
Bioengineering 2014, 1, 22-46; doi:10.3390/bioengineering1010022
OPEN ACCESS

bioengineering
ISSN 2306-5354

www.mdpi.com/journal/bioengineering

Article

Numerical Optimal Control of Turbo Dynamic Ventricular

Assist Devices

Raffael Amacher 1,*, Jonas Asprion 1, Gregor Ochsner 1, Hendrik Tevaearai 2,
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Abstract: The current paper presents a methodology for the derivation of optimal

operating strategies for turbo dynamic ventricular assist devices (tVADs). In current

clinical practice, tVADs are typically operated at a constant rotational speed, resulting in

a blood flow with a low pulsatility. Recent research in the field has aimed at optimizing

the interaction between the tVAD and the cardiovascular system by using predefined

periodic speed profiles. In the current paper, we avoid the limitation of using predefined

profiles by formulating an optimal-control problem based on a mathematical model of the

cardiovascular system and the tVAD. The optimal-control problem is solved numerically,

leading to cycle-synchronized speed profiles, which are optimal with respect to an arbitrary

objective. Here, an adjustable trade-off between the maximization of the flow through

the aortic valve and the minimization of the left-ventricular stroke work is chosen. The

optimal solutions perform better than constant-speed or sinusoidal-speed profiles for all

cases studied. The analysis of optimized solutions provides insight into the optimized



Bioengineering 2014, 1 23

interaction between the tVAD and the cardiovascular system. The numerical approach to

the optimization of this interaction represents a powerful tool with applications in research

related to tVAD control. Furthermore, patient-specific, optimized VAD actuation strategies

can potentially be derived from this approach.

Keywords: numerical optimal control; turbo dynamic blood pump; ventricular assist device;

cardiovascular system; speed modulation

1. Introduction

Ventricular assist devices (VADs) are mechanical systems aimed at supporting the blood circulation

in patients with severe heart failure. After five decades of intensive development, various devices have

become increasingly applied, typically as a “bridge to transplantation”, i.e., for patients with no other

alternative left [1]. In addition, by assisting and, thus, unloading the failing cardiac ventricle, VADs have

also been shown to contribute to some degree to myocardial recovery [2,3]. Currently, second and third

generation VADs are poised to replace the first generation volume displacement VADs. They have been

found to be superior in terms of survival rate and reduced adverse events [4].

Feedback control strategies to physiologically adapt the operation of turbo dynamic VADs (tVADs)

to the oxygen demand and to optimize left-ventricular unloading have been subject to continuous

research [5–10]. A number of approaches for realizing a speed modulation of tVADs has been analyzed

earlier. A square-wave speed profile was applied by Bearnson et al. [11] and Bourque et al. [12]

to increase arterial pulse pressure, where the speed profile was not synchronized to the cardiac cycle.

Different types of speed profiles, synchronized to the natural cardiac cycle, have been applied in silico

and in vitro to analyze their influence on perfusion, pulse pressure and ventricular unloading [13–18].

In vivo experiments have been conducted to validate this approach [19,20]. Common among all previous

research on this topic was the preselection of a certain speed profile, such as a sine wave or a square

wave. In these studies, the parameters of the selected profile were varied to analyze the effect on relevant

physiological quantities. Naturally, the outcome depended on the preselected speed profile.

We present a methodology that circumvents the limitation of preselecting a certain speed profile by

the application of model-based numerical optimization. A physiologically motivated objective function

was constructed, and the speed profile that minimizes this objective function was found by solving an

optimal-control problem (OCP). By defining an OCP, no assumptions about the speed profile needed to

be made in advance. Instead, the tVAD is expected to optimally interact with the circulatory system.

Due to this absence of restrictions, we hypothesize that the optimized speed trajectory performs better

than strategies with either a constant speed or predefined speed profiles.

Optimal control was applied to VADs in previous work. The flow field in a pulsatile

volume-displacement VAD was optimized in order to reduce hemolysis and thrombus formation in

the device in [21]. In two other studies [22,23], the power consumption of a pusher plate-type VAD

was minimized using the optimal control of a linear and time-invariant model of the VAD and a part
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of the systemic circulation. The methodology described in the current paper differs from previous

work as follows: the cardiovascular system, including the beating heart, was entirely integrated in the

optimization procedure. Considering this coupled system as a whole entity allowed for the optimization

of the interaction between the VAD and the circulation system, rather than of just the performance of the

isolated VAD.

In the current paper, a state-space model of the human circulation [24] was used in connection with

a mathematical model of a turbo dynamic blood pump. This full model was used for simulations with

a constant pump speed, as well as with various sinusoidal speed profiles. A reduced version of the

model was used to formulate the OCP, which was solved numerically. The validation of the optimized

speed profiles on a hybrid mock circulation [25] indicated that they can potentially be evaluated in a real

blood pump.

2. Methods

In this section, three different methods for obtaining a pump speed profile are presented. Either a

constant speed, a sinusoidal speed profile synchronized to the cardiac cycle or a speed profile obtained

from the numerical solution of an OCP was applied. The first two cases are detailed in Section 2.1, and

the formulation, as well as the numerical solution procedure of the OCP are described in Section 2.2.

The solutions resulting from these methods were compared using a physiologically motivated objective

function in Section 3. For the first two methods, this objective function must be evaluated a posteriori,

because the speed profile was predefined and an exhaustive parameter sweep was performed. In the third

method, the objective function is a part of the OCP, and its value, as well as the corresponding speed

profile result from the solution of this OCP. To ensure a fair comparison of the various pump-actuation

strategies, one additional parameter was fixed, namely the total cardiac output. This parameter represents

the total amount of blood pumped to the circulatory system by both the heart and the blood pump.

The reason for fixing the total cardiac output is outlined in the following.

The autoregulatory mechanisms ensure that the supply of oxygenated blood to the body conforms

to its current needs. In order to allow for a fair comparison between any two speed profiles, the total

cardiac output has to be equal for both. In the lumped-parameter models used in the current study, there

is a unique relation between the activity of the baroreflex mechanisms, defining the arterial resistance,

and the mean arterial pressure. These two quantities, namely the arterial resistance and mean pressure,

define the total cardiac output. It is therefore sufficient to prescribe the cardiac output to ensure the

comparability of different solutions. A value of 5 L/min was imposed, which represents a physiologically

plausible value for an adult person at rest [26]. In the model used, this value implied a mean systemic

arterial pressure of 100mmHg. The results presented could also be reproduced for other perfusion levels.

The fixation of the total cardiac output to 5 L/min is also justified by the fact that the current study did

not investigate the effect of the VAD actuation on the perfusion, but was focused on the heart-VAD

interaction.

The model of the cardiovascular system used here was originally published in [24].

An implementation in MATLAB/SIMULINK
R© (The Mathworks Inc., Natick, MA, USA) of this model

was used earlier [25]. The pathologic case defined in [24] was used for all investigations. It is defined
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by a raised heart rate of 90 bpm and a reduced ventricular contractility. Figure 1 illustrates the structure

of the model. The full model comprises the left and right atria and ventricles, the four heart valves

and the systemic and the pulmonary circulation, each with an arterial and a venous section. The four

contracting chambers of the heart are modeled based on the principle of time-varying elastance, which

is the inverse of the compliance or the stiffness of the heart muscle wall. This stiffness varies during

the cardiac cycle, thereby causing a contraction. The time-varying elastance is modeled by specific,

empirically-derived curves that are described in the literature [27]. Three independent autoregulatory

mechanisms were modeled: the first mechanism adapts the flow resistance in the systemic arterial system

based on the mean systemic arterial pressure; the second mechanism adapts the flow resistance in the

pulmonary arterial system based on the mean pulmonary arterial pressure. Finally, the unstressed volume

in the systemic veins is adapted based on the total cardiac output, i.e., the venous tone is adapted. The

simulated inflow cannula of the tVAD was connected with the left ventricle, and the simulated outflow

cannula was attached to the aorta. This model was used to generate the constant speed and the sinusoidal

speed profile solutions by forward simulation, as described in Section 2.1.

Figure 1. The subsystems of the numerical circulation model described in [24,25], including

a ventricular assist device. The optimal-control problem (OCP) considered in the current

paper is based on the reduced model indicated by the gray box. There are three boundary

conditions that were computed by the full model: the pulmonary arterial pressure, the

systemic venous pressure and the systemic arterial resistance. The latter is influenced by the

baroreflex mechanism. These quantities do not change, as long as the total cardiac output

and, thus, the mean arterial pressure are unchanged.

In order to reduce the size and the complexity of the OCP described in Section 2.2, a reduced

version of the model was used, as indicated by the gray box in Figure 1. Different choices for the

boundaries of the reduced model are possible. Since the cardiac output was fixed and only the left

ventricle was supported, the influence of the pump control strategy on the right ventricle was negligible.

The boundaries need to be chosen, such that the pump speed profile does not have an effect on the

pressure waveform at the boundaries. Choosing the pulmonary arterial pressure and the systemic venous

pressure has been shown to fulfill these requirements. For these boundary conditions, the trajectories
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resulting from the constant speed solution were applied. Furthermore, the systemic arterial resistance

from the same solution was enforced during the optimization. This setup ensured that the demanded

cardiac output of 5 L/min led to the same mean systemic arterial pressure of 100mmHg, as in the solutions

obtained from the full model.

2.1. Simulation of the Reference Solutions

The solutions for the constant speed and the sinusoidal speed profile cases were generated by forward

simulations of the full model. Thereby, the mean pump speed, ωc, was regulated automatically, to yield

the desired cardiac output of 5 L/min. In the constant speed case, there is one unique pump speed of

ωc = 4, 177 rpm that provides the desired cardiac output.

The sinusoidal speed profiles are illustrated in Figure 2. They are defined as:

ω(t) = ωc + ωA · sin
(

2 · π · (γc(t) + ϕ+ 0.25)
)

(1)

where ωA is the amplitude in rpm and ϕ is the phase shift as a fraction of the duration of one cardiac

cycle. The variable, γc(t), is a periodic, sawtooth-shaped signal representing the progress through each

cardiac cycle. The variables, ϕ and γc(t), range from 0 to 1, where γc(t) = 0 represents the onset

of the ventricular systole. The phase offset of 0.25 was chosen, such that at a phase shift of ϕ = 0,

the maximum tVAD speed occurs exactly at the onset of the ventricular systole.

Figure 2. Timing of the sinusoidal speed profile with respect to the cardiac cycle. The start

of a cardiac cycle was defined as the onset of the ventricular systole (dotted vertical lines).

At these instants, the cardiac cycle signal, γc(t), which was used to generate the sinusoidal

speed profile, is reset. For the sinusoidal speed profiles, the two parameters, ϕ (phase shift)

and ωA (amplitude), are defined.

ωAϕ

Normalized elastance of atrium ela(t)
Normalized elastance of ventricle elv(t)

Cardiac cycle signal
Mean pump speed ωc

Pump speed profile

Time (s)

γc(t)

0 0.2 0.4 0.6 0.8 1 1.2
0

1

A “brute-force” analysis was performed: The two parameters, ωA and ϕ, were varied in small

steps throughout their admissible range, and for each combination, a forward simulation was executed.

The steps chosen were ωA = {250, 500, . . . , 3250, 3500} rpm and ϕ = {0, 0.05, . . . , 0.9, 0.95}. The

data of the resulting 280 simulations were stored and can be used to evaluate any objective function,

e.g., the one described by Equation (6a) below.
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2.2. Optimal-Control Problem

This section is divided into four parts. Section 2.2.1 details the mathematical model of the

reduced cardiovascular system. Section 2.2.2 defines the mathematical model of the blood pump, and

Section 2.2.3 describes the formulation of the continuous-time OCP. Finally, Section 2.2.4 describes the

transformation of this OCP into a nonlinear program (NLP), as well as the method for solving it.

2.2.1. Reduced Model of the Cardiovascular System

The differential equations describing the cardiovascular system are:

ẋ1(t) =
ppa(t)− ppv

(

x1(t)
)

Rpa
−

ppv
(

x1(t)
)

− pla
(

x2(t), t
)

Rpv
(2a)

ẋ2(t) =
ppv
(

x1(t)
)

− pla
(

x2(t), t
)

Rpv

− x3(t) (2b)

ẋ3(t) =
1

Lmv

(

pla
(

x2(t), t
)

− plv
(

x(t), t
)

+ ps,mv(t)− Rmv · x3(t)

)

(2c)

ẋ4(t) = x3(t)− x5(t)− x9(t) (2d)

ẋ5(t) =
1

Lav

(

plv
(

x(t), t
)

− pao
(

x(t)
)

+ ps,av(t)− Rav · x5(t)

)

(2e)

ẋ6(t) = x5(t) + x9(t)− x7(t) (2f)

ẋ7(t) =
pao
(

x(t)
)

− psa
(

x8(t)
)

Lsa
(2g)

ẋ8(t) = x7(t)−
psa
(

x8(t)
)

− psv(t)

Rsa

(2h)

where each state variable describes either a volume or a volume flow in the cardiovascular system;

see Table A1 in the Appendix. The right-hand sides of most of these differential equations depend on

pressures in the cardiovascular system that are static functions of the state variables. The pressures

in the pulmonary vein and in the systemic arteries are calculated assuming constant compliance and a

volume offset:

ppv
(

x1(t)
)

=
x1(t)− V0,pv

Cpv
(2i)

psa
(

x8(t)
)

=
x8(t)− V0,sa

Csa
(2j)

For the aortic pressure, visco-elasticity is taken into account, as well:

pao
(

x(t)
)

=
x6(t)− V0,ao

Cao
+Rsa,i ·

(

x5(t)− x7(t) + x9(t)
)

(2k)
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The pressures in the left atrium and the left ventricle are calculated using empirical time-varying

elastance laws. For the left ventricle, a visco-elastic effect was included. Thus, the equations read:

pla
(

x2(t), t
)

= Po,la + ϕp,la

(

x2(t), t
)

+ ela(t) ·
(

ϕa,la

(

x2(t), t
)

− ϕp,la

(

x2(t), t
)

)

(2l)

plv
(

x(t), t
)

= Po,lv + ϕp,lv

(

x4(t), t
)

+ S · elv(t) ·
(

ϕa,lv

(

x4(t), t
)

− ϕp,lv

(

x4(t), t
)

)

+Ri,lv(t) ·
(

x3(t)− x5(t)− x9(t)
)

(2m)

The pressure-volume relations of the contracting chambers (left ventricle and left atrium) are

defined as:

ϕp,i

(

Vi(t)
)

= Emin,i ·
(

Vi(t)− V0,i

)

+
Ki

Vsat,i −
(

Vi(t)− V0,i

) −
Ki

Vsat,i
(2n)

ϕa,i

(

Vi(t)
)

=

(

1−

(

Vpmax,i − Vi(t)

Vpmax,i − V0,i

)2
)

· Pmax,i (2o)

where the index, i, represents either the left atrium or the left ventricle. Accordingly, Vi(t) represents

either the left atrial volume, x2(t), or the left ventricular volume, x4(t). The subscript, p, in Equation (2n)

denotes that the equation describes the passive pressure-volume relationship (relaxed muscle); the

subscript, a, in Equation (2o) denotes the active pressure-volume relationship (contracting muscle).

The model depends on several time-varying parameters: the pressures at the boundaries, ppa(t)

and psv(t), the normalized elastance functions, ela(t) and elv(t), and the internal resistance of the left

ventricle, Ri,lv. Figure 2 shows the two normalized elastance functions:

ei(t) =



















1
2
+ 1

2
· cos

(

π − π
g1,i

· γc(t− Ti)
)

, 0 ≤ γc(t− Ti) ≤ g1,i

1
2
+ 1

2
· cos

(

π ·
g1,i

g1,i−g2,i
− π

g1,i−g2,i
· γc(t− Ti)

)

, g1,i < γc(t− Ti) ≤ g2,i

0, else

(2p)

The index, i, denotes either the left ventricle (lv) or the left atrium (la). In the former case, the

parameter, Tlv, is equal to 0, and in the latter case the value of Tla = 0.2 s accounts for the time delay

between the contraction of the two chambers. Table A2 in the Appendix shows the parameter values

used in Equation (2).

The slack variables, ps,mv and ps,av, were used to model the heart valves, which impose a strictly

non-negative flow. To achieve this non-smooth behavior, the following set of constraints needs to be

satisfied [28]:

x3(t) · ps,mv(t) = 0 (3a)

x5(t) · ps,av(t) = 0 (3b)

x3(t) ≥ 0 (3c)

ps,mv(t) ≥ 0 (3d)

x5(t) ≥ 0 (3e)

ps,av(t) ≥ 0 (3f)
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2.2.2. Model of the Blood Pump

Two differential equations were used to describe the acceleration of the fluid in a mixed-flow blood

pump (Deltastream DP2, Medos Medizintechnik AG, Stolberg, Germany) and the acceleration of the

rotor shaft:

ẋ9(t) =
1

LVAD
·

(

H
(

x9(t), x10(t)
)

−
(

pao
(

x(t), t
)

− plv
(

x(t), t
)

)

)

(4a)

ẋ10(t) =
1

ΘVAD
·
(

− T
(

x9(t), x10(t)
)

+ kVAD · I(t)
)

(4b)

Here, x9(t) is the flow rate through the pump and x10(t) is the rotational speed of the pump. The

variable, I(t), is the pump current. The “pressure head”, H , and the “hydraulic torque”, T , of the pump

were stored in two-dimensional maps obtained from static measurements on the hybrid mock circulation.

The parameter, kVAD, relates the produced torque to the electric current and was supplied by the motor

manufacturer. The fluid inertance, LVAD, and the rotor inertia, ΘVAD, were identified using dynamic

measurements. The variables describing the pump model are summarized in Table A3 in the Appendix.

2.2.3. Formulation of the Optimal-Control Problem

The reduced model has nx = 10 state variables. The first eight (x1, ..., x8) describe the

circulation Equation (2), whereas the two remaining ones (x9, x10) describe the mixed-flow blood pump

Equation (4). The model has one control input, namely the pump current, I(t). The two slack variables,

ps,mv and ps,av, represent, from a structural point of view, two additional inputs. The control input and

these two slack variables were gathered in the input vector, u(t), which, consequently, has the dimension

nu = 3. All state variables were gathered in the state vector, x(t). The corresponding right-hand sides of

the differential equations describing the model were stacked in the vector-valued “model function”, f :

ẋ(t) = f
(

x(t),u(t), t
)

(5)

The mathematical representation of the optimization problem to be solved comprises an objective

function Equation (6a) and several constraints Equations (6b)–(6i):

min.
x(t),u(t)

J
(

x(t), t
)

=

∫ tf

tb

L
(

x(t), t
)

dt (6a)

s.t. ẋ(t) = f
(

x(t),u(t), t
)

, (6b)

s
(

x(t)
)

= 0 (6c)

g
(

x(t)
)

= 0 (6d)

x(tb) = x(tf) (6e)

u(tb) = u(tf) (6f)

xlb ≤ x(t) ≤ xub (6g)

ulb ≤ u(t) ≤ uub (6h)

tb ≤ t ≤ tf . (6i)

The function, L, in Equation (6a) is an arbitrary function of the state variables and is described below.

The time instances, tb and tf , denote the start of two consecutive cardiac cycles, where the heart rate is
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equal to 90 bpm, i.e., tf − tb = 0.667 s. The vector-valued continuity constraint Equation (6b) ensures

that, for a solution of the OCP, the model equations are satisfied. The constraint Equation (6c) represents

Equations (3a) and (3b), which model the heart valves. The constraint Equation (6d) ensures the desired

cardiac output of
∗

V CO = 5 L/min,

g
(

x(t)
)

=
1

tf − tb

∫ tf

tb

(

x5(t) + x9(t)
)

dt−
∗

V CO (7)

A periodic solution was sought, defined by the constraints Equations (6e) and (6f). The constraints

Equations (6g) and (6h) implement the upper and lower bounds on the state variables and the inputs, as

specified in Table A1 in the Appendix. Different values were chosen for the lower bound on the pump

flow, x9,lb. The standard value of 0 implies that no backflow occurs from the aorta to the left ventricle.

The influence on the solution when a strictly positive flow was enforced is analyzed in Section 3.4.

The objective function Equation (6a) was chosen in accordance with physiological considerations.

The application of a VAD can lead to a permanent closure of the aortic valve. Fusion of the aortic

valvular cusps and a thrombus formation at the aortic valve may occur in this case [29–31]. Including

the flow through the aortic valve as the first component of the objective function allows solutions to be

enforced where the flow through the aortic valve is maximized and, thus, opening of the valve is ensured.

A further goal of the installation of a VAD is the unloading of the heart. Thus, a reduction of the hydraulic

work the left ventricle needs to deliver was chosen as a second component of the objective function.

The main task of a VAD is to maintain the perfusion of the patient, which was enforced by the perfusion

constraint Equation (6d).

The tradeoff between the two conflicting components of the objective function is adjusted by the

weighting parameter, ρ ∈ [0, 1]. The objective function thus reads:

L1

(

x5(t)
)

= −x5(t) · L1,N (8a)

L2

(

x(t), t
)

= plv
(

x(t), t
)

·
(

x5(t) + x9(t)− x3(t)
)

· L2,N (8b)

J
(

x(t), t, ρ
)

=

∫ tf

tb

(1− ρ) · L1

(

x5(t)
)

+ ρ · L2

(

x(t), t
)

dt (8c)

The parameter L1,N = 10−2 J·s/mL normalizes L1, such that the typical values of both components of

the objective function are within the same numerical range. The parameter L2,N =133.3 × 10−6 converts

the units of L2 from mmHg ·mL to J.

2.2.4. Numerical Solution of the Optimal-Control Problem

Direct transcription was applied to solve the OCP Equation (6), transforming the continuous-time

problem into an NLP [32,33]. Despite its large size, the resulting NLP can be solved efficiently, due

to its structure and the performance of current NLP solvers. Furthermore, this approach provides a

straightforward handling of any type of constraints [34].

The family of Radau collocation schemes was applied in this work [35]. Collocation methods

represent each state variable xi(t) as a polynomial and, thus, provide a continuous solution. When

used in the context of direct transcription, their implicit nature is irrelevant. “Radau IIA” methods were

chosen because to their advantageous stability properties [36]. For the problem at hand, using a low-order



Bioengineering 2014, 1 31

method with a fine time discretization yielded the best results concerning the convergence of the NLP

solver and the avoidance of local minima. In fact, the results shown below were obtained using the

first-order representative of this collocation family, which is the well-known Euler-backward scheme.

All of the equations forming the OCP Equation (6) have to be discretized consistently. A grid of

N points was used, yielding N − 1 intervals of length hk = tk+1 − tk. The notation xk = x(tk) was

adopted. The continuity constraint Equation (6b) was transformed to discrete defect constraints; all

integrals became weighted sums, and the constraints on the inputs and on the state variables were

imposed at the discretization points. Therefore, the continuous OCP Equation (6) is transformed to:

min.
x•,u•

Jd =

N−1
∑

k=1

hk−1 · L(xk, tk) (9a)

where L(xk, tk) = (ρ− 1) · x5,k · L1,N + ρ · plv(xk, tk) · (x5,k + x9,k − x3,k) · L2,N

s.t. xk+1 = xk + hk · f (xk+1,uk+1), k = 0 . . .N − 2 (9b)

sk =

(

x3,k · u2,k

x5,k · u3,k

)

= 0, k = 0 . . . N − 1 (9c)

N−1
∑

k=1

hk−1 · (x5,k + x9,k) = (tN−1 − t0) ·
∗

V CO (9d)

x0 = xN−1 (9e)

u0 = uN−1 (9f)

xlb ≤ xk ≤ xub, k = 0 . . . N − 1 (9g)

ulb ≤ uk ≤ uub, k = 0 . . .N − 1 (9h)

t0 = tb, t1, . . . , tN−2, tN−1 = tf (9i)

Equation (9) defines an NLP in n = N · (nu + nx) variables, namely uk and xk for k = 0 . . .N − 1,

which has nc = (N − 1) · nx + 2 · N + 1 + (nx + nu) equality constraints. Its objective function

Equation (9a) is nonlinear in the NLP variables, and it has nonlinear constraints Equations (9b) and (9c),

linear constraints Equations (9d), (9e) and (9f), as well as simple bounds Equations (9g) and (9h). All

state variables and inputs were scaled, such that the range between the lower and the upper bounds was

mapped to the interval, [0, 1]. This normalization ensures a similar magnitude of all NLP variables.

The resulting improvement in numerical condition of the problem increased the reliability and the

convergence speed of the NLP solver.

The equality-constrained NLP is commonly solved using a Newton-type iteration. Due to the

required factorizations (or re-factorizations, respectively) of the large matrices involved, a typical

runtime between O(n2) and O(n3) results [37]. The second-order derivatives were approximated by

an iterative update using first-order derivative information. Two factors are thus key for a fast solution of

the OCP: (a) the reduction of the problem size and (b) the exploitation of the problem structure to reduce

the number of evaluations of the objective and model functions. The following paragraphs outline the

procedure to achieve both.

The problem size was kept small by first using a discretization with a constant step size of h = 20ms,

resulting in N = 34 discretization points. The resulting solution was then used to initialize a refined

version of the problem. Namely, the step size was halved, which results in an NLP that is twice as large.
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However, since a close initial guess is available, only a few iterations are required to solve this NLP

to the demanded tolerance. For all solutions presented below, two refinements were performed, which

yielded a final step size of 5ms.

The Jacobian matrix contains the partial derivatives of the objective function Equation (9a) and of all

constraints Equations (9b)–(9f) with respect to the NLP variables. Since the objective function and each

constraint depend on a few NLP variables only, most of its entries are zero. This fact is termed “sparsity”,

and its exploitation is the key to an efficient numerical solution of directly transcribed OCPs [38]. Most

importantly, the objective function, L, and the model function, f , only occur in Equations (9a) and

(9b), respectively. Furthermore, their arguments are the state variables and the inputs at the same

discretization point. Therefore, all derivative information required for the construction of the Jacobian

matrix is provided by the partial derivatives of the model function and of the objective function with

respect to the state variables, as well as the inputs at each discretization node.

Any NLP solver can calculate the Jacobian matrix by numerical differentiation. However, depending

on its algorithmic implementation, it is unable to fully exploit the problem sparsity. In order to

always obtain the least possible number of evaluations of the objective and the model functions, the

Jacobian matrix was constructed by custom code and was then passed to the NLP solver. Linear terms

Equations (9d)–(9f) have constant derivatives, whereas simple bounds Equations (9g)–(9h) are handled

directly by the NLP solver. The derivatives of objective function Equation (9a) and of defect constraints

Equation (9b) were constructed from the derivatives of the objective and the model functions, which

were calculated analytically.

As an NLP solver, SNOPT was used [39]. Iteratively refining the problem discretization and providing

the Jacobian matrix to the solver reduced the typical runtime for solving one OCP from about 30min to

less than 1min. This reduction in computational time enabled large-scale parametric studies and a quick

comparison of various problem formulations.

2.3. Validation on the Hybrid Mock Circulation

The hybrid mock circulation presented in [25] was used to validate one solution resulting from the

optimization procedure described in Section 2.2.4. This test bench interfaces a hydraulic system with

the full model that is used for the simulations. The model runs in real time on a PC. The calculated left

ventricular and aortic pressures are reproduced by two pressure-controlled hydraulic reservoirs. The

mixed-flow blood pump is connected to these reservoirs and, thus, perceives pressures that closely

approximate an in vivo environment. The flow rate through the blood pump is measured using an

ultrasonic flow probe (11PXL, Transonic Systems Inc., Ithaca, NY, USA). It is fed back to the circulation

model to allow a real-time interaction between the blood pump and the numerical circulation model.

An optimized speed trajectory was realized using a modified speed controller for the blood pump.

After several cardiac cycles, stationary operation was reached, as imposed within the OCP by periodicity

conditions Equations (6e) and (6f). Upon reaching steady state, the data from the last cardiac cycle was

stored for further analysis. The pressures in the two reservoirs, representing the up- and down-stream

pressures of the blood pump, as well as the pump speed and flow rate were measured. In addition, all

relevant data from the numerical simulation were saved along the measured signals.
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3. Results

This section is organized as follows. Section 3.1 describes the runtime and the convergence of the

numerical solution of the OCP Equation (9). Section 3.2 presents the measurement results of one solution

of the OCP applied on the hybrid mock circulation in order to validate the model of the blood pump and

the simplified model of the blood circulation. Section 3.3 presents the results of the sinusoidal speed

profile investigation. Finally, in Section 3.4, both the constant speed solution and the optimal sinusoidal

solution are compared to speed profiles obtained by the numerical solution of OCP Equation (9) for

several choices of the tradeoff parameter, ρ, and the lower bound on the pump flow, x9,lb.

3.1. Runtime and Convergence of the Optimization

Figure 3 illustrates the convergence properties of the method used. Table 1 lists the content

of panels (a) and (c) of Figure 3 in numerical form. The NLP Equation (9) was solved with

ρ = {0, 0.5, 1}. Solutions were calculated for different uniform step sizes h ≈ {85, 30, 15, 7, 4, 3}ms.

The corresponding numbers of NLP variables are n = {150, 350, 600, 1500, 2300, 3000}. Figure 3(a)

shows the root mean squared difference between two successive solutions of the state variable, x9(t),

which is the flow rate through the blood pump. Figure 3(c) shows the corresponding runtimes the

NLP solver needed to converge. Panels (c) and (d) show three solutions with 150, 600 and 3, 000 NLP

variables, respectively, for ρ = 1 and ρ = 0. Clearly, the obtained solution did only change marginally

when a problem size of n ≈ 1, 000 was exceeded. A solution to a problem of this size can be obtained

within less than one minute.

3.2. Validation of the Model Reduction

Figure 4 shows the graphs resulting from the solution of the OCP with ρ = 0 (in silico) and the

reproduction of this optimal solution on the hybrid mock circulation (in vitro). The current, the speed

and the flow rate of the pump, as well as the relevant pressures are shown. In addition, the flow through

the aortic valve and the left ventricular pressure-volume diagrams are displayed. When the optimal

solution was reproduced on the hybrid mock circulation, the total cardiac output amounted to 4.92 L/min.

Compared to the demanded value of 5 L/min, which was exactly matched by the in silico solution, this

deviation of −1.6% is negligible.

In the optimal solution, the pump actuation was such that the pump flow rate was close to zero during

ventricular systole. Therefore, the pressure-volume diagram contains a nearly isovolumetric contraction

phase followed by the ejection of blood through the aortic valve. The current, the speed and the flow rate

of the pump all reached their lower or upper bounds at certain instants in time; see Figure 4.

The boundary conditions used for solving the OCP are the pulmonary arterial pressure, the systemic

venous pressure and the systemic arterial resistance, as indicated in Figure 1. The trajectories from

the simulation using a constant pump speed were compared with the signals measured when the

optimal solution was reproduced on the hybrid mock circulation. The maximum absolute difference

in the pulmonary arterial pressure amounted to 0.29mmHg and the root mean squared error was

equal to 0.04mmHg. The respective values for the systemic venous pressure were 0.04mmHg and
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9.5 × 10−4 mmHg. The systemic arterial resistance imposed by the baroreflex mechanism is assumed to

be constant for the OCP. Its value changed from 1.113mmHg·s/mL for the constant pump-speed simulation

to 1.110mmHg·s/mL for the in vitro reproduction of the optimal solution. This difference of just −0.27%

indicates that the use of the reduced model within the OCP is valid. The unavoidable modeling errors in

Equation (4), as well as the tracking error of the pressure control system at the hybrid mock circulation

led to differences between the optimized solution and the measured data, as shown in Figure 4. These

effects accumulated to a reduction of the end-diastolic left ventricular volume from 133mL to 128mL

and a reduction of the flow through the aortic valve from 1.08 L/min to 0.88 L/min.

Figure 3. Convergence of the nonlinear program (NLP) solver for NLP Equation (9) and

the resulting pump flow profiles. Panel (a) shows the RMS of the difference between a

solution and the next finer discretized solution. Panel (b) shows the pump flow trajectories

obtained for ρ = 1 and three differently accurate transcriptions. Panel (c) shows the runtime

the NLP solver needs to converge, depending on the problem size. Panel (d) shows the same

information as panel (b) for ρ = 0.
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Table 1. Data of panels (a) and (c) of Figure 3.

Number of
Discretization

RMS difference between
Runtime of solver

NLP variables
refined flow profiles

ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1

150 85ms N/A N/A N/A 0.3 s 1 s 0.7 s

300 30ms 14.97 7.04 5.98 5 s 23 s 1 s

600 15ms 2.91 3.95 0.91 4 s 5 s 3 s

1, 500 7ms 0.11 0.16 0.43 25 s 31 s 18 s

2, 300 4ms 0.10 0.03 0.03 198 s 98 s 82 s

3, 000 3ms 0.01 0.02 0.02 359 s 573 s 356 s

Figure 4. The optimal solution for maximizing the flow through the aortic valve (ρ = 0),

in silico and in vitro. Panels (a)–(c) show the current, the speed, and the flow rate of the

pump. Panel (d) shows the left ventricular (solid) and the aortic (dashed) pressures. Panel (e)

shows the flow through the aortic valve. Panel (f) shows the left ventricular pressure-volume

diagrams.
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3.3. Analysis of the Sinusoidal Speed Profiles

Figure 5 shows the results from the parametric study described in Section 2.1. Contour lines of the

mean pump speed, the minimum pump flow rate, the mean flow through the aortic valve and the left
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ventricular stroke work are plotted over the parameter space ωA × ϕ. As stated above, the mean pump

speed was adjusted, such that the demanded cardiac output of 5 L/min is provided.

Figure 5. Results of the parametric study on the sinusoidal speed profile. All plots show

contour lines of a specific measure, as indicated in the corresponding heading. Panel (a)

shows the mean pump speed, ωc in rpm. Panel (b) shows the minimum value of the flow rate

through the pump in L/min. The gray area indicates the admissible region. Backflow from the

aorta to the left ventricle occurs in the complementary region. Panel (c) shows the mean flow

rate through the aortic valve in L/min. There is a large region where the aortic valve remains

closed. Panel (d) shows the left ventricular stroke work. The asterisks and arrows in panels

(c) and (d) denote the optimal point according to objective function Equation (9a) and the

corresponding directions of the steepest descent. The admissible region shown in panel (b)

is repeated in panels (c) and (d).
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The mean pump speed varied between 3, 400 rpm and 4, 700 rpm in order to provide the desired

cardiac output. The minimum pump flow rate decreased with increasing amplitude, which caused an

increased backflow from the aorta to the left ventricle. Combined with the requirement that there must

be no backflow through the pump, i.e., x9,lb = 0, this relationship restricted the admissible range of

the amplitude to the gray area shown in Figure 5(b). For positive choices of the parameter, x9,lb, this

area became even smaller. Clearly, there is a large region in the parameter space where the aortic valve

remains closed, as shown in Figure 5(c). Finally, the points of minimum left ventricular stroke work and

maximum flow through the aortic valve do not coincide.

For all pairs of amplitude and phase shift, the value of the objective function Equation (6a)

was calculated from the corresponding simulation data. From all pairs that fulfill constraints
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Equations (6e)–(6h), the one with the minimum value of the objective function was selected as the

optimal choice. This solution, defined by ϕ = 0.8 and ωA = 2, 000 rpm, is indicated in Figure 5(c,d)

by an asterisk. The structure of the system is such that the location of the optimal sinusoidal speed

profile is invariant with respect to the tradeoff parameter, ρ. This finding stems from the fact that for

both the flow through the aortic valve and the left ventricular stroke work, the direction of decreasing

objective-function values (arrows) is towards the non-admissible region in which backflow through the

pump occurs.

3.4. Comparison of the Numerically Optimized Speed Profiles with Reference Speed Profiles

The constant speed solution together with the unique optimal solution for the sinusoidal speed profile

is presented in Figure 6. Alongside, the results from the optimization procedure for ρ = {0, 0.5, 1} are

displayed. In contrast to the unique optimal sinusoidal speed profile, the individual solutions from the

optimization differed for variations of the parameter, ρ. As a consequence of the shift of the tradeoff in

the objective function, the stroke volume and the stroke work of the left ventricle varied, as shown in

Figure 6(h,j).

Figure 7 illustrates the tradeoff between the mean flow through the aortic valve and the left ventricular

stroke work. The values for the constant speed solution, the optimal sinusoidal speed profile and the

OCP solutions are shown. For the latter two cases, three different choices for x9,lb were used. Clearly,

compared to the standard case (x9,lb = 0), the values of the attainable objective-function got worse

when stasis was avoided in the pump cannulas (x9,lb = 1 L/min or x9,lb = 2 L/min). The restriction of

the admissible minimum pump flow indirectly also increases the minimum pump speed that resulted.

For the case x9,lb = 1 L/min, the minimum pump speed varied between 0 rpm and 550 rpm, and for the

case x9,lb = 2 L/min, the minimum pump speed varied between 570 rpm and 990 rpm. In each case, the

optimal solutions performed better than the sinusoidal speed profiles in terms of minimizing the value of

the objective function. The performance of the constant-speed solution clearly was the least satisfactory.

4. Discussion

In the current study, numerical optimal control was used to optimize the functional interaction

between tVADs and the circulatory system. The performance of speed profiles was assessed by a

physiologically motivated objective function. A mathematical model was used during the optimization,

and the results were validated on a real blood pump in a hybrid mock circulation. This approach yields

a better performance than constant-speed or sinusoidal profiles.

The necessity of taking into account multiple physiological constraints simultaneously has been

pointed out in previous work [14]. In that study, bounds were specified for the stroke volume of the

left ventricle, for the mean left atrial and ventricular pressures, as well as for the arterial pulse pressure.

All results from the optimal-control approach presented in the current paper stay within these bounds.

The framework of numerical optimal control can handle any type of constraints imposed on the state

variables and the inputs. Whenever certain physiologic measures appear to be out of range, additional

constraints can be specified in the OCP. Such constraints would either force the measures in question

to stay within the desired limits, or, if no feasible solution is found, an improper selection of these
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limits would be revealed. This feature highlights the benefits of the methodology presented, inasmuch

as it represents a flexible framework where the objective function and the constraints can be adapted to

specific requirements.

Figure 6. Panels (a–e) show the pump speed, the pump flow rate, the flow through the

aortic valve, the left ventricular pressure and the left ventricular pressure-volume diagram

for the constant speed solution and for the optimal sinusoidal speed profile. The latter is

characterized by ϕ = 0.8, ωA = 2, 000 rpm and ωc = 3, 968 rpm. Panels (f–j) show the

trajectories of these quantities for the solutions of the OCP with ρ = {0, 0.5, 1}. For all

cases, a value of x9,lb = 0 L/min is used. The optimized solution with ρ = 0 is equal to the

optimized solution (in silico) shown in Figure 4.

 

 

 

 

L
ef

t
v
en

tr
ic

u
la

r

p
re

ss
u
re

(m
m

H
g
)

Left ventricular volume (mL)

e)

L
ef

t
v
en

tr
ic

u
la

r

p
re

ss
u
re

(m
m

H
g
)

Time (s)

d)

Optimal sinusoidal speed profile

Constant speed solution

F
lo

w
th

ro
u
g
h

ao
rt

ic

v
al

v
e

(L
/m

in
)

c)

P
u
m

p
fl

o
w

(L
/m

in
)

b)

P
u
m

p
sp

ee
d

(r
p
m

)

a)

Left ventricular volume (mL)

j) Time (s)

i)

ρ = 1

ρ = 0.5

ρ = 0

h)

g)

f) Optimized speed profiles

100 110 120 130 140

0 0.1 0.2 0.3 0.4 0.5 0.6

100 110 120 130 140

0 0.1 0.2 0.3 0.4 0.5 0.6

0

25

50

75

100

0

50

100

0

5

10

0

5

10

0

2000

4000

6000



Bioengineering 2014, 1 39

Figure 7. Tradeoff between the flow through the aortic valve and the left-ventricular stroke

work. Recall that a higher flow through the aortic valve and a lower stroke work decrease the

objective-function value Equation (6a). Values for the constant speed solution, the optimal

sinusoidal speed profiles and the optimal solutions are shown. Three different values for

the lower bound on the minimum pump flow rate are applied. The parameter, ρ, was varied

between zero (the flow through the aortic valve is maximized) and one (the left ventricular

stroke work is minimized). The optimal parameter set for the sinusoidal profile is invariant

w.r.t.ρ; see Figure 5.
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As described in the introduction, numerous approaches exist for speed modulation of tVADs,

synchronized or asynchronous to the ventricular contraction and with different types of speed profiles.

None of these approaches has been applied clinically as yet, where, normally, a constant speed is

applied. The bandwidth of the reference-speed tracking in a real application is important. For example,

square-wave speed profiles cannot be tracked exactly, due to the rotor inertia and the limited electric

power that is available. When speed profiles are derived from the solution of an OCP, these limitations

can be taken into account by the introduction of appropriate constraints.

The OCP Equation (6) is formulated for one cardiac cycle, i.e., it is assumed that the optimal solutions

are periodic with the same duration as the cardiac cycle. To verify this assumption, an OCP similar to

Equation (6) was solved, where the time horizon included two cardiac cycles. No periodicity constraints

were imposed in between these two cycles. The resulting solution was periodic with the duration of only

one cardiac cycle, and the speed profiles for the two cardiac cycles were identical.

When such synchronized speed profiles are to be applied in clinical practice, the timing of the

ventricular contraction must be extracted from a measured signal, which might require data from an

additional sensor, such as from the electrocardiogram [40]. Similar methods were available in some

first-generation, volume displacement VADs [41]. Potentially, the synchronization of a VAD to the

cardiac cycle could be realized using pump-intrinsic signals only by extending the work presented

in [42]. Nevertheless, when speed modulation is to be applied clinically, the option of using optimized

speed profiles as presented in the current paper should be considered, due to its superior performance, as

indicated in Figure 7.

The solutions generated by the optimal-control approach are non-causal and rely on an offline,

model-based optimization of the pump-speed profile. Two options for realizing their potential in the
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context of causal control, i.e., in a clinical application with the possibility for patient-specific treatment,

are outlined next.

(1) The optimal speed profiles can be parametrized for various physiological states, e.g., various

heart rates or changing objective functions. These pre-calculated optimal solutions could then be

programmed in a clinical controller. A possible application would be to switch between different

speed profiles, including the standard solution where a constant speed is applied. Further research

is necessary to verify this approach.

(2) Online algorithms could be developed on the basis of the insights gained from the optimal

solutions. For example, Figure 6 reveals that for minimizing the objective function Equation (6a),

a two-step control strategy should be applied: In the first part of the speed profile, the pump speed

is chosen, such that the pump flow stays at its lower boundary. In the second part of the speed

profile, the pump flow needs to be controlled, such that the desired cardiac output is reached and,

therefore, a flow pulse is generated. The parameter, ρ, thereby adopts the role of a phase shift and

varies the timing of the two parts with respect to the ventricular contraction.

Furthermore, the solutions generated by solving an OCP can be used for benchmarking other

approaches based on mathematical models. The performance of any control strategy can be compared to

the optimal value, which allows one to assess the remaining potential. Finally, a fair comparison among

various VAD types can be performed by comparing the optimal behavior of the devices in question.

The optimal pump flow profiles obtained in the current paper are comparable to those typically

obtained with a pulsatile volume-displacement VAD, although with a lower amplitude. The effect of

the timing of the ejection phase of such a pulsatile volume-displacement VAD on the stroke work and

the aortic valve flow was demonstrated earlier in vivo [43]. Similarly to the results in the current paper,

that analysis shows that a change in phase shift is required when the maximization of the aortic valve

flow was assigned preference over the minimization of the left ventricular stroke work.

The blood damage induced by blood pumps represents a complex topic, and different outcomes in

this regard have been observed clinically with different types of devices [44]. Increased hemolysis due

to speed modulation has been reported for a commercially available centrifugal pump in vitro [45,46].

Another group designed an impeller to reduce blood damage during speed modulation, which was

successfully tested in vivo [47,48]. A recently designed VAD (HeartMate III, Thoratec Corp., Pleasanton,

CA, USA) is expected to go into clinical trial soon and employs speed modulation with gradients of up to

24, 000 rpm/s [49]. So far, no mathematical description for blood damage by means of lumped parameter

models exists. Therefore, such a description could not be included into the framework presented as yet.

The results shown in the current manuscript demonstrate the potential of the methodology proposed.

Future studies should focus on a sensitivity analysis of the optimal solutions. On the one hand, the benefit

attainable by the application of optimized speed profiles has to be assessed on a more comprehensive

range of the state of the cardiovascular system. On the other hand, the sensitivity of the objective-function

value to deviations from a design point used during the optimization should be analyzed. This analysis

indicates which physiological parameters need to be included as scheduling parameters in a clinical

application. At the same time, the trends of the optimal operating strategy w.r.t. these parameters are

revealed, from which guidelines for the development of online control strategies may be derived.
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The method presented is able to generate optimal speed profiles for tVADs. By integrating the

cardiovascular system into the optimization procedure, this approach not only allows the operation of

the tVAD itself to be optimized, but it also improves its interaction with the cardiovascular system. The

methodology presented is well suited as a tool for further research of speed modulation for tVADs.

Transferring the results obtained to the clinical setting would allow one to adjust the pump performance

according to the intention-to-treat of the individual patient, such as the recovery of the native heart or

lifelong support.
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Appendix

Table A1 provides an overview of the state variables, the control inputs and the slack variables used

in the reduced circulation model and the pump model. Table A2 lists the parameters used in reduced

numerical circulation model Equation (2). Table A3 details the parameters of the model of blood pump

Equation (4).

Table A1. Description of the state variables and the inputs of the reduced circulation model

and the pump, including their lower (LB) and upper (UB) bounds.

Variable Description LB UB Unit Equations

x1 Pulmonary venous volume 250 750 mL Equation (2a)

x2 Left atrial volume 0 220 mL Equation (2b)

x3 Flow through mitral valve 0 500 mL/s Equation (2c)

x4 Left ventricular volume 10 270 mL Equation (2d)

x5 Flow through aortic valve 0 500 mL/s Equation (2e)

x6 Aortic volume 570 750 mL Equation (2f)

x7 Systemic arterial flow −100 500 mL/s Equation (2g)

x8 Systemic venous volume 285 335 mL Equation (2h)

x9 Flow through pump x9,lb
∗ 255 mL/s Equation (4a)

x10 = ω Pump speed 0 7, 000 rpm Equation (4b)

u1 = I Pump current −3.6 3.6 A Equation (4b)

u2 = ps,mv Slack pressure (mitral valve) 0 200 mmHg Equation (2c)

u3 = ps,av Slack pressure (aortic valve) 0 200 mmHg Equation (2e)

∗x9,lb = {0, 1, 2}L/min = {0, 16.6, 33.3}mL/s
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Table A2. Parameters of the reduced circulation model.

Parameter Description Value Unit Equation

Cao Aortic compliance 0.9 mL/mmHg Equation (2k)

Cpv Pulmonary venous compliance 10 mL/mmHg Equation (2i)

Csa Systemic arterial compliance 0.25 mL/mmHg Equation (2j)

Emin,la Minimum left atrial elastance 0.1 mmHg/mL Equation (2n)

Emin,lv Minimum left ventricular elastance 0.025 mmHg/mL Equation (2n)

g1,la Activation function parameter 1, left atrium 0.2083 − Equation (2p)

g1,lv Activation function parameter 1, left ventricle 0.4167 − Equation (2p)

g2,la Activation function parameter 2, left atrium 0.25 − Equation (2p)

g2,lv Activation function parameter 2, left ventricle 0.5 − Equation (2p)

Kla Saturation coefficient left atrium 0 mmHg/mL Equation (2n)

Klv Saturation coefficient left ventricle 2,000 mmHg/mL Equation (2n)

Lav Aortic valve inertance 7.26 × 10−4 mmHg·s2/mL Equation (2e)

Lmv Mitral valve inertance 7.26 × 10−4 mmHg·s2/mL Equation (2c)

Lsa Systemic arterial inertance 3 × 10−4 mmHg·s2/mL Equation (2g)

Po,la Pressure offset, left atrium 0 mmHg Equation (2l)

Po,lv Pressure offset, left ventricle 0 mmHg Equation (2m)

Pmax,la Maximum pressure, left atrium 25 mmHg Equation (2o)

Pmax,lv Maximum pressure, left ventricle 360 mmHg Equation (2o)

Rav Aortic valve resistance 3.7 × 10−3 mmHg·s/mL Equation (2e)

Rmv Mitral valve resistance 7.5 × 10−3 mmHg·s/mL Equation (2c)

Rpa Pulmonary arterial resistance 0.09 mmHg·s/mL Equation (2a)

Rpv Pulmonary venous resistance 0.012 mmHg·s/mL Equation (2a),(2b)

Rsa Systemic arterial resistance 1.11 mmHg·s/mL Equation (2h)

Rsa,i Aortic internal resistance 0.1 mmHg·s/mL Equation (2k)

S Contractility shaping factor, left ventricle 0.34 − Equation (2m)

Tla Activation function time delay, left atrium 0.2 s Equation (2p)

Tlv Activation function time delay, left ventricle 0 s Equation (2p)

V0,ao Zero-pressure volume, aorta 570 mL Equation (2k)

V0,la Zero-pressure volume, left atrium −25 mL Equation (2n),(2o)

V0,lv Zero-pressure volume, left ventricle 10 mL Equation (2n),(2o)

V0,pv Zero-pressure volume, pulmonary vein 250 mL Equation (2i)

V0,sa Zero-pressure volume, systemic arteries 285 mL Equation (2j)

Vpmax,la Volume at maximum pressure, left atrium 200 mL Equation (2o)

Vpmax,lv Volume at maximum pressure, left ventricle 175 mL Equation (2o)

Vsat,la Saturation volume, left atrium 1 mL Equation (2n)

Vsat,lv Saturation volume, left ventricle 270 mL Equation (2n)
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Table A3. Parameters of the pump model.

Parameter Description Value Unit Equation

ΘVAD Rotor inertia 1.23 × 10−6 N·m·s/rpm Equation (4b)

kVAD Motor constant 0.013 N·m/A Equation (4b)

LVAD Fluid inertia 0.03 mmHg·s2/mL Equation (4a)
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