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Abstract: In this paper, the quality of a source of drinking water is assessed by measuring eight water
quality (WQ) parameters using 710 samples collected from a water-stressed region of India, Jodhpur
Rajasthan. The entire sample was divided into ten groups representing different geographic locations.
Using American Public Health Association (APHA) specified methodology, eight WQ parameters,
viz., pH, total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), calcium hardness
(Ca-H), residual chlorine, nitrate (as NO3

−), and chloride (Cl−), were selected for describing the water
quality for potability use. The quality of each parameter is examined as a function of the zone. Taking
the average parametric values of different zones, a unique number was used to describe the overall
quality of water. It was found that the average value of each parameter varies significantly with
zones. Further, we used neural network (NN) modeling to map the nonlinear relationship between
the above eight parametric inputs and the water quality index as the output. It can be observed that
the NN designed in the present work acquired sufficient learning and can be satisfactorily used to
predict the relational pattern between the input and the output. It can further be observed that the
water quality index (WQI) from this work is highly efficient for a successful assessment of water
quality in the study area. The major challenge to uniquely describing the drinking water quality
lies in understanding the cumulative effect of various parameters affecting the quality of water;
the quantified figure is subjected to debate, and this paper addresses the difficulty through a novel
approach. The framework presented in this work can be automated with appropriate equipment and
shall help government agencies understand changing water quality for better management.

Keywords: water quality parameters; BIS standards; water quality index; neural network

1. Introduction

Water is the largest consumable of human beings and is the primary requirement for
the sustenance of animals and plants. The water quality of rivers and lakes is of extreme
importance as it impacts the well-being of humans and the sustenance of aquatic animals.
Industrial wastewater-led contamination of source water is one of the significant potential
threats to water quality, particularly in urban areas [1]. Moreover, water quality in these
water bodies is the primary determinant of ecological balance within the living world [2]. In
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contrast, the continued enhancement in water consumption from natural sources has led to
its quality degradation [3]. It is known that the characteristic quality of water required for
drinking, industrial activities, or agriculture varies in terms of the concentration of various
quality parameters; thus, different human activities need different parametric values of
quality variables. Industrialization and indiscriminate use of chemical fertilizers/pesticides
in agricultural activities have been continuously polluting the aquatic environment, leading
to dwindling aquatic biota. Moreover, human beings are getting infected with water-borne
diseases by using contaminated water [4].

Several technical parameters decide if water is suitable for a specific activity or not.
The quality of drinking water is a prime concern in today’s scenario. As mentioned earlier,
the ever-increasing global population, the significant enhancement in the use of water
for various purposes, and the generation of wastewater by default signal that the whole
world is to pass through a tremendous water crisis unless some innovative technologies
are invoked [5]. Most countries worldwide have designed innovative ways to minimize
water pollution in natural resources and evolve new technologies for water purification.
The flows of many natural resources are transnational, so the mitigation strategy must be
cooperative and inclusive. With such a realization, the present-day drive for preserving
water resources on Earth has become an essential scientific and technological activity [6].

Water’s physical, chemical, and biological characteristics are used to describe water
quality for drinking, sustaining aquatic species, and various industrial and agricultural
activities [7]. Various studies have demonstrated that parameters such as biological oxygen
demand (BOD), chemical oxygen demand (COD), dissolved oxygen, pH, total dissolved
solids (TDS), total alkalinity (TA), total hardness (TH), calcium hardness (Ca-H), residual
chlorine, nitrate (as NO3

−), and chloride (Cl−) must have their values within specific
ranges to determine the suitability of the water usage [8,9]. Some parameters are likely
highly satisfactory in a water sample, whereas others are not. Taking such a variation
into consideration, it has been advocated by several researchers that there should be a
unique identity to represent the overall quality of water. This is done by describing the
water quality index (WQI) by differently derived numbers [10,11]. The water quality
index, whichever way it might have been defined, aims to help people understand the
suitability of given water for a specific use. The water quality index (WQI) developed
by the Canadian Council of Ministers of the Environment (CCME) has been employed to
judge the suitability of water at several geographical locations, including a few in the case
of lakes situated in India [12]. While a two-layer time-variable model has been developed
to quantify seasonal variations of pH and alkalinity levels [13] for specific cases, there are
recorded efforts to research water quality planning and management [14]. Mathematical
modeling and computer simulation for predicting the degradation of water quality as a
function of time and space, including many statistical modeling techniques, have been
employed to estimate pollution loadings in water. It is defined in terms of the water quality
index, and a decision support system is embedded in the analyses to decide on the efficacy
of the probable solution.

Among the different purposes for which water quality indices must be used, the quality
assessment of drinking water by suitable indexing is of paramount importance. The World
Health Organization (WHO) and the Bureau of Indian Standards (BIS) have determined
the desirability ranges of various water quality parameters to make up potable water. As
mentioned earlier, industrial wastewater discharge contaminates the water sources that
need to be appropriately treated for further use. This necessitates the development of
a new but simple protocol to determine the water quality index for drinking purposes.
Using specifications set by various agencies, it seems possible to set the acceptable limits
(both upper and lower) of water quality parameters that are harmonious with the available
parametric range within the study area, that is, the Jodhpur district of India. The present
study to design a water quality index in a more straightforward but pragmatic way is
not aimed to comply with regulations or to violate specifications. Many workers have
integrated the quality parameters in a single number, i.e., the water quality index (WQI).
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However, these approaches do not reveal the inherent input–output relationship, which is
mostly nonlinear. Therefore, an attempt is made to get rid of this difficulty by mapping the
nonlinearity in the relationship of parametric quality contribution to the overall quality
index. The difficulty has been capturing a nonlinear relationship between a set of input and
output and recognizing relational patterns between them using computational techniques,
which has not been abundantly documented in the literature.

Realizing the importance of monitoring and predicting the changing water quality,
many researchers have focused attention on modeling water quality as a function of several
variables [15]. A report on artificial neural network (ANN) modeling [16] employed both
multilayer perceptron learning and a neural network-based radial basis function (RBF).
Reportedly, a predictive capacity has enabled very effective water resources management
in South Africa. Moreover, the ANN has been used elsewhere to predict the water quality
parameters for a period of one year, such that better control over the water quality for
irrigation purposes may be ensured. The ANN modeling used for this purpose was
demonstrated to have satisfactorily predicted water quality [17].

The nonstationary character of coastal water is a critical problem so far as its assess-
ment in respect to space and time is concerned; such a nonlinear system is reported to have
been ably modeled by researchers by proposing what is called a geographically neural
network weighted regression (GNNWR) model. This can predict a realistic water quality
distribution over the entire region of study [18]. An ANN was also used to create a water
quality index by training the network by using five important and universally acceptable
water quality parameters. Although the experiment was carried out with water from the
Indian subcontinent, the result can be used globally [19]. It was demonstrated that an
increasing number of members in the training dataset could enhance the regression value
at an increased learning rate. A five-layer network produced the best result [19]. Elegant
research on implementing artificial intelligence algorithms for predicting water quality
index is documented in the literature [20]. An artificial neural network model and the
development of a short-term memory deep learning algorithm were reported. Moreover,
the same group reported using three machine learning algorithms, viz., support vector
machine, naïve Bayes, and K-nearest neighbor (KNN). The models worked fine. Since ANN
has proven pattern recognition capability, early workers attempted to examine if it could
classify water quality parameters. The measurement data of water quality parameters,
viz., pH and dissolved oxygen, were used for training and testing; this finally yielded
an 80% accuracy in classifying quality parameter data at a 0.468 root mean square error
(RMSE) [21].

As may be noted from the foregoing discussions, many other techniques can be applied
for learning, and a large number of approximators can also be used; however, one needs
to write new code and they should be capable of interfacing seamlessly with MATLAB.
Therefore, as an exploratory work, it seems simple and logical to make use of neural
network modeling in the present case to map the relation between common drinking water
quality parameters with a well-defined water quality index. This has compatibility with
the claims of the previous authors as mentioned above. The available information and
the need to understand the impact of the changing values of water quality parameters
on water potability enticed the authors to conduct the water quality modeling with an
artificial neural network-based approach. Hence, neural network modeling is carried out
with the measured drinking water data from a specific region in the present investigation.
For this study, the water quality parameters estimated at different locations in Jodhpur, a
water-stressed district of India, were chosen for neural network modeling.

2. Materials and Methods

In the present investigation, drinking water quality assessment and predictions were
conducted in India’s water-stressed state, Rajasthan. Figure 1a shows the location of the
state of Rajasthan on the map of India; the annexed diagram shows the Jodhpur district,
which is known to suffer from water scarcity, and water samples for the study have been
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collected from the Mandore Block of Jodhpur district. Figure 1b shows the map of the
Jodhpur district, pointing out the location of Mandore, from which 710 water samples
were collected for testing. Figure 1c shows the Mandore area; wherein points mark the
sampling sites. Moreover, to provide the geographic location of the sampling, the latitude
and longitude of a few sites at the edges of the Mandore are also shown in Figure 1c. The
dataset collected from 710 locations contained eight significant parameters, as shown in
Tables 1 and 2.
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Figure 1. (a) Location of Rajasthan with respect to the union of India. (b) Location of Jodhpur district
with respect to the State of Rajasthan. (c) Locations of drinking water samples in the Jodhpur district
(Mandore area) with respect to Jodhpur.

Table 1. Allowable range of drinking water quality parameters in line with BIS standards [22].

Parameters Lower Limit Upper Limit

pH 7.0 8.5
Alkalinity (as CaCO3, mg/L) 200 600
Hardness (as CaCO3, mg/L) 200 600

Chloride (mg/L) 250 1000
Nitrate (mg/L) 0 45

Fluoride (mg/L) 1 1.5
TDS (mg/L) 500 2000

Residual Chlorine (mg/L) 0.2 0.5



Hydrology 2022, 9, 92 5 of 21

Table 2. Average values of water quality parameters in the Jodhpur region in Rajasthan.

Zone pH TA (mg/L) TH (mg/L) Cl (mg/L) Nitrate
(mg/L)

Fluoride
(mg/L) TDS (mg/L)

Residual
Chlorine

(mg/L)

1 7.8 (0.44) 283.8 (116.9) 337.8 (164.9) 518.3 (185.8) 15.8 (7.8) 0.61 (0.39) 1484.8 (501.1) 0.085 (0.099)

2 7.7 (0.36) 312.7 (134.8) 316.1 (134.9) 532.8 (153.1) 15.4 (10.4) 0.82 (0.48) 1469.4 (388.7) 0.028 (0.07)

3 7.8 (0.42) 273.8 (138.7) 259.3 (144) 494.8 (231) 16.9 (7.8) 0.65 (0.44) 1493.8 (447.5) 0.056 (0.09)

4 7.8 (0.36) 290.4 (133.8) 372.8 (159.4) 500.4 (229.1) 23.4 (12.5) 0.85 (0.47) 1622.5 (664.7) 0.02 (0.06)

5 7.7 (0.29) 274.9 (120.8) 335.4 (163.7) 517.5 (274.9) 24.0 (10.7) 0.86 (0.52) 1551.4 (596.7) 0.01 (0.046)

6 7.7 (0.25) 236.1 (126.9) 289.4 (143.6) 464.5 (281.4) 21.9 (12.1) 0.81 (0.49) 1347.0 (731.6) 0.02 (0.063)

7 7.9 (0.37) 256.3 (109.8) 361.9 (187.6) 619.2 (335.5) 17.9 (13.4) 0.78 (0.42) 1666.6 (732.6) 0 (0)

8 7.8 (0.24) 262.3 (108.4) 336.5 (173) 659.7 (332.5) 21.6 (9.7) 0.87 (0.52) 1728.3 (690.9) 0.01 (0.033)

9 7.8 (0.27) 253.5 (101.9) 364.2 (159.4) 675.8 (380.9) 22.1 (11.4) 0.86 (0.51) 1711.1 (719.9) 0.01 (0.033)

10 7.8 (0.24) 254.8 (120.9) 316.6 (175.4) 632.9 (363.9) 19.9 (11.8) 0.67 (0.43) 1475.3 (601.8) 0.03 (0.67)

Average
value of
all zones

7.8 269.9 329.0 561.6 19.8 0.78 1555.0 0.03

Numbers in brackets denote the standard deviation of measured values in a zone.

Divided into ten zones, 710 water samples were collected from the Jodhpur region of
Rajasthan India. A total of 71 water samples were collected from each zone. Water quality
parameters were measured by following the standard procedure. Polypropylene bottles
(1 L in size) were used to collect the drinking water samples. All the bottles were rinsed
with dilute acid before being cleaned with distilled water. These cleaned bottles were used
to collect the test samples. Finally, the bottles were rinsed thrice with the water samples to
be collected. These were dried in the oven before collecting the test samples. The bottles
containing the water samples were stored in a refrigerator until the water samples were
subjected to analysis.

The water quality parameters, such as pH, TDS, TA, TH, fluoride, NO3, Cl−, and
residual chlorine, were tested as per the standard methods prescribed by APHA. While
there could be other specifications, we have followed the techniques specified by APHA
due to their universal acceptability. For water quality assessment, the measured test values
were evaluated against the recommended standard as per BIS, as presented in Table 1.
For ease in modeling, we took the permissible limit in BIS standard as the guidelines and
used these values as the acceptable lower limit of a parameter, wherever applicable. The
average test values for each of the 71 samples of the individual zones were determined
and are presented in Table 2. Moreover, Table 2 shows the standard deviation for each
parameter for each zone. The same table also presents the global average values of the
individual quality parameters, which is the average of the parametric standards from each
zone. Assuming average values of each parameter as ten inputs, a quality index algorithm
was designed to check the quality of water.

3. Results and Discussion
3.1. Water Quality Evaluation

Figure 2a–h shows the variation of average values of various water quality parameters
as a function of locations; the zones were selected arbitrarily and did not represent any well-
defined functional relation with distance or other geographic or demographic parameters.
Thus, the results shown in Figure 2a–h indicate that the quality parameters vary from
place to place. It can be observed that there is considerable variation in the magnitude
of average values of each quality parameter across the selected zones. In Figure 2a, it
is revealed that the pH value is different in different zones, and its value lies within a
range from 7.70 to 7.88 and hence is higher than the most desirable value of pH, which
is 7. Similarly, another parameter, viz., total alkalinity (TA), is seen to have varied from
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236.06 mg/L to 312.68 mg/L as shown in Figure 2b. The range of variation of the average
values of the other water quality parameters can be seen to vary within the ranges, such
as TH (259.30 mg/L to 372.82 mg/L), chloride (464.507 mg/L to 675.775 mg/L), nitrate
(15.39 mg/L to 24.01 mg/L), fluoride (0.61 mg/L to 0.87 mg/L), TDS (1347.04 mg/L to
1728.31 mg/L), and residual chlorine (0–0.01); the variations are shown in Figure 2c–h,
respectively. It is important to note that the TDS of water in Jodhpur is much higher
than the desired value, ~less than 500 mg/L. However, in water-stressed regions, the
higher value (2000 mg/L) is accepted as per the BIS standard; suitable TDS removal
techniques may be adopted in such cases. It should be reiterated that ideally the TDS
must be kept below 500 mg/L; although in a water-stressed region such as the Jodhpur
district of Rajasthan, India, one may make use of higher TDS water. However, TDS removal
techniques are quite simple, especially with solar energy. Normally, hotter areas are water-
stressed (e.g., California, USA) and in most cases, one would come across high TDS water;
to make water abundantly available for drinking; the simpler solar heating technique
may be applied, or even boiling the water will reduce the TDS level. Considering this,
we took 500 mg/L as the lower limit and 2000 mg/L as the higher limit of acceptance.
Admittedly, a TDS value less than the permissible value as per the BIS standard (500 mg/L)
is always better. In the present case, we took 500 mg/L to be the most desirable value which
can be comfortably set as the lower limit of acceptance without regard to the beneficial
consequences for the case of still lower TDS values. Moreover, it was also recognized that a
zero TDS value must not index the best quality with respect to the TDS value.

Similarly, a threshold value of 0.2 was set as the acceptable lower limit for chlorine. In
cases where its value goes below this threshold, it may present a health concern. Similarly,
for fluoride, the lower limit was taken to be 1, notwithstanding if a lower fluoride level
is good for health. Noting that the average of 71 samples from a zone varied with the
location of the zones, it seemed wise to examine if the average of the zonal averages of each
parameter can bear significance in determining the overall quality of drinking water for the
entire region.

The overall average value of each water quality parameter for the entire region was
obtained by taking the average of the individual quality average for each zone; the value
of each parameter in a zone was essentially the average of 71 samples belonging to the
concerned zone. Such a global average of each quality parameter is presented in Figure 2.
The same figure also shows acceptable ranges of parametric values as stipulated by BIS
(Table 1). The bar chart in Figure 3 shows the acceptable lower limit of a parameter as well
as its upper limit of acceptance. It is apparent from Figure 3a that the regional average value
of pH was higher than the acceptable lower limit of the pH value for potable water, whereas
it lies below the upper allowable limit in respect to the specification laid down by BIS
(Table 1). Similarly, average values of other parameters such as TA, TH, Cl, nitrate, fluoride,
TDS, and residual chlorine were also mapped in the form of similar bar diagrams and are
shown in Figure 3b–h. From Figure 3, it can be observed that the global average values
for all the tested water quality parameters (eight in number) lie within their acceptable
minimum and maximum values as per the BIS recommendation. When the value of a
water quality parameter (as given by the average of 710 samples, divided into groups with
71 samples each) is found to be less than the permissible minimum or higher than the
maximum permissible value as per specifications, it attracts attention from the users’ side.
It may be noted that the closeness of the average of a parameter towards the lower limit is
different for different parameters; if we presume that the closer the value of a parameter is
to the lower limit of acceptance, the better is the water quality in respect to the concerned
parameter, it becomes apparent that individual quality parameters have different goodness
of quality. This leads one to think of adopting a rational approach to describing the overall
quality of water by linking the quality goodness of individual parameters. Incidentally,
pH is somewhat an exception as it is universally accepted that a value of 7 represents
the best pH value desirable in drinking water. However, there are other important water
quality parameters, some of which are known to directly impact the pH value. So, to
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rationalize the parametric contribution to determining the overall quality of drinking water,
the lower limit acceptance of a specific quality parameter is considered its best possible
quality goodness. In this respect, a pH value of 7.0 is taken to be the acceptable lower limit.
It may be noted that there are other parameters that affect the water quality, for example,
BOD, COD, dissolved oxygen, total coliform, and conductivity. In fact, there has been
a report on water quality modeling using an ANN wherein as many as 56 input nodes
were used [23]. With the aim to forecast algal growth in Tolo Harbour, Hongkong, Deng
et al. [23] used an ANN of structure, [56]input-1-[1]output, and modeling was carried out in
MATLAB. With four different algorithms, a learning rate of 0.01 and training epoch of 1000
was used to achieve better predictive power. Another machine learning (ML) technique,
support vector machine (SVM), was also used to find out the suitability of a technique with
respect to the forecasting capability [23]. RMSE and correlation coefficient R-values were
used to judge the performance of various options. The performance of the SVM was better
than that of the ANN, but with a higher computation time; of the different algorithms used
in the ANN, the performance of the Levenberg–Marquardt (LM) algorithm was found to
be superior. However, the present work deals with the formulation of the quality index of
potable water. Though more input parameters, including those stated above, could have
been used in the modeling, we felt it prudent to validate the conceived model with the use
of these eight parameters, which appear to be quite important with respect to sensitivity
towards determining the quality of drinking water. The use of more parameters would
have given rise to a different result and could possibly be related to the drinkability of
water. However, in that case, much more complexity would be involved in modeling as
many of the parameters could have been found to be insignificant. Notwithstanding the
experimental limitations, it would be an interesting exercise to model those parameters as
well, and this work may be taken up as a separate study.

Accepting that different quality parameters have different goodness, it seems worth
seeking a unique stochastic token that can describe the combined effect of all the water
quality parameters and give the best idea for the quality of drinking water. In line with
previous work, we propose defining such a stochastic token as a ‘water quality index’
(WQI) [24].

From the results in Table 2, the cumulative average values of each quality variable
for the entire region are calculated by taking the average of the zonal average values of
individual water quality parameters. Thus, the net average value of a quality parameter is
equal to the sum of the average value of a parameter for each zone/total number of zones.
Based on these derived average values, a simple algorithm is proposed to evaluate the
individual parameter’s net quality index; taking the individual parameter’s quality index
into consideration, the overall water quality index for the concerned region is described.

3.2. Water Quality Index

The present proposition of designing the water quality index for the Jodhpur region
aims to qualify the degree of goodness of drinking water on a scale of 0–100. A value
of 100 is obtainable for a parameter only if its average value equals the set lower limit,
notwithstanding the achievable betterness below the set lower limit, which is called the
permissible limit in the BIS standard. The measured data reveals that there is little scope to
fix any other lower limit below the so-called permissible limit.
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The following algorithm is proposed for determining the water quality index of the
chosen region in consideration of the results of 710 water samples tests, as carried out in the
present research work (Figure 4). To accomplish this, the following assumptions are made:

• The acceptable lower and upper limit of quality parameters for use in the study are
selected with an eye to the scope available in the BIS standard.

• Within a given range of specifications, the closer the average value (of a quality
parameter) lies to the acceptable lower limit (Table 2), the higher the parametric
quality index will be.

• If the minimum accepted value is not specified in a standard, the acceptable lower
limit shall be considered zero.

• The proposition is generic and applies to any water quality standard that distinctly
specifies the lower and upper limits of acceptability for a water quality parameter.
The goodness or badness of parameter value beyond either limit is not considered as
it does not fall within the scope of the study with water samples from the Jodhpur
District of India.

• If the quality index comes out to be more than 1, it is to be taken as 1 (as a value lower
than the minimum accepted value may present health concerns in some instances).

• The limits set by the model describe the best or worst goodness of water quality; if
there lies any consequence, better or worse, beyond the prescribed quality limits, the
same is not given weightage.
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It may be noted that the assumptions follow from the science of water based on which
different specifications are laid down; while the use of other standards will give rise to the
different absolute values of WQI, the proposed methodology to calculate the WQI will not
be affected. In such cases, the quality gradation scale needs to be altered with respect to a
scientifically branded ideal situation, such as 7 for pH.

Step 1: Call the average value of each water quality parameter as a1, a2, a3 . . . . . . an.
Step 2: Denote the acceptable upper limit of each parameter as per BIS standards by

b1, b2, b3 . . . . . . bn.
Step 3: Denote the minimum allowable limit (lower limit) of each parameter as per

BIS standards by c1, c2, c3 . . . . . . cn.
Step 4: Compare each of the average values with its corresponding maximum limit.
Step 5: If any ai > bi, discard the unsafe water; else, go to the next step.
Step 6: If ci < ai< bi, accept the water, and go to the next step and calculate the water

quality index due to the ith parameter.
Step 7: For ci < ai< bi, find the quality index of the ith parameter as

Qi =
Upper limit − average value

Upper limit − Lower limit



Hydrology 2022, 9, 92 11 of 21

hence, Qi =
bi − ai
bi − ci

,

Step 8: Find the average value of all the individual quality indexes of each individual
parameter and define it by water quality index (WQI) for the experimental region:

WQI =
n

∑
i=1

Qi
n

× 100

where Qi stands for the quality index of an ith parameter over the entire region, and ‘n’ is
the number of the quality parameter in consideration (eight in the present work).

The WQI levels are also categorized as follows:
For WQI lying within:
90–100—The water is excellent for drinking.
70–90—The water is good for drinking.
50–70—The water is of medium quality but still safe for drinking.
25–50—The water is of a bad quality and unsafe for drinking.
0–25—The water is very bad and is highly unsafe for drinking.
Based on the above definition of the water quality index, the WQI has been calculated.

The manner of defining a WQI by taking the quality goodness of individual parameters
leads to an important research question to answer. It can be seen that the quality index (Qi)
of each parameter has its own weightage in the determination of the final WQI value. In
this case, we have considered eight quality parameters and each parameter has 710 sampled
measurement data which are used in the aforesaid manner to calculate WQI. Different
quality parameters have a different impact on the ultimate water quality index. Hence, the
final quality of water is determined by the combined effect of all eight quality parameters.
It is very likely that these eight quality parameters (pH, alkalinity, TDS), taken together,
bear a nonlinear relationship with the so-defined WQI. This means that the WQI is an
unknown function of eight variables which are the above eight quality parameters. It may
be noted that there are other standards that could be used for determining WQI. USEPA
specifies the allowable limits very similarly to the BIS standard. However, it is important to
note that the specification of parameters varies in different standards of different countries;
WHO prescribes rationalized standards. Sine the paper deals with the parametric limits set
by a standard, the quality index value should change; in that case, the acceptability limit
needs to be redesigned in harmony with the specification.

Given the variation in values of a quality parameter with respect to time and space, it
seems interesting to model the relationship between the eight quality variables as input
and the resultant WQI as the output. While there are many statistical tools to map the
hidden relationship between the input variable and the resulting output, the artificial neural
network is considered a powerful tool. In classical perceptron learning, a feed-forward
backpropagation algorithm is used. The weighted inputs with a bias value are operated
with a prechosen approximator (called the transfer function), and then the calculated
output is compared with the target output. The alteration of the weight value minimizes
the observed error in each iteration. With this understanding, we have implemented
artificial neural network modeling to map the nonlinear relation between the water quality
parameters as the input and the individual quality index as the output.

The selected neural network architecture is shown in Figure 5. It is a four-layer
network comprised of an input layer with eight nodes (each node represents one quality
parameter), two hidden layers, and the final output layer with the lone node representing
the quality index (WQI). The first hidden layer consists of 10 nodes connected with every
node of the second hidden layer, which contains 6 nodes. The connectivity between the
second hidden layer and the output layer can be seen in Figure 5. It may be mentioned
that one may use a different architecture of ANN; the number of hidden layers, number of
neurons in a hidden layer, as well as the topology of the ANN structure can be varied. There
are several network architecture protocols. However, an increase in the number of nodes
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in a hidden layer and the number of hidden layers in a classical ANN does necessarily
guarantee good learning. Too much lowering of the mean square error value may lead
to a situation when the ANN will learn only the pattern it is shown and will not be able
to predict the outcome of a similar situation with a data set. That means the ANN may
lack the capability of generalized learning. In this case, we tried to increase the number
of the hidden layer from one to five with an increasing number of nodes; in the majority
of the cases, the training error curve did not converge well and did not reach a low value
reproducibly. Moreover, it was observed that the architecture [8](input)-10-6-[1](output) could
give us a relatively better result. The training, testing, and validation curves are found to
be acceptable. Moreover, one could also adopt a different technique to more authentically
optimize the ANN architecture by the use of the genetic algorithm. The required objective
functions of the genetic algorithm may be obtained from a preceding multivariate analysis.
However, this is not within the scope of the present research. The authors propose working
on artificial learning of the interrelations of water quality parameters as a separate exercise.
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Moreover, in any such case of relational pattern recognition, it is imperative to make
use of an approximator, termed a transfer function in ANNs. When we work with the
related toolbox in a MATLAB platform, we have to choose any of the given transfer
functions available in the toolbox. One can, of course, invoke the use of a higher-order
universal approximator as a transfer function, but it would require the writing of suitable
codes both for the backpropagation algorithm and for getting it interfaced with the software
it works with. However, this itself will be separate research without much surety of good
convergence in the problem concerned. This activity is data sensitive and hence it is an
educated game to rationalize the best possible approach. The authors do not claim that the
adopted strategy is the best possible one for the present data set for water quality modeling.
The task pursued here is the simplest way of ensuring the predictive power of an ANN.
The MATLAB platform used the feed-forward backpropagation LM algorithm to train the
network. As in a classical neural network, the general scheme of data flow is also followed
in the present work and is shown in Figure 6. The data flow in the forward direction,
which by the backpropagation algorithm changes the weight at each node, and the output
is changed until training is stopped at a desirably low training error. It is apparent that,
at each of the hidden layer nodes, the weighted input is added with a randomly chosen
bias value before being put to the approximator used in the present case, which is the
transfer function. The Tanh transfer function is known to be quite efficient in capturing
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nonlinearity [25,26]. In contrast, the present ANN modeling does not use any existing
knowledge about the effect of the individual parameter. It has undergone supervised
learning with the intent of recognizing the hidden relational pattern among the quality
index assignable to the individual parameter; this kind of exercise is entirely new to its kind
as there is no example where the contribution of the quality indices of eight parameters
is integrated through a well-known learning process. The LM algorithm used here has
produced a relatively better correlation; the authors tried with other backpropagation
algorithms available in the MATLAB toolbox. The gradient descent algorithm and scaled
conjugate gradient (SCG) algorithm were also tried, but in vain. We have the provision
of using only those algorithms which are available in MATLAB. There is no denying
that different algorithms have a different propensity for learning curves being trapped in
local optima. To secure a global optimum, one needs to adopt different techniques. As
stated earlier, one such technique is to use a genetic algorithm with a preceding backup
of multivariate analysis. The other approach to good learning could be the neuro-fuzzy
techniques; one may also test the case with unsupervised learning through the Kohonen
network. All said and done, individual activity is a large task by itself and the authors
have chosen the simplest one to get the idea about how the individual quality indexes
interplay with one another. Apart from this, one may also prefer to use a Bayesian neural
network, autoregressive moving average, or decision support system; moreover, several
other deep learning techniques could also be tested for better prediction. However, for
the ANN used here, the performance is best judged by MSE, R-value, and R-square and is
considered to be sufficient. For other processes such as K-nearest neighbor, KNN, SVM,
or the naïve Bayes model, other parameters such as accuracy, sensitivity, specificity, and
F-score are used to judge the performance. Moreover, other than the use of MATLAB
for the neural network, other useable software include Tflearn, Neural designer, Keras,
Neuro Solution, Torch, and Microsoft Cognitive Toolkit. The neural designer can be
used to mathematically model a similar data set in a code-free manner, enabling artificial
intelligence (AI)-powered applications.
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All 710 of the measurement data for each input variable were considered for modeling.
A total of 70% of the data was taken to train the neural network, whereas 15% of the data
was used for testing, and another 15% was taken for validation of the model. Since the
ANN modeling was carried out in the MATLAB platform, the selection of data for training,
testing, and validation was automatically random. A code was written to further randomize
the given data set to reinforce the observation from the ANN modeling in MATLAB. Such
random data selection was performed a number of times, and for each randomly selected
data set, training, testing, and the corresponding validation were performed.

Keras can be used for purposes such as convolutional neural networks (CNNs) and
recurrent neural networks. Essentially, these are deep learning software that could be used
for learning the problem of the present one. The authors contemplated using the deep
learning software to have better introspection into the problem being handled. The present
work is a preliminary investigation to explore the feasibility of using learning techniques
simulating the human brain such that one can map the relational aspects among the various
parameters. It is not out of context to refer to the elegant work of Kouadri et al. [27], where
the performance of eight different machine learning techniques were used for predicting
the water quality index; the artificial intelligence algorithms (AI) used by the authors were
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multilinear regression (MLR), support vector machine (SVM), artificial neural network
(ANN), random forest (RF), random subspace (RSS) additive regression (AR), locally
weighted linear regression (LWLR), and M5 P tree. While taking 12 inputs, the authors
reported the superior algorithm. The authors used MATLAB for ANN and MLR, whereas
for all other models, Waikato Environment for knowledge analysis (WEKA-version 3.8.4)
was employed. The authors could find out the two most sensitive input parameters by
sensitivity analysis, and these were further subjected to modeling, thereby observing the
superiority of RF over the others; incidentally, ANN was found to be the second-best.
When compared with the present work, it becomes evident that such a unique approach
was used to evaluate the efficacy of ML techniques in understanding the water quality
index of a particular parameter; the performance evaluation is the R-value, mean absolute
error value (MAE), root mean square error value (RMSE), root-relative square error (RRSE),
and relative absolute error. We contemplated a different task; after obtaining the values
of quality indices of eight parameters that are considered to be a significantly important
determinant of the potability of water, the unique water quality index (WQI) number for a
specific geographic location is defined as per the proposed model of water quality indexing.
We have been in search of a unique number that describes the water quality index in
consideration of the individual parametric contribution to the overall water quality index.
As has been advocated elsewhere [27], there is a difference in the relative sensitivity of a
quality parameter. It is logical to assume that the overall WQI is a complex function of the
individual’s contribution (Qi). To understand the hidden relationship, which presumes to
be nonlinear, we resorted to the use of an ANN as a learning tool. Our approach is quite
different from what is reported to date in respect to WQI modeling. Herein lies the novelty
of our work.

Appreciating that there is a dependence of the WQI on the eight chosen water quality
parameters, which assume different values for different samples drawn from different
places or times, it appears to be an educated game for predicting the WQI for any set
of water parameters. As a number of previous works have discussed, ANNs are one
such powerful predictive tool (15–17, 21) in describing the water quality index amidst the
changing water quality parameters. We have designed an ANN architecture and have
performed training, testing, and validation repeatedly, each time with randomly selected
data. This approach seems to be more practical than any sequential data selection strategy
and is expected to avoid overoptimism. The representative performance plot of the neural
network is shown in Figure 7a.

It can be observed that the training, testing, and validation error values gradually
diminish, and the consistency in behavior can be noted in the figure. The validation
performance is also quite good. It is evident from Figure 7a that the test error, validation
error, and training error are rather close to one another, which signifies that the designed
neural network used for learning the input–output relation (WQI = f (quality parameters))
is rather reliable. It was also found that the best achievable validation performance was
0.00025288 and was obtainable at the epoch 42. Moreover, the error histogram of training,
testing, and validation is shown in Figure 7b. It can be seen from Figure 7b that the error
defined by the difference between the target and output values is distributed over a very
narrow region; this observation is valid for training, testing, and validation. It is, therefore,
apparent that the present neural network is capable of effectively learning the relation
between input parameters and the final output. Hence, this ANN was then subjected to
further performance assessment.

As stated in the preceding discussion, it is important to know the ability of the network
to understand the relational behavior existing within the dataset, as well as the accuracy
with which the ANN can predict the change in the WQI with changing values of water
quality variables. The performance of the network is assessed by the correlation between
the output and the target. The correlation curves obtained from the modeling in the
MATLAB platform are shown in Figure 8. It may be noted that the correlation coefficient
obtained from ANN modeling in the MATLAB platform always represents the Pearson
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correlation coefficient. Figure 8 shows that the R-value was 0.98815 for training, 0.94917 for
testing, 0.97243 for validation, and the overall correlation coefficient, the R-value, obtainable
for all the data may be as high as 0.98071. The magnitudes of the R-value for training,
testing, validation, and, finally, for all data, indicate a good generalization. From the
observed results in Figure 8, it appears that the network’s performance is expectedly very
satisfactory [28].

Hydrology 2022, 9, x FOR PEER REVIEW 15 of 21 
 

 

 
(a) 

 
(b) 

Figure 7. (a) Performance plot of the implemented ANN model. (b) Error histogram for training, 
testing, and validation. 

It can be observed that the training, testing, and validation error values gradually 
diminish, and the consistency in behavior can be noted in the figure. The validation per-
formance is also quite good. It is evident from Figure 7a that the test error, validation 
error, and training error are rather close to one another, which signifies that the designed 
neural network used for learning the input–output relation (WQI = f (quality parameters)) 
is rather reliable. It was also found that the best achievable validation performance was 
0.00025288 and was obtainable at the epoch 42. Moreover, the error histogram of training, 
testing, and validation is shown in Figure 7b. It can be seen from Figure 7b that the error 
defined by the difference between the target and output values is distributed over a very 
narrow region; this observation is valid for training, testing, and validation. It is, therefore, 
apparent that the present neural network is capable of effectively learning the relation 

Figure 7. (a) Performance plot of the implemented ANN model. (b) Error histogram for training,
testing, and validation.



Hydrology 2022, 9, 92 16 of 21

Hydrology 2022, 9, x FOR PEER REVIEW 16 of 21 
 

 

between input parameters and the final output. Hence, this ANN was then subjected to 
further performance assessment. 

As stated in the preceding discussion, it is important to know the ability of the net-
work to understand the relational behavior existing within the dataset, as well as the ac-
curacy with which the ANN can predict the change in the WQI with changing values of 
water quality variables. The performance of the network is assessed by the correlation 
between the output and the target. The correlation curves obtained from the modeling in 
the MATLAB platform are shown in Figure 8. It may be noted that the correlation coeffi-
cient obtained from ANN modeling in the MATLAB platform always represents the Pear-
son correlation coefficient. Figure 8 shows that the R-value was 0.98815 for training, 
0.94917 for testing, 0.97243 for validation, and the overall correlation coefficient, the R-
value, obtainable for all the data may be as high as 0.98071. The magnitudes of the R-value 
for training, testing, validation, and, finally, for all data, indicate a good generalization. 
From the observed results in Figure 8, it appears that the network’s performance is ex-
pectedly very satisfactory [28]. 

 
(a) (b) 

 
(c) (d) 

Figure 8. Correlation between the actual network output and targeted output: (a) training, (b) test-
ing, (c) validation, and (d) final output. 

It is known that the learning activity in a neural network involves the training of the 
network, during which the mean square error (MSE) is normally seen to decrease with 
increasing iterations. Overfitting of data may result in poor generalization; this means the 
network will recognize the pattern shown to it, and it will not be able to get into general-
ized learning. Too low an MSE value is not always desirable as it signifies that the network 
is trained to recognize the pattern shown to it. However, the objective is to acquire gener-
alized learning. Hence, the network training is stopped when the desirable MSE is ob-
tained and the performance of the network is subjected to assessment. While testing the 
model performance, the average value of the R2 and root mean square error (RMSE) is 
usually examined. As stated above, the overall model performance is quite good as one 
can see that the model output and the target value of the WQI bear a correlation coefficient 

Figure 8. Correlation between the actual network output and targeted output: (a) training, (b) testing,
(c) validation, and (d) final output.

It is known that the learning activity in a neural network involves the training of the
network, during which the mean square error (MSE) is normally seen to decrease with
increasing iterations. Overfitting of data may result in poor generalization; this means
the network will recognize the pattern shown to it, and it will not be able to get into
generalized learning. Too low an MSE value is not always desirable as it signifies that the
network is trained to recognize the pattern shown to it. However, the objective is to acquire
generalized learning. Hence, the network training is stopped when the desirable MSE is
obtained and the performance of the network is subjected to assessment. While testing
the model performance, the average value of the R2 and root mean square error (RMSE) is
usually examined. As stated above, the overall model performance is quite good as one
can see that the model output and the target value of the WQI bear a correlation coefficient
of 0.98071, implying that the neural network has satisfactorily learned the interrelation
between the input variables and the output.

While the nearness of the R-value for training, testing, and validation indicates a good
generalization, it is also essential to introspect into the training state situation to assess the
overall output capability of the ANN. The training state plot for the designed network is
shown in Figure 9.

It can be noticed from the gradient coefficient that the learning rate for the learning
process adopted is rather low; moreover, the validation fails against the number of epochs
showing that validation checks equal 6 after 48 epochs. However, all these performance
indicators of the designed ANN are presented in summarized form in Table 3.
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Table 3. The output of the experimental neural network.

Parameters ANN [8]-10-6-[1]

Gradient 0.00048 at epoch 48
Validation fail 6 at epoch 48
Learning rate 1 × 10−6

Training R 0.988
Validation R 0.972

Test R 0.949
All R 0.980

It can be observed from Table 3 that the gradient coefficient of 0.00048, a learning rate
of 1 × 10−6, is achievable at a correlation coefficient value of 0.980. As stated earlier, the
entire task is repeated several times with a random selection of data set at each time so
that the average value can reasonably say that the model is stable. The results of ten such
meaningful results are presented in Table 4.

Table 4. Performance of the neural network used for WQI prediction.

Reading MAE RMSE RSQR TRAIN PERF VAL PERF TEST PERF

1 0.000458 2.10 × 10−7 0.9618 0.000144 0.000458 0.000548
2 0.000516 2.66 × 10−7 0.9598 0.000127 0.000516 0.00028
3 0.000344 1.18 × 10−7 0.9632 0.000114 0.000344 0.001008
4 0.000478 2.28 × 10−7 0.9589 9.66 × 10−5 0.000478 0.000407
5 0.000426 1.82 × 10−7 0.9624 9.14 × 10−5 0.000426 0.00026
6 0.000345 1.19 × 10−7 0.9629 0.00019 0.000345 0.000879
7 0.000296 8.77 × 10−8 0.9599 0.000226 0.000296 0.000262
8 0.000328 1.08 × 10−7 0.9623 0.000159 0.000328 0.000608
9 0.000414 1.71 × 10−7 0.9614 0.000182 0.000414 0.000429
10 0.000144 2.07 × 10−8 0.9633 5.25 × 10−5 0.000144 0.000183

Average 0.000375 1.51 × 10−7 0.96159 0.000138 0.000375 0.000486

It can be observed that the performance parameters are quite consistent for all the ten
datasets; this contributes to authenticating that the model is stable. Moreover, the perfor-
mance indices of the present ANN model are compatible with similar models reported
elsewhere [17–20]. It may be noted that the average value of the coefficient of multiple
determination, viz., R2 was 0.96159; the standard deviation of R2 was also calculated and
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was found to be 0.00155. This authenticates the stability of the model. Generalized learning
by an ANN is of extreme importance; for this reason, the predicted dependence of WQI on
the input variables needs to be mapped. This is done by varying a single quality parameter
at constant values of all other parameters and then finding out the WQI as the network
output. Therefore, the ability for generalized learning of the ANN was verified by the
results of network prediction as revealed in Figure 10a,b. Figure 10a shows that the network
predicted the plot of variation in quality index with the pH value. It was found that increas-
ing pH value leads to deterioration of the water quality index. This is in agreement with
the existing knowledge on the effect of the pH value of water on its potability. Likewise,
Figure 10b shows how the water quality index decreases with increasing TDS. There is no
denying that TDS affects the drinkability of water, and the results obtained from the use of
the neural network are compatible with a well-established understanding in this regard.
Therefore, it was found that the predictive capacity of the artificial neural network may
be harnessed to monitor the water quality at any instant, and this finally helps in taking
remedial steps to restore water quality through proper treatment.
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4. Conclusions

It is concluded that the quality of water, as determined by various quality parameters,
can be measured by a singular parameter that combines the effect of all parameters ad-
versely affected by the inevitable contamination of source water by industrial wastewater.
The present work results corroborate the observation of the previous works researching the
ANN modeling of water quality. The authors further infer that a suitably designed unique
stochastic token called herein a water quality index could be successfully used to measure
the overall water quality, thereby enabling the knowledge of the role of industrial wastewa-
ter in polluting source water. The authors further conclude that the water quality index of
the Jodhpur region in India is rather good (~60% or above) as per the newly introduced
water quality indexing protocol, and it verifies that potable water in the experimental
region is safe for drinking. The artificial neural network can predict the effect of individual
quality parameters on the overall quality index of water amidst continuous contamination
by industrial wastewater. The network prediction of the input-output relation is satisfactory.
The authors conclude that prediction from neural network modeling can be employed to
control the water quality by suitable means such as solar energy. However, the present
work is rather concise and has left out several other options for better authentication of its
outcome. As some more algorithms could be tested in the same platform with different
architectures to reason out the availability of any better alternative in ANN modeling in the
MATLAB platform, the adoption of other learning techniques including the new generation
statistical modeling deserves specific attention in water quality modeling. It is encouraging
to note that the results obtained in this study are comparable with previous observations
and that there is a visible qualitative match as far as ANN modeling is concerned. Taking a
clue from this exploratory, investigative work, the authors consider it prudent to extend
this work by using other predictive techniques in machine learning. Unsupervised learning
through data clustering may not be underrated. The ANN itself will be made an expert by
incorporating the knowledge of physical sciences underlying the influence of individual
parameters and mutual interactions among them on the potability of water. Synthesizing
the knowledge created by us with those gathered from the literature, one may conclude
that the present work has excellently opened up a newer horizon in the research on water
quality index modeling by emerging machine learning techniques. In light of the above
observations, the authors wish to conclude that the presently employed ANN technique
can act as an effective tool to understand the hidden nonlinear relationship between the
concentrations of water quality parameters and a well-defined water quality index within
a specific geographic location.
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