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Abstract: Submarine groundwater discharge (SGD) consists of fresh submarine groundwater
discharge (FSGD) and recirculated submarine groundwater discharge (RSGD). In this study,
we conducted simultaneous 25-hour time-series measurements of short-lived 222Rn and 224Ra
activities at two sites with differing SGD rates in the central Seto Inland Sea of Japan to evaluate SGD
rates and their constituents. At both sites, we also quantified the total SGD, FSGD, and RSGD using a
seepage meter to verify the water fluxes estimated with 222Rn and 224Ra. SGD rates estimated using
222Rn and 224Ra at the site with significant SGD approximated the total SGD and RSGD measured
by the seepage meter. However, SGD rates derived using 222Rn at the site with minor SGD were
overestimated, since 222Rn activity at the nearshore mooring site was lower than that in the offshore
area. These results suggest that the coupling of short-lived 222Rn and 224Ra is a powerful tool for
quantification of FSGD and RSGD, although it is important to confirm that tracer activities in coastal
areas are higher than those in offshore.
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1. Introduction

Submarine groundwater discharge (SGD) is a common hydrological process in coastal seas.
In recent years, SGD has been recognized as one of the important pathways transporting carbon,
dissolved nutrients, and trace metals from land to the sea [1]. Quantification of the SGD rate is an
essential step in evaluating fluxes of terrestrial materials from local to global scales. SGD includes
the discharge of fresh groundwater (fresh submarine groundwater discharge: FSGD) as well as saline
groundwater (recirculated submarine groundwater discharge: RSGD) [2]. FSGD is generally driven by
hydraulic gradients, whereas many factors including wave setup, tidal pumping, and density-driven
convection drive RSGD [3]. Because temporal changes of each driving force complicate the
determination of the SGD rate and its constituents, it is very important to quantify the total rates of
SGD as well as identify its constituents spatially and temporally.

SGD can be quantified using several approaches. One approach is direct measurement
with a seepage meter. Several types of seepage meters are available, including the Lee type [4],
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the continuous-heat type automated seepage meter [5], and the electromagnetic seepage meter [6].
Seepage meters can divide total SGD into FSGD and RSGD when combined with a salinity sensor [7,8].
Although this approach enables reliable evaluation of FSGD and RSGD rates in a local area, seepage
meters have disadvantages when expanding the scale from local to regional, unless a sufficient number
of seepage meters is used [9].

The other approach used to quantify SGD rates is the use of geochemical tracers such as
radioisotopes and methane [10]. In particular, 222Rn (t1/2 = 3.84 days) and Ra isotopes (223Ra;
t1/2 = 11.4 days, 224Ra; t1/2 = 3.66 days, 226Ra; t1/2 = 1600 years, 228Ra; t1/2 = 5.75 years) have
been used in many SGD studies [11–14]. An advantage of this approach is that these tracers indicate
an integrated SGD signal flowing into the water column from a variety of aquifers [15], and thus
have been used to evaluate SGD rates at local [16,17], embayment [18,19], and global scales [20,21].
222Rn is generally enriched in groundwater regardless of its constitution (fresh or saline) relative to
surface water [22]. Ra isotopes are enriched in saline groundwater, as Ra exists attached to particles in
freshwater and dissolves in saline water through ion exchange [23]. Therefore, an estimate of SGD rate
using 222Rn activity is thought to represent the total flux of SGD including FSGD and RSGD, while that
based on Ra isotopes is likely to represent the RSGD flux. Thus, combining the 222Rn and Ra isotope
approaches can provide fluxes of total SGD, RSGD, and FSGD.

In this study, we conducted 25-hour time-series measurements of short-lived 222Rn and 224Ra
activities simultaneously at two sites with different SGD rates in the central Seto Inland Sea,
Japan (Figure 1), where the maximum tidal amplitude reaches 4 m during spring tide. The non-steady
mass balance model proposed by Burnett and Dulaiova [16] was applied to quantify SGD rates.
Furthermore, SGD rates were measured directly using an automated seepage meter to verify the SGD
rates including total SGD, FSGD, and RSGD using the mass balance model of radioisotopes.

2. Materials and Methods

2.1. Field Survey

We deployed mooring systems at two sites, Takehara (site A) and Aba Island (site B) (Figure 1).
The former is located in alluvium on the coastal plain where there are abundant groundwater resources.
Groundwater in this plain supplies 75% of domestic water use in Takehara city. On the contrary,
the latter is located in small island made up biotite granite [24]. According to the preliminary 222Rn
survey, it was anticipated that site A has significant SGD, while site B is thought to have only minor
SGD [25,26].
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The survey was conducted simultaneously from 16:00 on June 6 to 16:00 on June 7 2017, covering a
diel tidal cycle at both sites. Continuous heat-type automated seepage meters [5,8] were deployed
on the sandy sediment at both sites a few hours before the measurements. Temperature and salinity
loggers (MDS Mk-V or A7CT2-USB, JFE Advantech, Hyogo, Japan) were attached inside and outside
the chamber. Loggers for water depth (DEFI2-D5HG, JFE Advantech) were also deployed outside
the chamber. To determine the water column is well mixed, temperature and salinity loggers were
deployed in the surface layer at both sites. Seawater near the seepage meter was continuously pumped
via submersible pump and flowed into an air/water exchanger (RAD AQUA, Durridge, Inc., Billerica,
MA, USA). 222Rn in the equilibrated air was measured at 20-minute intervals using a radon detector
(RAD7, Durridge, Inc.). Exhaust seawater from the exchanger was continuously filtered using an
MnO2-impregnated acrylic fiber (Mn-fiber) at <1 L min−1. The Mn-fibers were exchanged every
2 h and the total volumes filtered ranged from 61–72 L. Additionally, atmospheric 222Rn activity for
calculation of radon atmospheric evasion was measured at 20-minute intervals using the RAD7 during
mooring survey. Data obtained from the loggers and 222Rn data were averaged hourly to eliminate
short-term variability.

To use as the end members for the groundwater fluxes calculations, we dug holes in beaches
using a hand auger inland from the tide line at each mooring site. Shallow groundwater was collected
for 222Rn analysis in 250-mL gas-tight glass vials using a peristaltic pump. Additionally, 10–40 L of
groundwater for 224Ra samples was filtered through an Mn-fiber. Three groundwater samples for
222Rn and 224Ra were collected at each site. Offshore seawater was collected during the mooring
surveys to measure 222Rn and 224Ra activities. Surface seawater was collected into a 7-L high-density
polyethylene (HDPE) bottle for 222Rn and into a barrel for Ra isotopes. A total of 130 L was filtered
through an Mn-fiber for Ra isotopes.

2.2. Analytical Methods

Each Mn-fiber was rinsed with radium-free water and then partially dried following the method of
Kim et al. [27]. Activity of 224Ra was immediately measured using the RAD7 [28]. Briefly, air involving
220Rn regenerated from 224Ra in Mn-fiber was measured for 6 h with 15 min cycle via open loop system
for each sample. 228Th activity was measured with the same method used for 224Ra analysis, >2 weeks
after the sampling date. 226Ra activity of offshore seawater was measured with the RAD7 after secular
equilibrium between 222Rn and 226Ra was reached in a gas-tight cartridge to estimate excess 222Rn in
the field [28].

Groundwater samples for measuring 222Rn were maintained at room temperature and analyzed
using the RAD H2O system (Durridge, Inc.). This system equilibrates 222Rn in air with that in water by
degassing radon samples through a closed loop for 5 min. The equilibrated air flows into the RAD7
through a desiccant, and 222Rn activity in the air is analyzed and averaged. Offshore seawater samples
were kept in the 7-L HDPE bottle at room temperature and analyzed using the Big-Bottle RAD H2O
system (Durridge, Inc.). The sample was aerated at room temperature for 45 min to equilibrate 222Rn
in the air with that in water through a closed loop, and then the equilibrated air was measured by
RAD7 for 6 h after flowing through desiccant.

2.3. Estimates of SGD Rates by Seepage Meters and Radioisotopes

Total rates of SGD (cm d−1) were measured directly using a seepage meter. The contribution
rates of fresh and recirculated SGD can be estimated based on temporal changes in salinity inside and
outside the chamber:

dC/dt = Q/V (Ci − C) (1)

where C is the salinity inside the chamber after t hours, Ci is the salinity of groundwater flowing into
the chamber, Q is the total SGD rate after t hours, and V is the volume of the chamber. Equation (1) can
be modified to Equation (2):
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C = Cs exp (−Qt/V) + Ci (1 − exp (−Qt/V)) (2)

where Cs is the salinity outside the chamber. Thus, the FSGD and RSGD rates are estimated using the
salinity ratio of Ci to Cs along with the total SGD rate as follows:

FSGD = Q × (1 − Ci/Cs) (3)

RSGD = Q × (Ci/Cs) (4)

Variations in the time-series of 222Rn and 224Ra were used to estimate SGD rates with a non-steady
mass balance model [16,29]:

FbenthicRn − Fatm ± FhorRn = 0 (5)

FbenthicRa ± FhorRn = 0 (6)

where FbenthicRn and FbenthicRa are the combined advective and diffusive fluxes of 222Rn and 224Ra to
the overlying water column. λRn and λRa are the decay constants of 222Rn (=0.181 d−1) and 224Ra
(=0.189 d−1), IRn and IRa are the inventory of excess 222Rn (=222Rn − 226Ra) and excess 224Ra (=224Ra
− 228Th), Fatm is the flux of 222Rn to the atmosphere, and FhorRn and FhorRa are the horizontal mixing
factors of 222Rn and 224Ra into or out of the mooring site. Decay within the water column was not
considered because fluxes were evaluated on a very short time scale (1−2 h) relative to the half-lives
of 222Rn and 224Ra. Fatm was determined based on molecular diffusion and the turbulent transfer
model [30–32], and detailed calculations were modeled after those of Sugimoto et al. [19]. To calculate
SGD rates, we simply divided FbenthicRn and FbenthicRa by the activities of 222Rn and 224Ra in shallow
groundwater. We ignored diffusive flux, because flux from the seafloor is usually dominated by
SGD [16,33]. 222Rn-derived SGD rates were thus estimated by dividing 222Rn advection by the 222Rn
activity of groundwater. 224Ra-derived SGD rates were estimated by dividing 224Ra advection by the
activities of 224Ra in groundwater. In this study, we present all fluxes as 1-hour average rates, except for
224Ra (2-hour average).

3. Results

3.1. Characteristics of Groundwater and Offshore Seawater

Table 1 lists salinity and the 222Rn and 224Ra activities of groundwater and offshore seawater.
At site A, salinity ranged from 13.8–33.8, and the average 222Rn and 224Ra activities in groundwater
were 20.7 ± 17.1 dpm L−1 and 175.2 ± 61.9 dpm 100 L−1, respectively. 222Rn and 224Ra had negative
and positive relationships with salinity, respectively (r2 > 0.95), indicating that the major sources of
222Rn and 224Ra were fresh and saline groundwater. In contrast, at site B groundwater salinity ranged
from 31.1–33.7, and did not decrease from the tide line inland (Table 1). The average 222Rn and 224Ra
activities in groundwater were 16.1 ± 1.3 dpm L−1 and 1042.7 ± 470.0 dpm 100 L−1, respectively.
222Rn, 224Ra, and 226Ra activities in offshore seawater were 3.3 ± 2.3 dpm L−1, 0.0 ± 1.3 dpm 100 L−1,
and 7.4 ± 3.4 dpm 100 L−1, respectively.

3.2. Temporal Changes in Total SGD Rates and Activities of Geochemical Tracers

Figure 2 presents the time series of water depth, salinity, SGD rates, 222Rn, and 224Ra. The average
water depths at site A and site B were 2.0 ± 0.8 m and 2.5 ± 0.8 m, respectively, and the maximum
tidal range was 2.7 m at both sites during the mooring. Few temporal changes were observed in the
salinity of bottom and surface seawaters at site A, except in surface seawater at the end of the mooring
duration, while salinity inside the chamber had a clear pattern of higher values during the high tide
and lower values during the low tide. At site B, there were no obvious changes in the salinity of
seawater at the bottom or surface measurement points or in the chamber.
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Table 1. Salinity and 222Rn (dpm L−1) and 224Ra (dpm 100 L−1) activities in groundwater and offshore
seawater. Errors indicate the standard deviation among repeated measurements.

Distance from the Low
Tide Mark(m) Salinity 222Rn (dpm L−1) 224Ra (dpm 100 L−1)

site A
GW1 1 33.8 1.2 ± 1.1 260 ± 85.0
GW2 10 21.8 17.9 ± 6.0 150.6 ± 47.7
GW3 19 13.8 42.9 ± 5.1 114.8 ± 59.4

site B
GW4 0 33.7 14.6 ± 6.5 449.3 ± 118.4
GW5 20 33.6 16.1 ± 2.3 1080.2 ± 116.5
GW6 25 31.1 17.7 ± 4.5 1598.7 ± 150.0

Offshore
seawater

OS − 33.0 3.3 ± 2.3 0.0 ± 1.3
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SGD rates measured using a seepage meter at site A ranged from 25.3–159.3 cm d−1, with an average
± SD of 99.8 ± 39.3 cm d−1, and showed several peaks during the ebb and flood tides. In contrast,
at site B, hourly-averaged SGD rates ranged from 1.9–32.8 cm d−1 (mean ± SD = 4.9 ± 6.4 cm d−1).
Little temporal change was observed.

222Rn activity at site A exhibited temporal changes, and the highest peaks of 222Rn (>5 dpm L−1)
were observed with a few hours lag after the ebb tide. Temporal changes in 224Ra activities were similar
to 222Rn. The average 222Rn and 224Ra activities in seawater were 3.3 ± 1.3 dpm L−1 and 8.0 ± 3.7 dpm
100 L−1, respectively. At site B, there were no temporal changes in 222Rn and 224Ra compared to those
at site A. The average 222Rn and 224Ra activities in seawater were 2.1 ± 0.8 dpm L−1 and 3.0 ± 1.3 dpm
100 L−1, respectively.

3.3. FSGD and RSGD Quantified via Seepage Meter

The temporal changes in RSGD rates at site A ranged from 13.0–149.6 cm d−1, increasing from the
lowest tide to the highest tide and then decreasing from the highest tide to the lowest tide (Figure 3a).
In contrast, approximately 10 cm d−1 of FSGD was observed throughout the mooring duration,
and FSGD exhibited clear peaks (ca. 15 cm d−1) during ebb tides (Figure 3b). The average rates of
FSGD and RSGD were 11.6 ± 2.5 cm d−1 and 88.1 ± 39.4 cm d−1, respectively. Although RSGD was
a major component of SGD and accounted for 85.1% of the average SGD rate, the fraction of FSGD
increased to approximately 20% during the ebb tides.
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rates, fresh submarine groundwater discharge (FSGD) rates, and the fraction of FSGD at sites A and B.
Broken line (blue) indicates water depth.

At site B, the rates of FSGD and RSGD ranged from 0.0–1.0 cm d−1 and from 1.0–31.9 cm d−1,
respectively, and the average ± SD of each flux was 0.7 ± 0.2 cm d−1 and 4.2 ± 6.4 cm d−1 (Figure 3c,d).
There were no obvious trends in FSGD and RSGD with the tidal cycle. At a daily scale, RSGD accounted
for 75.5 % of the SGD rate at site B.
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3.4. SGD Rates Quantified by 222Rn and 224Ra Mass Balance Model

To calculate the mass balance model for 224Ra, we used the average values (175.2 ± 61.9 dpm
100 L−1 at site A and 1042.7 ± 467.0 dpm 100 L−1 at site B, respectively) as saline groundwater end
members. In contrast, we used the intercepts (=67.5 dpm L−1 at site A and 47.7 dpm L−1 at site B)
obtained from mixing lines of 222Rn and salinity at both sites as end members for 222Rn-derived SGD
rates. This is because 222Rn-derived SGD rates at site A were not calculated from mean value but the
intercept showed good agreement with total SGD rates using seepage meter (see Sections 4.2 and 4.3).

At site A, 222Rn-derived SGD rates ranged from 0.0–289.2 cm d−1 with an average of
106.9 ± 65.8 cm d−1 and 224Ra-derived rates ranged from 0.0–190.6 cm d−1 with an average of
72.7 ± 54.3 cm d−1 (Figure 4a,b). Several peaks were observed during the flood tide. In contrast,
at site B, SGD rates ranged from 0.0–256.5 cm d−1 with an average of 117.8 ± 70.8 cm d−1 and from
0.0–31.1 cm d−1 with an average of 12.0 ± 8.3 cm d−1 as estimated by 222Rn and 224Ra, respectively
(Figure 4c,d).
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4. Discussion

4.1. Factors Controlling Temporal Changes in SGD Rates

SGD rates measured with seepage meters had marked temporal changes, particularly at site A.
The semi-diurnal changes of tidal height are known to drive temporal changes in SGD rates [34–36].
In this study, FSGD rates at site A had a negative relationship with water depth (r2 = 0.57, p < 0.001:
Figure 5), which can be explained through temporal changes in the hydraulic gradient between
groundwater table and sea level. In contrast, we did not find a significant relationship between RSGD
rates and water depth at site A (r2 = 0.07, p = 0.21), possibly due to complicated driving factors such
as tidal pumping, wave setup, and density-driven convection [3,37,38]. In some cases, peaks of SGD
rates have been observed a few hours after the lowest tide [7,39]. Taniguchi et al. [7] pointed out that
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time lags were predominately caused by recirculated saline groundwater. Considering the time lags
between RSGD and water depth in this study, higher RSGD rates were found at lower water depths
with a 2-hour lag (Figure 6), possibly due to tidal pumping that causes seawater infiltration at high tide
and discharge at low tide. However, higher RSGD rates were also observed at greater water depths
(Figure 6). Similar results have been reported from the Japanese coast [40], but the mechanism has not
yet been clarified. In future, a long-term mooring survey will be needed to elucidate the driving forces
behind RSGD during flood tides.Hydrology 2018, 5, x FOR PEER REVIEW  8 of 12 
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4.2. Comparison of SGD Rates Estimated using Geochemical Tracers and Seepage Meters

To verify the 222Rn-derived and 224Ra-derived SGD rates, we compared these rates with direct
measurements of total SGD, RSGD, and FSGD obtained from seepage meters. Unfortunately, there were
no clear relationships among hourly or bi-hourly SGD rates by 222Rn, 224Ra, and seepage meters
(r2 < 0.06, p > 0.27). In this study, we therefore compared the average values from a 25-hour
mooring survey.

Table 2 lists the daily mean SGD, FSGD, and RSGD rates measured via seepage meter and water
fluxes estimated using short-lived radioisotopes 222Rn and 224Ra at both sites. We assumed that the
water fluxes estimated from 222Rn and 224Ra represent the total SGD and RSGD rates, respectively.
At site A, total SGD (=106.9 cm d−1) and RSGD rates (=72.7 cm d−1) estimated from 222Rn and 224Ra
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were in good agreement with total SGD (=99.8 cm d−1) and RSGD rates (=88.1 cm d−1) obtained from
the seepage meter, respectively. The ratio of RSGD to total SGD based on geochemical tracers (=68.1%)
was lower than that from the seepage meter (=88.3%). Thus, geochemical tracers give higher estimates
of the FSGD fraction (=31.9%) compared to those from seepage meters (=11.7%). In contrast, at site B,
RSGD estimated from 224Ra activity (=12.0 cm d−1) was slightly higher than RSGD quantified using a
seepage meter (=4.2 cm d−1), whereas total SGD from 222Rn activity (=117.8 cm d−1) had considerably
higher values relative to SGD rates from the seepage meter (=4.9 cm d−1). Because the average 222Rn
activity in seawater at site B (2.1 ± 0.8 dpm L−1) was lower than that of offshore seawater (3.3 dpm
L−1), overestimates of 222Rn-derived SGD rates at site B might be caused by lower 222Rn activity in
seawater relative to offshore seawater.

Table 2. Mean water flux (cm d−1) and fractions of total SGD, RSGD, and FSGD measured by seepage
meters and estimated using geochemical tracers (222Rn and 224Ra). Errors indicate standard deviation
among hourly or bi-hourly measurements.

Seepage Meter Geochemical Tracers

(cm d−1) (%) (cm d−1) (%)

Site A
SGD 99.8 ± 39.3 (100) 106.9 ± 65.8 * (100)

RSGD 88.1 ± 39.4 (88.3) 72.7 ± 54.3 ** (68.1)
FSGD 11.6 ± 2.5 (11.7) – (31.9)

Site B
SGD 4.9 ± 6.5 (100) 117.8 ± 70.8 * (100)

RSGD 4.2 ± 6.4 (85.6) 12.0 ± 8.3 ** (10.2)
FSGD 0.7 ± 0.2 (14.4) – (89.8)

* Water flux estimated from the 222Rn mass balance model. ** Water flux estimated from the 224Ra mass
balance model.

Although several studies have estimated SGD rates by combining the approaches of seepage
meters and geochemical tracers [16,39,41–43], few studies have focused on the differentiation of FSGD
and RSGD using 222Rn and Ra isotopes with other techniques. Mulligan and Charette [44] compared
the differences among total SGD estimated from 222Rn activity, FSGD estimated using Darcy’s law,
and RSGD estimated from 226Ra. They concluded that hydrogeological estimation and 222Rn and
Ra isotope methods complement each other in Cape Cod, where FSGD is the major component of
SGD. In this study, we showed the validity of 222Rn and 224Ra estimates as compared with seepage
meter estimates at a site where RSGD dominates total SGD, and demonstrated that coupling of
short-lived 222Rn and 224Ra is a useful method for quantifying the constituents of SGD (FSGD versus
RSGD). However, we must note that 222Rn and/or 224Ra activities had high values in seawater at the
experimental site in comparison to offshore seawater in order to avoid erroneous estimates.

4.3. Uncertainties in SGD Rates Determined using Geochemical Tracers

The most serious uncertainties in SGD rates determined using geochemical tracers are caused by
the definition of end member values [45]. In this study, we used the intercept of the mixing line between
222Rn and salinity to determine the 222Rn-derived SGD rate, which agreed well with the total SGD rate
obtained using the seepage meter at site A (Table 2). This approach may be not common, because most
of the similar studies used mean or median value [33,43,46]. Use of the mean value of 222Rn activity in
groundwater (20.7 ± 17.1 dpm L−1) would result in an 222Rn-derived SGD rate approximately three
times that determined using the seepage meter (349.4 ± 215.0 cm d−1). According to Cook et al. [47],
end members for SGD flux calculations are represented as groundwater, shallow pore water, or a
mixture of both. In this study, we have taken only shallow surface groundwater in the beach. In site
A, the large SGD fluxes might indicate that mostly deeper groundwater (a couple of meters deep
in the sediment) discharges. This deep groundwater represents fresh groundwater where 222Rn is
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in equilibrium with the sediment. Although we could not grasp this equilibrium value in site A,
this value is expected to be higher than 222Rn activity in surface groundwater. This implicates that
utilization of the intercept resulted in reasonable estimate for 222Rn-derived SGD to valid seepage
SGD flux. On the other hand, 222Rn-derived SGD in site B represents a site where mostly pore water
exchange takes place. The sampled 222Rn groundwater end members taken from the beach at site B
may not be the representative end members in such a case and as a consequence yield wrong SGD
fluxes, which were not supported by the seepage meter measurements.

We used mean Ra activities in saline groundwater to obtain 224Ra-derived SGD rates as RSGD.
If we had used the lower (105.1 dpm 100 L−1 at site A and 685.7 dpm 100 L−1 at site B) or higher
(245.3 dpm 100 L−1 at site A and 1399.7 dpm 100 L−1 at site B) values of the 95% confidence interval at
both sites, the rates would have ranged from −29% to +67% at site A and from −26% to +52% at site B,
indicating the need for a larger sample (i.e., >8 samples [14,41,48]) to reduce uncertainties.

Furthermore, analytical errors based on counting error (222Rn = 23.3% and 224Ra = 68.1%) resulted
in large uncertainties in SGD estimates. In future work, we will use high-accuracy equipment such as
the radium delayed coincidence counter for 224Ra.

5. Conclusions

In this study, we simultaneously quantified SGD rates and identified their constitution (FSGD
and RSGD) at one site with significant SGD and one site with minor SGD using different approaches:
a seepage meter and geochemical tracers (222Rn and 224Ra). At the site with significant SGD
(ca. 100 cm d−1), the seepage meter results showed that the coupling of short-lived 222Rn and 224Ra
isotopes is a powerful tool for the quantification of SGD and identification of its constitution, although
several issues, such as end member determination, remain. At the site with minor SGD (<10 cm d−1),
we could not obtain reasonable results by coupling 222Rn and 224Ra. To prevent estimation errors,
we may have to consider the considerably higher activity of tracers in the water column at the target
site than in offshore seawater.
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