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Abstract: The ability to effectively transfer results of research in hydrometeorology to operational
field applications is met with several challenges. This article exemplifies cooperative implementation
that explicitly considers the flow of uncertainty from data and models to products and predictions as
a means to successfully meet these challenges.
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1. Introduction

The creation of effective mechanisms for dissemination of research findings to users
and the establishment of effective technology transfer mechanisms were identified in the
early 1990s [1] as an important need in the context of synergist basic research and technol-
ogy transfer in the university environment and in the mid-1990s [2], when a U.S. National
Center for Hydrology was contemplated. About 10 years later, the then young Technology
Transfer Program of the Hydrologic Research Center (HRC) provided the basis for the
conclusions drawn in [3] on the challenge and recommendations of corporate technology
transfer for operational hydrology. A conclusion that is relevant to the present paper was
that “technology transfer in the field of hydrometeorology must accommodate large natural
uncertainties, and a significant effort must be put into uncertainty modeling”. This assess-
ment was also supported in [4,5] in the context of the effective use of climate information in
water resource management. A recent accounting of the multidecadal process that followed
for the realization and evolution of operational flash flood guidance system applications
worldwide identified important elements of making research in interdisciplinary fields
useful to operations in diverse environments [6]. Characterizing uncertainty in system data
input and providing products that reflect that uncertainty and as planning the associated
training of users constitute two of these elements.

To set the framework for the discussion below, Figure 1 presents the components
of systems for prediction and response that have been proven effective in operational
implementations of research products. The Figure includes components of hydrometeoro-
logical modeling for the simulation and prediction of hydrometeorological variables, such
as precipitation, soil water content, and flow; components for observational data and/or
for the assimilation of forecaster adjustments; components for the estimation of the flow
of uncertainty from parameters, model structure, and hydrometeorological input to the
variables of interest. It also includes components associated with the decision to issue
warnings or to manage water resources based on the diagnostic and prognostic variables of
interest, additional external information/observations, and decision-maker preferences.
Finally, the response component of these decisions is considered, as supported by the coop-
eration of relevant agencies and public education efforts. The prevalent role of uncertainty
propagation and mapping onto hazard risks or trade-off risks is depicted in Figure 1 for
emphasis.
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Figure 1. Components of prediction–response operational systems.

The present assessment work is anchored in the lessons learned from the aforemen-
tioned efforts of worldwide implementations and sustained use of operational hydrom-
eteorological prediction systems. It identifies the characterization of uncertainty in data,
models, and products as an important prerequisite for the transfer of science-research
results to operational applications in the field of hydrometeorology. The next section iden-
tifies specific challenges and offers promising approaches for meeting these challenges.
Section 3 provides two illustrative examples of operational implementation. The first is for
a data-rich region, and the second is for data-sparse regions. Conclusions are presented in
Section 4.

2. Elements of Effective Research-to-Operations Pathways

There are four basic challenges in the effective and sustainable transfer of research
results to operations. They all concern the acceptance and use of research results by opera-
tional hydrologists, hydrometeorologists, and decision makers in real-world applications.
These are: (a) large occasional errors in research output for hazardous events prevent ready
acceptance of such output by operational meteorological and hydrological forecasters;
(b) disruption of operationally established methodologies by new field-untested research
methodologies; (c) provided research output (such as new forecasts) is not directly linked
to the decision parameters used by decision makers; and (d) significant uncertainty in
research output is not linked to decision parameters used by decision makers.

In addition, worldwide implementation of diagnostic and prognostic systems for
operational use poses several additional challenges. Important among these for the effective
transfer of research to operations are: (i) the requirement for application-specific multi- and
interdisciplinary component synthesis, such as that indicated by the hydroclimatology of
the application region; (ii) the necessary accommodation of any barriers that exist in some
regions to local data exchanges for applications involving transboundary domains and even
in national data exchanges among agencies; and (iii) the diversity in the backgrounds of
operational users, who range from technicians with little experience with modern forecaster
support systems to scientists with graduate degrees.

All these challenges introduce uncertainties in system implementation, from the
parametrization of system components for specific applications under data uncertainty to
the design of effective training programs for the operational use of the implemented systems.
Multiyear experience with the research-to-operations process at HRC suggests the following
useful approaches to meet the aforementioned basic challenges (a–d) and to establish
effective transfer to field operations (see also Figure 1): (a) explicit uncertainty modeling
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and training in uncertainty concepts as related to the problem at hand; (b) maximum
feasible use of existing operational methods and models, and development of hands-
on demonstration projects where new research results are compared to status quo with
due account of uncertainty; (c) mapping of the research information (e.g., precipitation
forecasts) to impact information appropriate for decision makers for the problem at hand
(e.g., irrigation scheduling), again with due account for uncertainty; and (d) providing
trade-offs of the metrics familiar to the decision maker at various risk levels based on the
uncertainty in the relevant research products.

Sustainability of the effective use of implemented systems is well supported by the
establishment of cooperative tailoring and implementation with local agencies that will
use the system products. This cooperative process involves iterations whereby initial
research-output designs must be adapted to the local conditions, including available
parametric and hydrometeorological input data, as well as computational resources, in
order to improve the reliability of the operational, diagnostic, and prognostic products,
as well as the sustainability of the operational systems. A realization of this cooperative
process within the operational implementation process is depicted in Figure 2. In this
figure, the cooperative process yields iterations of model component structure adjustments
for system components that contribute to the initial system designs for the purpose of
enhanced reliability and sustainable utility by operational agencies.
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Figure 2. Schematic of the sequence of the themes of implementation activities of effective operational
systems with the model-component adjustment process depicted explicitly.

It is noted that the feedback loop shown in Figure 2 in typical applications does not
involve feedback loops inside it. Experience shows that adjusting the model-component
structures judiciously in each application based on available supporting data or foreseeable
future available data (e.g., new radars) and then following the process shown from left to
right to a new system-validation step provides (a) improved reliability in operations and
(b) sustainability in both operations and in future training efforts.

It is also noted that, implicitly, the transition from characterization of uncertainty to
data assimilation and quality control involves a transition from the stochastic-dynamical
equations of the characterization of uncertainty step to a stochastic process formalism that
informs the data assimilation and quality control steps in Figure 2.

This cooperative process (research→operations→research→ . . . ) requires support by
extensive hands-on training for: (a) the forecast staff on the physics of the natural processes
and the uncertainties of the input and parametric data; (b) the decision making staff
(disaster prevention agencies and water resource management agencies) on the properties
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of the system products under local data conditions; and (c) the information technology (IT)
staff associated with the local host of the implemented system on computer hardware and
software maintenance, as well as data management for sustainability. When complexity
and innovative enhancements are essential to the sustainability of the system, as mentioned
earlier, a demonstration phase has proven to be a good investment prior to operational
implementation.

A promising approach for system longevity is to implement systems that are flexible
and modular to allow for component enhancements and uncertainty estimate updates over
time when new types of data become available and to incorporate system components
for secure data exchanges. Continuing periodic training of users is also important in such
cases. In addition, the greatest benefits of the implementation and effective-use process
for the user agencies is found in situations when the field staff involved in the training
and use of the system are provided with incentives by their user agency to expend effort
to understand and use the advanced science and technology implementations and to be
involved in system enhancement and reliability improvement over time. For improved
utility in several cases, existing operational protocols of user agencies have been adjusted
for most effective product use (e.g., incorporating flash flood warning protocols within a
pre-existing flood warning protocol).

3. Examples of Transferring Research Output and Associated Uncertainty to
Operations for Effective Decision Support
3.1. Short-Term Operational Precipitation and Flow Prediction in a Data-Rich Environment

Research on the development of coupled meteorological–hydrological model compo-
nents for operational hydrologic applications over a single hydrologic basin was initiated
in the early 1980s with simplified precipitation prediction components, spatially-lumped
conceptual hydrologic and channel-routing models, and with explicit account of the propa-
gation and update of uncertainty (first and second moment) based on available real-time
observations of precipitation and flow [7,8]. Performance of the operational systems was
good for good-quality precipitation and flow data and for sustainable operations. The un-
certainty component was a stable extended Kalman filter, suitable for continuous model
dynamics, which was later implemented as part of the operational system in the US [3,9].

Along those lines, one of the first operational implementations of such a system was
for the 3300 km2 mountainous Panama Canal Watershed, the waters of which are used to
facilitate Panama Canal shipping (Figure 3). Toward this end, distributed precipitation
predictions and quasi-distributed land-surface models were used with state estimation [10].
The tributaries that feed the Panama Canal drain small basins that range in size from less
than 100 km2 to approximately 700 km2. Precipitation over the Watershed is measured by
an S-band radar and a dense network of automated rain gauges. The gauge data were used
to bias adjust the radar data and, in the absence of radar observations, to provide estimates
of the mean areal precipitation (MAP) and its uncertainty (kriging method was used) over
the basins. The flow in each of the significant tributaries is measured by automated gauges
at sites that have frequent updates in rating curves. Predictions are useful for a range of
lead times from 1 h to 24 h.

Under this rather observation-rich environment and with rather short useful lead
times, characterizing the uncertainty in flows using automated state estimators is beneficial,
and statistical errors were kept significantly below the climatological error bounds due
to frequent state estimator updates. Over time, the model components of this system
have been upgraded, and because of the continuing hands-on training of the operational
hydrologists and meteorologists of the ACP, the system remains operational, providing
information useful for the management of the Panama Canal ([11–13]).
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Figure 3. Controlled Lake Gatun within the Panama Canal Watershed. Lake levels regulate Panama
Canal shipping and are impacted by quick flash floods from the main tributaries.

The stochastic–dynamic formulations that are involved in this type of implementation
are at an advanced level that requires graduate-level background in uncertain dynamical
systems; that is, background that is rarely available in the operational environment outside
of focused graduate school study. The viable option for sustainability and utility in that
situation was to focus the training on the interpretation of the uncertainty output of the
operational system and on providing a prerequisite basic statistics course for operational
hydrologists and meteorologists [11,12]. In addition and importantly, the state estimator
formulations in the operational system needed to be adjusted so that real-time configura-
tion changes in the observed data sources could be handled in a reliable manner. Three
illustrations of this are discussed below.

First, in several cases, the radar data was not available in real time, and there were
changes in the configuration of the rainfall-observing gauge network, as some of the sensors
did not report for some of the time. In these cases, a first- and second-moment adjustment of
the sub-basin MAP was made to correctly account for the time-varying reporting network
and provide the forecasters with consistent uncertainty information. Second, if the real-time
flow observations were not available for a particular time, the state estimator simply did
not proceed with the update of the second-moment properties across an observation for the
state vector. After some time had passed (e.g., 6 h), a state estimator was used to estimate
the state again, with new predict–update cycles starting from some time in the past (several
days ago). In many cases, the flow observations were available after the fact; therefore,
a better and more stable estimate of the states and their uncertainty was obtained through
this continuous data-reprocessing approach. Third, the potential incidents of system “crash”
also needed to be handled in such a way that the operational forecasters could make the
system operational quickly. After several configuration adjustments, the one that was
found most useful for the rather small basins and response times was to estimate the
steady-state limit of the second moments of the state variables for each month and keep this
exported. After such a crash, these limits were used to expeditiously reinstate the real-time
system operations, without the need to run the system again from the beginning of the
rainy season, as would otherwise be required because of the soil water content memory.
With hourly updates, the states were found to quickly adjust to the real-time data.
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The information from this hydrometeorological forecast system (both the mean and
the variance of the products) was used operationally by the Panama Canal Authority to
determine timely actions in the case of predicted flooding in tributary streams. For the
Panama Canal operations, this included extracting staff to safe ground, as well as the
equipment that guides ships during Canal passage, and making decisions as to the safe
operation of the Canal for shipping.

3.2. Flash-Flood Operational Prediction in a Data-Sparse Environment

The characterization of uncertainty in flow products through automated means based
on automated observations, as discussed in Section 3.1, is not feasible in large areas of
the world because of a lack of such observations. In particular, when the focus is on
flash flooding over large regions (sometimes encompassing several countries) with high
resolution, this automated state-estimation method of uncertainty characterization is not
applicable. In fact, the prediction of uncertainty is valid through state estimation or through
ensemble prediction [14], but the updating of uncertainty across observations through state
estimators cannot be used in such data-sparse areas.

This situation is prevalent in the implementation of flash flood guidance systems
(FFGSs) worldwide [6,15]. This operational system for flash flood assessment and occur-
rence prediction serves more than 64 countries worldwide. It is based on meteorological
and hydrological models and on remotely-sensed multispectral satellite and local data
(radar and on-site precipitation gauge data). The first consideration for such a system was
to use coupled meteorological and hydrological models, e.g., [8,16], to produce assessments
and predictions of flash flood occurrence. Real-time applications indicated that low-quality
data significantly impact the performance of such operational systems [17].

Flash floods typically have short durations (<6 h) and small spatial scales (<200 km2)
and are the result of rainfall, land-surface cover, and soil water saturation conditions [18]
(Figure 4). In lieu of on-site radar and rain gauge observations from dense networks,
rainfall observations from satellites carry significant errors in such small scales; thus,
it is important that real-time updates are engaged to best approximate the actual land-
surface conditions in regions of flash flood occurrence. Additionally, typical in these
implementations is the sparsity of land-surface data, including flash flood occurrence data
and streamflow data. Therefore, although the lead times are rather short and the initial
conditions significantly influence the prediction (in spite of large forcing uncertainty),
the benefit of having automated systems to update the land-surface states (soil water
content and snow water equivalent) from observations on small flash-flood scales is not
realizable. A new approach was necessary.

Research was performed on the impact of errors in small-basin, real-time estimation
of precipitation for basins with radar coverage and good operational density of on-site
rain gauges, also considering errors in the parameters of the land-surface components.
This research indicated that the uncertainty in the simulation of flow increases linearly
as the logarithm of the basin area decreases, with precipitation input contributing the
largest portion of flow uncertainty [19,20]. The flow simulation errors are about 30% for
1000 km2 basins and increase to about 90% for 100 km2 basins. Flow prediction, rather than
simulation, errors are expected to be much higher in smaller basins, especially for forecast
lead times longer than a few hours.

Fortunately, with respect to precipitation errors, operational meteorologists and hydrol-
ogists have significant experience with specific observation networks and with predictive
high-resolution mesoscale models for certain areas. This experience could be used to make
adjustments in real time to precipitation observations and/or predictions if the operational
diagnostic and prognostic flash flood system were designed to allow for this. This was taken
into consideration in the design and subsequent enhancements of the FFGS operational
system.
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The approach followed was to decouple of the meteorological and hydrological com-
ponent models but in a way that allows for assessments of the risk of flash flooding. Toward
this goal, an early warning index was determined to be the bankfull flow of the streams at
the outlets of the identified small flash-flood-prone basins. Then, a link was made between
the bankfull flow and the amount and duration of certain rainfall over the catchment that
could cause this bankfull flow [21,22]. Consequently, actual or forecast mean areal rainfall
of a given duration (1 h, 3 h, or 6 h) that is greater than this certain rainfall of the same
duration and over the same basin would yield exceedance of the bankfull flow at the small
basin and indicates likelihood of flash flooding. This certain rainfall is termed the flash
flood guidance of the given duration.

In this manner, the observed or forecast rainfall becomes a product of the system,
allowing for forecaster adjustments, the impact of which on the exceedance of the flash
flood guidance may be directly identified by forecasters. Appropriate interactive interfaces
were designed to facilitate this process. Such interfaces provided separate information for
observed and forecast precipitation, surface soil water saturation, and flash flood guidance
of various durations. Through these interactive interfaces, the forecaster can look at several
scenarios using precipitation bounds or, in some cases, even use the interface to make
several adjustments directly to precipitation and produce adjusted products so that a
final adjusted product may be selected for the final prediction of flash flood occurrence.
Naturally, training of operational forecasters on the basis of the system model components
and the effective use of the interfaces is a critical component for sustainability, and a
significant hands-on training program has been developed to support forecasters.

Forecaster adjustments to the observed rainfall are warranted based on up-to-the-
minute information (observer reports, video feeds, and local gauges) not included in the
current cycle of system computations and/or on the forecaster’s experience with the local
reliability of gauge-corrected satellite information. These adjustments yield more accurate
simulations and better initial conditions for the next forecast.

Forecaster adjustments to future rainfall are based on prior numerical weather prediction-
model validation studies and the experience of forecasters with the forecasts of specific
numerical weather prediction models for specific seasons and regions within their country.
They tend to reduce the forecast model biases, providing better overall assessment for
the likelihood of future flash flood occurrence. In some of the current implementations of
this approach, the systems have been made flexible to receive input from more than one
numerical weather prediction model and to show the products for each of these models
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separately. This allows forecasters to make a single model selection in real time or consult
more than one model to make their final adjustments.

Evaluations of this forecaster-centric approach that decouples the precipitation and
land-surface response components in regions with very sparse data and for trained fore-
casters indicates that the forecaster adjustments made in real time provide significant
skill (reduction in assessment uncertainty) for the identification of flash flood events in
small basins [23]. It also allows for implementations under a variety of available data and
forecasts.

4. Conclusions

Cooperative implementation with a focus on the reduction in observational and fore-
cast uncertainty is the key to obtaining successful and sustainable products of advanced
operational hydrometeorological systems. Examples from data-rich and data-sparse re-
gions have been discussed. In almost all cases, the initial research-based theoretical models
required adjustments (or further research) before reliable and sustained operational use by
forecasters was attained. The process was one of reciprocal education: for the scientists, the
realities and challenges of the evolving operational environment in terms of available data
and operational-forecaster response time constraints in real time; and for the operational
forecasters, the conceptual basis of the model components and their uncertainties demon-
strated under a variety of situations expressed through products and hands-on exercises
using the system interfaces. This reciprocal education process contributed to flexible and
useable operational systems that can be adapted to various field conditions.
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