi)/2) for Xi ≥ 0
(10)

where F̂−1
i (p) is the inverse of the empirical distribution for p ≤ pGP and the inverse of the Generalized

Pareto distribution GPσ̂i ,ξ̂i
evaluated at (p− pGP)/(1− pGP) for p > pGP .

4.3.3. Parameter Estimation

To estimate the model parameters αi and βi in Yi = αiX + Xβi Zi, we use a quasi maximum
likelihood approach [20]. Let µi be the mean of Zi and σi its standard deviation, and then
E(Yi) = αiX + Xβi µi and Var(Yi) = (Xβi σi)

2 holds. For a pair of transformed observations
(xt, yi,t)t=1,...,Nt , where xt is extreme (xt > qpsim for all t), we set

L(αi, βi, µi, σi) =
Nt

∑
t=1

log(xβi
t σi) +

1
2

(
yi,t − (αixt + xβi

t µi)

xβi
t σi

)2
 (11)

and estimates of the parameters are given by

(α̂i, β̂i, µ̂i, σ̂i) = arg min
(αi ,βi ,µi ,σi)

L(αi, βi, µi, σi) (12)

The distribution of Zi is not estimated parametrically. Instead, simulation will be based directly
on the estimates

Ẑi,t =
yi,t − α̂ixt

xβ̂i
t

(13)

This estimation procedure is performed for all possible pairs of data (xt, yi,t), where xt is extreme.

4.3.4. Simulation of the Conditioning River Flow X

The HT model provides a method to describe the joint conditional distribution of all runoff
variables conditional on one being extreme. Before the simulation of the conditional is done, the data
to condition on has to be provided, as follows (similar to [28]):

1. Number of simulated extreme events per simulation period: The number of extreme events i.e., where at
least one site exceeds qpsim ) per simulation period (e.g., all-year-, half-year series) is approximated
by a negative binominal distribution.

2. Selection of conditioning gauge: The set of extreme events S is partitioned to S =
⋃n

i=1 Si, where Si
is the set of extreme events where gauge i has the highest non-exceedance probability i.e., is the
most extreme one). Then, for an event E ∈ S, the probability Pr(E ∈ Si|E ∈ S) that gauge i is the
most extreme if at least one gauge is extreme has to be estimated using given data. The gauge
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that is selected as conditioning variable X is drawn from a multinomial distribution with these
probabilities. Denote the index of the selected gauge by i′.

3. Drawing the conditioning x′i : According to the transformation to standard Laplace margins and
since psim is close to one and hence qpsim > 0 set x′i = qpsim + e, where e is drawn from an
exponential distribution with mean one.

4.3.5. Simulation of Z

Since no parametric model for the distribution of Z is known, we apply the data based random
vector generation method of Taylor and Thompson [46] to the set of vector valued estimates
{Ẑt}t=1,...,Nt = {(Ẑi,t)i∈I\{i′}}t=1,...,Nt . This method uses m nearest neighbours of a randomly chosen
element in {Ẑt}t=1,...,Nt , where m is a smoothing parameter. A simulated vector Z′ is generated by the
following steps:

1. Randomly choose one Zt0 from {Ẑt}t=1,...,Nt .
2. Find the m nearest neighbours of Zt0 denoted by Zt1 , . . . , Ztm and compute the vector of

componentwise means Z̄ of Zt0 , . . . , Ztm .
3. Draw a random sample w0, . . . , wm from a uniform distribution with lower bound 1

m+1 −
√

3m
(m+1)2

and upper bound 1
m+1 +

√
3m

(m+1)2 .
4. Deliver Z′ = Z̄ + ∑m

k=0 wk(Ztk − Z̄).

The smoothing parameter m is chosen and the limits of the uniform distribution from which the
weights wi are drawn from are calculated such that the variance and covariance structure of the data
{Ẑt}t=1,...,Nt is unchanged, at least approximately.

4.3.6. Simulation of the Dependent Event

When the conditioning value x′i and a sample Z′ of {Ẑt}t=1,...,Nt are drawn, it is straightforward
to compute a sample of the dependent gauges Y′ by

Y′ = α̂x′ + x′β̂Z′ (14)

If all components of Y′ are smaller than x′, a valid synthetic event is generated. Otherwise, the
simulation of Z and computing Y′ has to be repeated.

4.4. HT Model and Seasonal Characteristics of Runoff

The HT model relies on the assumption that river flooding in the winter half-year has the same
spatial characteristics as flooding in the summer half-year (cf. Section 3.3 and [22]). The spatial
dependence measure Nj(p) is an appropriate tool to investigate whether the spatial characteristics of
different series (all-year (AY), May to October (M2O), and November to April (N2A) series) differs
significantly. If the assumption does not hold, then the data has to be split into periods that reveal the
same spatial characteristics and the HT model has to be applied to both data sets independently.

5. Results and Discussion

Runoff data from selected river gauging stations of the study area Vorarlberg were used (i) for
event definition and seasonality analysis, (ii) to conduct a spatial dependence analysis of river flows,
(iii) to apply the present multivariate conditional model, and thereby (iv) to generate synthetic (extreme)
flood events. The results are based on daily maximum runoff data from 17 representative river gauges
in the study area.

As a preliminary remark, note that the number of years ny simulated with the HT model can
be arbitrarily high. This property is essential for the generation of synthetic flood events and for the
subsequent evaluation of flood risk. Nevertheless, in this paper, a relatively small simulated data set
i.e., ny = 38 year) was used to make the comparison with the observed data (38-year series) reasonable.
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5.1. Event Definition and Seasonality of Runoff

Daily maximum runoff data (Di) were analysed using the methods introduced in Section 3.1 in
order to identify the most appropriate τ. Firstly, the results of the measure R(p, L) are summarized
in Table 2. For all investigated quantile values p, the probability that an event lasts longer than three
days is less than 5%. Secondly, the concentration time (cf. Section 3.1 (ii)) of the selected catchments is
displayed in Table 3. Apart from the Rhine catchment at Lustenau (E) (ca. 6000 km2), all sites react
relatively quickly (Tc less than half a day). Thirdly, the flood process typology of annual peaks [36]
(cf. Section 2) reveals different relevant flood controls, which hints that the time interval with length
τ of three days is a good compromise. Fourthly, (cf. Section 3.1 (iii)), it should be noted that the
presented work is embedded in a flood risk project with a (re)insurance background. In this industry,
a time span of 72 h (‘hours clause’) is often used for event definition [47,48]. Based on the three criteria,
a time interval with length τ = 3 days was chosen. This time interval guarantees in most cases that
consecutive independent flood peaks induced by short rainfall events were considered. On the other
hand, τ = 3 days is long enough to ensure that flood peaks in neighboring catchments induced by a
single weather pattern will be interpreted as one event. Besides the aspects mentioned above, the idea
of the spatial dependence measure Pi,j(p) can be applied to investigate the temporal dependence
in individual series. Therefore, Equation (3) has to be adapted to account for daily maximum data
Di,t. The dependence measure is then given by P(D,L)

j,j (p) = Pr(Dj,t+L > qp(Di)|Dj,t > qp(Dj)) [22].

For analysing the temporal dependence of all individual series, P(D,L)(p) = 1
n ∑n

j=1 P(D,L)
j,j (p)

was calculated for different p-values. Thus, P(D,L)(p) shows averaged values of the dependence
measure over all sites. For a lag of L = 2 days P(D,L)(0.99) = 0.11, P(D,L)(0.997) = 0.03,
and P(D,L)(0.999) = 0.01. For high thresholds (corresponding to p = 0.997 or higher), the temporal
dependence is less than 5%. Only for low thresholds (corresponding to p = 0.99) is the temporal
independence is not fulfilled; however, this small level of extremeness is not relevant when applying the
HT model. Generally, a time interval with a length τ = 3 days ensures temporal independence of events
for high thresholds (corresponding to pth quantile). As regularly spaced blocks (i.e., block maxima)
were used in this step, it might happen that a block limit falls within a runoff peak at an individual
site that can cause the same event to be selected twice. However, as extreme peaks that are relevant in
terms of model estimation (above u) are very short (cf. Table 2), a splitting of high peak is extremely
rare and thus these cases are negligible.

Table 2. Probability R(p, L) that peaks (exceeding a threshold qp) last L days.

p T L (Days)
(Year) 0 1 2 3 4

R (p,L)

0.99 0.3 1 0.32 0.21 0.03 0
0.997 0.9 1 0.39 0.25 0.02 0
0.999 2.7 1 0.34 0.32 0.01 0

0.9997 9.1 1 0.44 0.28 0 0

So far, daily maximum runoff data (Di) were used for data analyses and event definition.
The following results are based on maximum runoff in a time interval τ = 3 days i.e., Qi values).
Note a quantile value p = 0.997 applied to daily data (Di) equals T ≈ 0.82-year and therefore roughly
corresponds to a quantile value p = 0.99 applied to Qi values (T ≈ 0.91-year).

The runoff in the investigated catchment is characterised by strong seasonality, meaning that high
flow conditions mainly occur in summer. The mean occurrence date (represented by θ̄i) of AMS of all
sites is from July to mid of August (Table 3). Following Merz and Blöschl [36], 94% of the catchments
experience medium to strong and only 6% weak seasonality, which indicates that in most catchments
annual peaks are concentrated around the mean occurrence date. Figure 3 shows monthly frequency
of flood peaks above certain threshold values qp(Qi). The results of all sites were combined and
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plotted in the rose diagram (Figure 3). The figure indicates that flood peaks mainly occur between
June and August. Furthermore, Figure 3 shows that from a hydrological perspective a separation
of the year into a summer half-year ranging from May to October (M2O), which is dominated by
high flow, and in a winter half-year (N2A: November to April), which is characterized by low flow,
is reasonable. High flow events above p = 0.999 do not usually occur in the winter half-year (events
above T ≈ 16-lyear solely occur from May to September, not shown in Figure 3), which reveals that
only the summer half-year is relevant for flood risk considerations.

Table 3. Concentration time (Tc) and components θ̄i and r̄i of ‘Burn vector’ based on AMS for all sites.

i Name of Gauges Tc (h) θ̄i (◦) r̄i

1 Mellau 1.9–4.8 204 0.56
2 Kennelbach 3.3–8.8 216 0.40
3 Hopfreben 0.7–2.3 205 0.52
4 Schönenbach 0.5–2.0 208 0.61
5 Thal 1.3–4.6 224 0.29
6 Lingenau 1.4–3.8 207 0.57
7 Hoher Steg 1.4–4.3 196 0.70
8 Enz 0.8–2.8 209 0.64
9 Lustenau (H) 1.4–8.7 190 0.73

10 Laterns 0.7–2.1 208 0.68
11 Unterhochsteg 1.0–6.3 188 0.45
12 Schruns 1.5–3.5 188 0.80
13 Garsella 1.2–3.0 200 0.69
14 Gisingen 5.3–12 192 0.76
15 Lustenau (E) 10–30 199 0.77
16 Lech 1.2–3.4 191 0.63
17 Lochau 0.4–1.3 205 0.58

1. Jan.

1. Feb.

1. Mar.

1. Apr.

1. May

1. Jun.

1. Jul.

1. Aug.

1. Sep.

1. Oct.

1. Nov.

1. Dec.

0.30.20.1

p=0.99  (T≈0.8-year) p=0.997 (T≈2.7-year) p=0.999 (T≈8.2-year)

Figure 3. Rose diagram of runoff (for all Qi) above threshold values (qp(Qi)).

The pronounced seasonality suggests that there is a different spatial characteristic in M2O- and
N2A- as well as in the all-year series. Figure 4 shows scatter plots of the spatial dependence measure
Nj(p) of 17 sites and for three different p-values for half-year and all-year series. The threshold qp used
in Equation (4) to calculate Nj(p) was derived from the all-year series. To make the results comparable
i.e., data from half-year- and all-year series), the pth quantile of half-year series pHY was calculated
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using pHY = 1− 1−pAY

0.5 , where pAY is the pth quantile of all-year series. In Figure 4a, the dependence
measure of the all-year series NAY

j (pAY ) versus the NM2O
j (pHY ) (summer month) is plotted, whereby a

strong correlation can be especially observed for high p-values. For pAY = 0.95, 0.99 and 0.997,
the dependence measure for AY series is systematically lower than for M2O series. Figure 4b shows
that the spatial dependence between AY- and N2A series differs and that the dependence measure for
all-year series is systematically higher than for the winter half-year. The distribution-free Wilcoxon
test [49] was applied to assess whether NN2A

j (pHY ) and NM2O
j (pHY ) differ significantly. The null

hypothesis that the spatial dependence of winter and summer half-year do not differ was rejected
for a significance level of 1%. However, the HT model relies on the assumption that flooding in
the winter half-year has the same spatial characteristics as flooding in summer half-year [22]. Thus,
half-year series were used for further analyses.
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Figure 4. Comparison of spatial dependence measure Nj(p) derived from all-year and half-year series:
(a) NAY

j (p) versus NM2O
j (p) and (b) NAY

j (p) versus NN2A
j (p).

5.2. Spatial Dependence in River Flows

The analysis of the spatial dependence of river flows can help to understand the characteristics of
widespread flooding. The spatial dependence measures Pi,j(p) and Nj(p) were calculated for M2O
and N2A series, respectively.

Pi,j(p) explains the dependence of a pair of variables for a certain threshold qp, where Pi,j(p) = 0.4
means that there is a 40% probability of Qi being large i.e., above qp) if Qj is above the pth quantile.
The spatial dependence measures Pi,j(p) of four selected stations (Kennelbach, Thal, Gisingen, Schruns)
over a range of p are depicted in Figure 5, where PM2O

i,j (pHY ) (summer half-year) is shown in the upper
triangle and PN2A

i,j (pHY ) (winter half-year) is shown in the lower triangle. Pi,j(p) of observed data
(solid cyan lines) shows the range of dependence between the stations. There is a relatively strong
spatial dependence for low p-values between nested catchments where the downward propagation
of flood wave plays an important role (e.g., Kennelbach and Thal as well as Gisingen and Schruns),
whereas Pi,j(p) varies markedly for high p-values. The dependence of summer half-years between the
stations Kennelbach and Gisingen is fairly equally spread over the entire range of p. These watersheds
are relatively large and therefore more vulnerable to long-rainfall events triggered by advective
storm systems that affect the entire study area. In Figure 5, the lowest dependence can be found
between the stations Thal and Schruns. This is because the watersheds are relatively small and their
hydrological characteristics differ significantly [35]. Generally, the spatial dependence between stations
in the summer half-year is stronger than in the winter half-year; in 65% of all possible combinations,
i.e., 272 cases), PM2O

i,j (pHY ) is higher than PN2A
i,j (pHY ) (averaged over p). The most obvious differences
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between PN2A
i,j (pHY ) and PM2O

i,j (pHY ) appear between station Kennelbach and Gisingen as well as Thal
and Gisingen, where PN2A

i,j (pHY ) is high for large p.
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Figure 5. Spatial dependence measure Pi,j(pHY) against non-exceedance probability pHY of observed
and simulated (100× 38 year) runoff data of station Kennelbach (i = 2), Thal (i = 5), Gisingen (i = 14),
and Schruns (i = 12). Upper triangle: M2O. Lower triangle: N2A.

The second spatial dependence measure Nj(p) can be interpreted, as synopsis of Pi,j(p) over
a range of i. In contrast to Keef et al. [22], who investigated the spatial dependence of river flow
and precipitation across GB by analysing Nj(p) of stations within a defined radius (30 and 60 km),
we analysed the spatial dependence over the entire study area i.e., consideration of all stations). This is
reasonable since the entire study area is relatively small and widespread flooding across the study area
is relevant for the Province of Vorarlberg.

Figure 6 shows the spatial dependence measure Nj(p) for the summer half-year. Similar to the
first dependence measure, a comparison of NM2O

j (pHY ) and NN2A
j (pHY ) reveals that the dependence

in summer is higher than in winter i.e., in 77% of possible combinations, NM2O
j (pHY ) is higher than

NN2A
j (pHY )). Figure 6a illustrates NM2O

j (pHY ) over a range of pHY . Overall, the plot indicates that the
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estimated dependence between the sites decreases with increasing pHY . In general, the stations located
at the same river (nested catchments) show high dependence (e.g., Kennelbach, Mellau, Hopfreben).
Data from small headwater catchments and catchments that are situated on the edge of the study
area often show low dependence (e.g., Thal, Unterhochsteg, Lochau). In particular, for these stations,
NM2O

j (pHY ) increases with higher pHY i.e., fewer data involved in the analysis), because these small
catchments seem to be particularly vulnerable to synoptic weather patterns, which in turn are often
responsible for the most extreme events in small catchments. Furthermore, the above-mentioned
stations with low dependence lie within a radius of 5 km, which indicates that spatial proximity does
not guarantee similar behaviour.
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Figure 6. (a) spatial dependence measure NM2O
j (pHY ) against non-exceedance probability pHY ;

(b–d) dependence measure depicted in a map of Vorarlberg with colored gauging stations representing
NM2O

j (pHY ), corresponding to (b) pHY = 0.99 (T ≈ 1.6-year); (c) pHY = 0.998 (T ≈ 8.2-year),
and (d) pHY = 0.999 (T ≈ 16.4-year).

As the entire study has ,a distinct flood risk background, spatial dependence of rare events was
studied in detail. Therefore, we illustrate NM2O

j (pHY ) for pHY equal to 0.99, 0.998, and 0.999, which
correspond to T ≈ 1.6, 8.2, and 16.4-year in maps of Vorarlberg (Figure 6b–d). The gauges are coloured
according to NM2O

j (pHY ). Figure 6c is particularly suitable for detailed discussion as NM2O
j (pHY ) is

based on a reasonable number of events and pHY = 0.998 is high enough to analyse the dependence
of severe flood events. Overall, the stations can be divided into three groups according to their
spatial dependence: (i) low dependence NM2O

j (0.998) < 0.3 (stations: Thal, Hoher Steg, Unterhochsteg,
Schruns, Lustenau (E), Lochau); (ii) moderate dependence 0.3 ≥ NM2O

j (0.998) < 0.4 (stations: Lingenau,
Enz, Lustenau (H), Garsella, Gisingen, Lech); and (iii) high dependence NM2O

j (0.998) > 0.4 (stations:
Mellau, Kennelbach, Hopfreben, Schönenbach, Laterns). The sites with high dependence are all located
in the region Bregenzerwald, which experiences a high amount of annual precipitation.
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5.3. Estimation Results and Model Checks

The estimation and simulation procedures outlined in Section 4.3, which were implemented in
MATLAB (The Mathworks, Natick, MA, USA), were carried out using the data from summer and
winter half-year. The interim results of the bivariate case are illustrated in Figure 2 for data of stations
Kennelbach (i = 2) and Thal (i = 5) for data of M2O. Figure 2a shows the observed data (Q2, Q5) on a
real scale. The same data are depicted in Figure 2b in a transformed scale, whereas the GP distribution
was applied for data above the threshold qpHY

GP =0.9. Figure 2c illustrates X2 and Y5|2 in a transformed
scale above the threshold qpsim . This figure includes data where the marginal GP distribution was
applied above the threshold of qpHY

GP =0.9 (red) and above qpHY
GP =0.98 (grey), respectively. Furthermore, the

fitted model (Y5|2 = α̂2X2 + Xβ̂2 µ̂2) was applied for values with an exceedance probability higher than
pHY

sim = 0.97, 0.98, and 0.99. Figure 2c indicates the influence of the choice of the model parameter on
the regression model. The red bold line illustrates the fitted model for the selected model parameters
pHY

GP
= 0.9 and pHY

sim = 0.98. The corresponding quantile values of an all-year series would be pAY
GP

= 0.95
and pAY

sim = 0.99. Figure 7 shows data and fitted regression models for periods M2O and N2A for
exemplarily chosen stations. Thus, the difference of the models for M2O and N2A periods are apparent,
which confirms the necessity of using half-year series.
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Figure 7. Observed data from M2O and N2A in transformed scale (values above qpHY
sim =0.98) incl.

fitted model conditioned on j = 14 (Gisingen) and dependend: (a) i = 2 (Kennelbach); (b) i = 5 (Thal);
and (c) i = 12 (Schruns).

After parameter estimation was done, the simulation procedure starts with the selection of
the conditioning river flow. Therefore, the number of extreme events per year was simulated
with a negative binomial distribution. Figure 8a shows that the distribution of simulated data is
compatible with the empirical distribution of the observed data. The next step was the selection of the
conditioning station i i.e., the station with the highest non-exceedance probability. The distribution of
the conditioning station is shown in Figure 8b. The cyan crosses represent the probability that one
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of the 17 gauges is the most extreme based on observed data, and the percentile ranges result from
drawing from the multinomial distribution (100 replications). The distribution of the sites with the
largest probability of being extreme (Figure 8b) may appear counter-intuitive, as one could expect
a uniform distribution. However, the results are in accordance with the findings of Keef et al. [28],
who find similar properties of investigated runoff data in GB. Sites that lie on the same river exhibiting
high dependences have low probability of being used as conditioning gauge (e.g., sites i = 1 and 2).
Sites with low dependence are expected to have higher probability of being used as conditioning
gauges; the four sites with the highest probability (i = 11, 12, 15 and 17) are categorized as stations
with low spatial dependence (see Section 5.2). After the conditioning site i was selected, its value xi
was drawn.
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Figure 8. Model application: (a) empirical CDF of number of extreme events i.e., at least one site
exceeds qpsim ) per year and (b) probability that gauge i is most extreme.

Before simulating the dependent component (i.e., Y), Z′ has to be drawn as outlined in
Section 4.3.5. The smoothing parameter was chosen with m = 5. Finally, a set of spatial dependent
extreme events S was simulated. Figure 9d shows a scatterplot (Kennelbach and Thal) in real scale,
where green triangles represent simulated events representing ny = 38 years of the simulation
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period. Note that, although the simulated events can be assigned to a selected time stamp (i.e., year),
no continuous time series of river flow was made available.
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Figure 9. Pairwise comparison of observed and simulated (ny = 38-year) data of station Kennelbach
(i = 2), Thal (i = 5), Gisingen (i = 14), and Schruns (i = 12). Upper triangle: M2O. Lower triangle: N2A.

As no general Goodness-of-Fit test of the HT model exists, several aspects were tested to ensure
that the model assumptions were not violated. The first assumption that needs to be checked is that the
tails of the marginals are Generalized Pareto distributed. Asymptotically, this assumption is supported
by the Pickands–Balkema–de Haan theorem [45]. To assess whether the threshold qpGP was high
enough, we used the Goodness-of-Fit test for GP distribution [50]. For thresholds corresponding to
pGP ≥ 0.9, the Generalized Pareto distribution of the tails was never rejected for the 17 investigated
river gauges on the 5% significance level; on the 10% significance level, very few rejections appeared.
Furthermore, stability of the estimated parameters (see e.g., chap. 4.3.4 in Coles [51]) was checked by
visual inspection of parameter estimate plots. This shows that a value of pGP of at least 0.9 is reasonable
for all gauges.

Secondly, the assumption of independence of the conditioning variable X and the vector of
normalized dependent variables Z = Y−αX

Xβ , given that X is above some high threshold, is checked



Hydrology 2018, 5, 5 19 of 25

by a series of independence tests for all possible combinations (17× 16 = 272 combinations) of data
(xt, yi,t) with xt > qpsim . A statistical test based on Spearman’s $ was used since no assumptions on the
distribution of Z were made. For psim ≥ 0.95, less than 5% of these tests rejected independence on a
significance level of 5%. Hence, independence can be considered to hold for psim values of at least 0.95.

The third assumption that the distribution G of Z is non-degenerated with no mass at +∞ is of
theoretical interest and automatically fulfilled when G is inferred from data.

A key aspect of all model applications is the compatibility of observed and simulated data.
This was checked by comparing several components such as scatterplots of selected gauges, the spatial
dependence measures Pi,j(p) and Nj(p), and the medians of yearly maximum runoff of the half-year
series derived from observed and simulated data. These model checks were used to determine the
most suitable model parameters to be pHY

GP
= 0.9 and pHY

sim = 0.98. In the context of model checks,
it is important to emphasize that the HT model is valid above a threshold qpsim . This implies that a
comprehensive set of simulated data was only available for high runoff values. As a consequence,
the comparison of observed and simulated data has to be done on the basis of relative ‘extreme’ values.

Figure 9 illustrates scatterplots of four representative gauges (Kennelbach, Thal, Gisingen,
Schruns) of observed and simulated data (simulation period of 38 years). A visual check shows
the range of dependence in the data and indicates that the HT model is flexible enough to reproduce
the structure of the data. When the correlation between observed data of two stations is strong,
simulated data also reveal strong correlations (e.g., Kennelbach and Gisingen). On the other hand,
simulated data are almost arbitrarily distributed when observed data show hardly any correlation
(e.g., Thal and Schruns). Figure 9 also illustrates the difference between runoff data of M2O (upper
triangle) and N2A (lower triangle). The runoff intensity of the former is considerably higher than the
runoff in N2A, which again indicates that a separation of the data into winter and summer half-year
is necessary.

Furthermore, the spatial dependence measure Pi,j(p) of observed and simulated data was
compared and depicted in Figure 5. Because of the validity of the HT model above a certain threshold
u i.e., pHY

sim = 0.98), Pi,j(p) of simulated data is illustrated for p = 0.98, 0.99, 0.994, 0.998, and 0.999.
As illustrated in Figure 5, the dependence measure Pi,j(p) of observed and simulated data is in the same
range. Table 4 shows the systematic comparison for all possible combinations i.e., 272 combinations).
PM2O

i,j (pHY ) = 0.95 (column 3) means that 95% of the observed Pi,j(p) lies within the specified range
(5–95% of simulated data). The results for PN2A

i,j (pHY ) are slightly higher and show that the model
is even better suited to reproduce the spatial dependence of river flow for the winter half-year than
for the summer half-year. The systematic analysis of the spatial dependence measure Nj(P) (Table 4)
confirms the accordance of simulated and observed data.

The most important model check is probably a systematic comparison of observed and simulated
runoff series of each station. Therefore, the use of yearly maximum runoff (MR) of the half-year series
seems to be appropriate because this type of series contains only relatively high values. Consequently,
MR of observed data (MRM2O

obs and MRN2A
obs ) and simulated data (MRM2O

sim and MRN2A
sim ) were derived and

the medians of each series were compared (Figure 10). Instead of runoff (m3 s−1), the use of specific
discharge q (l s−1 km−2) allows for easy comparisons of stations with different catchment size. For the
comparison of simulated and observed data, 100 replications with a simulation period of 38 years were
generated and percentile ranges were depicted for all stations (Figure 10). The required number of
replications has been determined by applying a procedure to obtain a specified precision of confidence
intervals [52]. For 100 replications, the 90% confidence interval of the medians of MR

M2O

sim has a relative
length of less than 5% for all 17 sites. Figure 10 indicates that observed and simulated values are in
accordance for most sites. The systematic comparison of the maximum runoff (cf. the last two lines
of Table 4) shows that the HT model is able to reproduce the runoff adequately and that the selected
parameters are appropriate.
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Figure 10. Comparison of observed and simulated data of period M2O for selected 17 sites. Medians of
observed time series are depicted by blue crosses and medians of simulated data (100× 38 year) are
shown by selected percentiles.

Table 4. Comparison of observed and simulated data for selected criteria (Pi,j(p) and Nj(p),
and medians of yearly maximum runoff for summer and winter half-year). The results exhibit the
proportion of possible combinations (Pi,j(p), Nj(p)) and sites (median(MR)), respectively, where the
observed data lies within the percentile range of simulated data.

Test Criteria
Percentiles (%)

12.5–87.5 5–95 2.5–97.5

PM2O
i,j (pHY ) 0.87 0.95 0.98

PN2A
i,j (pHY ) 0.91 0.97 0.99

NM2O
j (pHY ) 0.83 0.96 0.98

NN2A
j (pHY ) 0.87 0.98 0.99

median (MRM2O ) 0.71 0.94 0.94
median (MRN2A ) 0.65 0.82 0.94

5.4. Simulated Extreme Events

The main output of the HT model is a set of spatially distributed flood events S on defined
locations i.e., river gauges). As the runoff intensity of the summer half-year (see also Figure 3) is
considerably higher than the intensity of the winter half-year, only events from M2O were considered
here. In a first step, the information about the intensity of these events was made available in real scale
i.e., m3 s−1) for each individual event and every station. To enable a further usage of the synthetic
events, it was necessary to define the so-called level of extremeness [21] for all events and every single
station on a probability scale. This probability scale corresponds to the concept of return period of
hydraulic loads.

The link between physical scale (m3 s−1) and ‘return period’ scale, which corresponds to
‘probability’ scale, was constructed by applying the Generalized Extreme Value (GEV) distribution.
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The method of L-moments [53] was used to fit the GEV distribution to the AMS of observed data of
all stations and a χ2 Goodness-of-Fit test was carried out to check the suitability of this distribution.
The GEV distribution was never rejected at a 5% significance level for the 17 investigated stations.
Furthermore, previous studies pointed out that the GEV distribution is an appropriate distribution
function within the region [35,54,55].

Figure 11 shows five observed and five simulated flood events where the color of the triangles
represents the return period that occurs on each station. The synthetic events reveal a reasonable spatial
dependence structure that can also be found in observed flood events. For further analyses, only severe
flood events are of interest, where one or multiple stations exceed a T ≥ 30-year. The severity of the
illustrated flood events was categorized by the measure unit of flood hazard (see Section 3.2), which is
indicated on the bottom of each map. For comparison, following the categorization of the UoFH, nine
events were identified in the period 1976–2013, and the most severe observed flood event (August
2005) was categorized as a 12 UoFH-event i.e., the runoff was equal to or exceeded a threshold that
corresponded to a return period T = 30-year at 12 river gauges).

UoFH: 10UoFH: 4 UoFH: 6 UoFH: 13UoFH: 1

Return Period [yr]

< 5 ≥ 5 - 30 > 30 - 100 > 100 - 200 > 200

Simulated event #1 Simulated event #2 Simulated event #3 Simulated event #4 Simulated event #5

UoFH: 11UoFH: 4 UoFH: 2 UoFH: 2UoFH: 1

1987.07.01 +/-1day 1999.05.22 +/-1day 2002.08.12 +/-1day 2005.08.23 +/-1day 2010.07.29 +/-1day
Observed event Observed event Observed event Observed event Observed event

km0 10 20 40

Figure 11. Observed and examples of simulated flood events (T in year) including a categorization of
the events severity by means of unit of flood hazard (UoFH).

6. Conclusions

In this paper, we have demonstrated that the HT model [20] can be successfully applied in a
complex mountain topography with high runoff seasonality. However, before applying the conditional
dependence model, a priori data review and preparation is essential in order to avoid violation of the
model assumptions. A thorough data analysis of daily maximum data of 17 river gauging stations in
the study area Vorarlberg shows that a time interval of three days is most suitable for event definition.
Because of the pronounced seasonality of runoff and the different spatial characteristics in the half-year
series, a separation of the all-year series was necessary. Thus, the conditional model was driven with
time series from M2O and N2A.
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The spatial characteristics of widespread and often spatially heterogeneous flood events were
analysed. Therefore, the spatial dependence measures Pi,j(p) and Nj(p) were calculated in order
to improve the understanding of the spatial characteristics of widespread river flood events.
River gauging stations were identified where high runoff likely occurs simultaneously with other
stations and, on the other hand, stations were found that show hardly any spatial dependence with
other stations.

By applying the HT model, a set of synthetic flood events were generated. These extreme
events represent a large range of possible flooding situations as they could occur in the investigated
region. The set of synthetic flood events serves as a surrogate for probabilistic flood risk analysis.
The severity of individual flood events was categorized by a simplistic hydrological proxy (units of flood
hazard). The present modeling procedure can be applied wherever a dense network of river gauging
measurements exist that capture the spatial characteristics of flood events in a specific region.

The analysis that is shown here does not include considerations about the potential adverse
consequences of flooding. However, for a comprehensive analysis of flood risk, the following aspects
are indispensable. Besides the generation of synthetic flood events, the adverse consequences of
flooding have to be quantified (e.g., the monetary damage of buildings) and the overall flood risk
within a region has to be assessed. Schneeberger et al. [33] introduces a probabilistic framework for
risk analysis, which takes into account all relevant aspects and requires a set of spatially distributed
flood events.
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Abbreviations

The following abbreviations are used in this manuscript:

HT model Multivariate semi-parametric conditional model introduced by Heffernan and Tawn (2004) [20]
T Return period in year
AMS Annual maximum series
AMSdm AMS derived from daily mean data
AMSdx AMS derived from daily maximum data
UoFH Unit of flood hazard
AY All-year (series)
GEV General extreme value (distribution)
MR Yearly maximum runoff (of half-year series)
M2O May to October (series)
N2A November to April (series)
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