No.	Parameter	Description	Default Value	Used Value	Source		
1. Irrigated grain corn scenario							
1	BLAI	Max leaf area index (m ² /m ²) Fraction of the plant growing season corresponding	6	5.85	Measured *		
2	FRGRW1	to the first point on the optimal leaf area development curve	0.15	0.17	[1]		
3	DLAI	Fraction of the plant growing season when leaf area begins to decline	0.7	0.85	[1]		
4	RDMX	Maximum rooting depth	2.0	1.8	[1]		
		2. Irrigated winter wheat scena	rio				
1	BIO_E	Biomass/energy ratio $[(kg ha^{-1})/(MJ m^{-2})]$	30	35	[2]		
2	HVSTI	Harvest index $[(kg ha^{-1})/(kg ha^{-1})]$	0.4	0.45	[2]		
3	BLAI	Max leaf area index (m^2/m^2)	4	6	Measured		
3. Irrigated cotton scenario							
1	BIO E	Biomass/energy ratio $[(kg ha^{-1})/(MJ m^{-2})]$	15	17	[3]		
2	HVSTI	Harvest index $[(kg ha^{-1})/(kg ha^{-1})]$	0.4	0.5	[4]		
3	BLAI	Max leaf area index (m^2/m^2)	4	3.38	Measured		
		Fraction of the plant growing season corresponding					
4	FRGRW1	to the 1st point on the optimal leaf area development	0.15	0.18	[5]		
-		curve			[-]		
		Fraction of the plant growing season when leaf area					
5	DLAI	begins to decline	0.95	0.71	[5]		
6	RDMX	Maximum rooting denth	25	2.0	[6]		
1	HVSTI	Harvest index $[(kg ha^{-1})/(kg ha^{-1})]$, 0.31	0.28	[5]		
2	BLAI	Max leaf area index (m^2/m^2)	3	5.0	[5]		
2	DLAI	Fraction of the plant growing season corresponding	5	5.0	[0]		
3	FRCRWD	to the 2nd point on the optimal leaf area development	0.5	0.73	[5]		
3	FRGR##2	curve	0.5	0.73	[3]		
4	DIAI	Fraction of the plant growing season when leaf area	0.6	0.89	[5]		
	DEM	begins to decline	0.0	0.09	[9]		
		5. Irrigated sunflower scenari	0				
1	BIO_E	Biomass/energy ratio [(kg ha ⁻¹)/(MJ m ⁻²)]	46	35	[7]		
2	BLAI	Max leaf area index (m²/m²)	3	5.5	Measured		
		Fraction of the plant growing season corresponding					
3	FRGRW2	to the second point on the optimal leaf area	0.5	0.70	[5]		
		development curve					
4		Fraction of the plant growing season when leaf area	0.62	0.80	[5]		
4	DLAI	begins to decline	0.02	0.80	[0]		
5	RDMX	Maximum rooting depth	2.0	2.2	[6]		
6. Irrigated grain sorghum scenario							
1	HVSTI	Harvest index [(kg ha ⁻¹)/(kg ha ⁻¹)]	0.45	0.50	[5]		
2	BLAI	Max leaf area index (m ² /m ²)	3	3.5	Measured		
		Fraction of the plant growing season corresponding					
3	FRGRW1	to the first point on the optimal leaf area development	0.15	0.20	[5]		
		curve					

Table S1. Default and used values of crop parameters in Soil and Water Assessment Tool (SWAT) for long-term simulations.

4	DLAI	Fraction of the plant growing season when leaf area	0.64	0.70	[5]			
		begins to decline						
5	RDMX	Maximum rooting depth	2.0	1.5	[6]			
7. Dryland winter wheat scenario								
1	BLAI		4.0	5.0	Measured			
8. Dryland cotton scenario								
1	BLAI		4.0	1.12	Measured			
2	FRGRW1		0.15	0.14	[8]			
3	FRGRW2		0.5	0.33	[8]			
4	DLAI		0.95	0.43	[8]			
5	RDMX		2.5	2.0	[6]			
9. Dryland soybean scenario								
1	BLAI		3	1.95	Measured			
2	DLAI		0.6	0.7	[8]			
10. Dryland sunflower scenario								
1	BIO_E		46	30	[7]			
2	HVSTI		0.3	0.22	[8]			
3	BLAI		3	2	Measured			
4	FRGRW2		0.5	0.70	[8]			
5	DLAI		0.62	0.80	[8]			
6	RDMX		2.0	2.2	[6]			
11. Dryland grain sorghum scenario								
1	BLAI		3	2.62	Measured			
2	FRGRW1		0.15	0.17	[8]			
3	FRGRW2		0.5	0.42	[8]			
4	DLAI		0.64	0.62	[8]			
5	RDMX		2.0	1.5	[6]			

* Field measured maximum leaf area index.

References

- Chen, Y.; Marek, G.W.; Marek, T.H.; Gowda, P.H.; Xue, Q.; Moorhead, J.E.; Brauer, D.K.; Srinivasan, R.; Heflin, K.R. Multisite evaluation of an improved SWAT irrigation scheduling algorithm for the Southern Great Plains. *Environ. Model. Softw.* 2018, in review.
- Chen, Y.; Ale, S.; Rajan, N. Implications of biofuel-induced changes in land use and crop management on sustainability of agriculture in the Texas High Plains. *Biomass Bioenergy* 2018, 111, 13–21, doi:10.1016/j.biombioe.2018.01.012.
- 3. Sarkar, S.; Miller, S.A.; Frederick, J.R.; Chamberlain, J.F. Modeling nitrogen loss from switchgrass agricultural systems. *Biomass Bioenergy* **2011**, *35*, 4381–4389, doi:10.1016/j.biombioe.2011.08.009.
- 4. Wanjura, J.D.; Barnes, E.M.; Kelley, M.S.; Holt, G.A.; Pelletier, M.G. Quantification and characterization of cotton crop biomass residue. *Ind. Crops Prod.* **2014**, *56*, 94–104, doi:10.1016/j.indcrop.2014.02.019.
- 5. Chen, Y.; Marek, G.W.; Marek, T.H.; Brauer, D.K.; Srinivasan, R. Assessing the efficacy of the SWAT auto-irrigation function to simulate irrigation, evapotranspiration, and crop response to management strategies of the Texas High Plains. *Water* **2017**, *9*, 509, doi:10.3390/w9070509.
- Chen, Y.; Marek, G.W.; Marek, T.H.; Brauer, D.K.; Srinivasan, R. Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data. *Environ. Model. Softw.* 2018, 99, 25–38, doi:10.1016/j.envsoft.2017.09.013.
- Kiniry, J.R.; Jones, C.A.; O'toole, J.C.; Blanchet, R.; Cabelguenne, M.; Spanel, D.A. Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. *Field Crops Res.* 1989, 20, 51–64, doi:10.1016/0378-4290(89)90023-3.

 Marek, G.W.; Gowda, P.H.; Evett, S.R.; Baumhardt, R.L.; Brauer, D.K.; Howell, T.A.; Marek, T.H.; Srinivasan, R. Estimating evapotranspiration for dryland cropping systems in the semiarid Texas High Plains using SWAT. *J. Am. Water Resour. Assoc.* 2016, *52*, 298–314, doi:10.1111/1752–1688.12383.