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Abstract: A steady increase of product titers and the corresponding change in impurity 

composition represent a challenge for development and optimization of antibody 

production processes. Additionally, increasing demands on product quality result in higher 

complexity of processes and analytics, thereby increasing the costs for product work-up. 

Concentration and composition of impurities are critical for efficient process development. 

These impurities can show significant variations, which primarily depend on culture 

conditions. They have a major impact on the work-up strategy and costs. The resulting 

“bottleneck” in downstream processing requires new optimization, technology and 

development approaches. These include the optimization and adaptation of existing unit 

operations respective to the new separation task, the assessment of alternative separation 

technologies and the search for new methods in process development. This review presents 

an overview of existing methods for process optimization and integration and indicates 

new approaches for future developments. 
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1. Introduction  

Due to their broad application range, monoclonal antibodies (mAb) are used worldwide in a variety 

of applications such as therapeutics or in diagnostics [1–3]. Increasing product demands in combination 

with a market introduction of biosimilars call for less and less expensive products in order to remain 

competitive [4]. The current rather expensive production processes need to be improved significantly. 

Innovation in technological development as well as production processes are to be pursued [1,4]. 

However, it is not only necessary to improve process development and implement new unit operations. 

The products themselves also need attention [4,5]. Improvements in antibody quality and the 

development of more efficient and more economic processes are required [4,5]. 

Significant progress has been achieved by optimization of upstream processing (USP) in the last 

two decades. Process efficiency, achievable cell densities and product titers could be increased 

enormously in cell culture processes [1,2,5–8] by developing recombinant technologies as well as 

media and process control strategies [1,2,6,7]. Today, antibody concentrations of 3–5 g/L are achieved 

routinely and some companies have attained up to 10–13 g/L in fed-batch processes [5,6,8]. Antibody 

titers of up to 25 g/L via modified perfusion have been reported as well [7,9]. 

Upstream titers depend mostly on biological limits (e.g., cell line or media optimization) and can be 

raised without an increase in costs. USP manufacturing processes which generate higher titers still take 

place in the same reactor set-ups like earlier processes of lower titers. Consequently, the processed volumes 

are the same but the amount of antibody is increased. This results in feed volumes which contain  

15–100 kg mAb/batch at titers of 5 g/L in 20–25 kL bioreactors instead of 5–10 kg mAb/batch [6,8]. 

These feed volumes enter the facilities of downstream processing (DSP) which were designed for 

much lower amounts of antibody. The equipment reaches its physical limits and therefore, its capacity 

limits, resulting in an increase of processing time, material consumption and costs. 

Consequently, upstream capacity can be increased without raising the costs whereas downstream 

capacity always scales at least linearly with costs due to its physical principles for separation. At low 

product titers, upstream manufacturing is more expensive than DSP but higher titers shift the main 

manufacturing costs from USP towards DSP [7,8,10,11] and lead to a non-linear increase of overall 

costs for the manufacturing process [10]. This problem is amplified by a change in type and concentration 

of impurities which emerge from process changes during product titer optimization [12–16]. These 

modifications of broth compositions are an additional challenge for the downstream processing. 

In search of a solution for this “downstream bottleneck”, new approaches of optimization strategies 

and technology development are necessary. Innovative technologies should increase the maximum 

capacity and allow the handling of high titer volumes.  

2. State of the Art in Process Development and Optimization 

The current manufacturing technology for antibodies can be divided in development and optimization 

of USP and DSP. The development of technological platforms was possible in process development 

and consequently in manufacturing [16]. Examples can be cell line selection, media optimization or 

harvesting methods on the USP side [2,17] or the optimization of individual unit operations on the 

DSP side [16,18,19]. The optimization of process and product analysis is also platform-based. This 
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standardization of development steps takes place inside the company and aims at a decrease of 

investment, time and development cost per antibody [2,8,16–19]. In addition, material purchase and 

storage, scale up, process transfer are simplified [2,8] and the number of potential unit operations is 

reduced [2,19]. One example for the development of a manufacturing platform is published by  

Vogel et al. (2012) [20]. It is applied on a blood coagulation factor and the authors include an outlook 

on necessary process changes for antibody manufacturing. 

Due to the intense time pressure in process development, high-throughput (HTP) methods are 

employed in early process development [21,22]. They permit running a large number of screening 

experiments in a very small scale and can be performed with minimal amounts of material. Large 

amounts of data are provided in a short period of time [21–25]. HTP methods are often combined with 

statistically planned experiments (Design of Experiments, DoE). In statistically planned experimental 

designs, several factors can be changed within one set of experiments. These experimental designs take 

into account the number and type of factors, already existing information and reliability of the results. 

Classical designs are full factorial, fractional factorial or response surface designs. By applying DoE,  

a small number of experiments is sufficient to determine the influence of several parameters and to 

identify the most significant ones. HTP methods and DoE are both applied in the development of 

upstream as well as downstream processing [21,26–32]. 

Furthermore, concepts of Quality by Design (QbD) in combination with HTP methods or DoE [33,34] 

are encouraged to be applied in process [35–38] and analytical development [33,34]. QbD is a 

manufacturing principle in which product quality is built into the manufacturing process by understanding 

the associated risks and including strategies to mitigate those risks during manufacture [35–38].  

The implementation of QbD shall lead to the development of more robust and efficient manufacturing 

processes of mAbs with increased clinical efficacy [36]. Horvath et al. (2010) [39] described a QbD-based 

optimization approach in cell culture technology. Harms et al. (2008) [40] as well as Abu-Absi et al. [41] 

published case studies on mapping design space for fermentation and cell culture. In DSP, Jiang et al. 

(2010) [35] described a case study on the application of QbD principles for hydrophobic interaction 

chromatography and Pathak et al. (2014) [34] as well as Michels et al. (2012) [33] published examples 

for QbD-based development of analytical methods for antibody aggregates and size heterogeneity. 

2.1. Process Development in Upstream Processing 

Process development and optimization in USP includes various parts: cell line development  

and engineering, cell clone selection, media and feed development, bioprocess development and  

scale up [5,9,42–44]. Reactor design, cell harvesting, process control and the corresponding analytics 

can be part of the optimization process as well [9,42,43]. These areas are optimized individually and 

focus on a robust generation of a high product titer, high productivity and defined quality [5,6,43]. 

Figure 1 schematically presents the different optimization areas and lists the most important 

parameters. Following process development, process characterization, process transfer and set up of a 

cGMP-production take place in combination with process validation [5]. 
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Figure 1. Optimization areas and parameters in upstream processing. 

 

2.1.1. Cell Line Development and Clone Selection  

In the course of cell line development, a company-internal selection of host cells, expression 

vectors, transfection and selection methods takes place. The selection of the expression system is 

determined by its ability to ensure a high productivity and defined quality criteria [5,25,43]. The 

expression system most commonly used for the production of monoclonal antibodies or recombinant 

proteins are Chinese Hamster Ovary (CHO) cells [5,8,9,43,45]. The first proteins produced by  

CHO-derived cell lines were recombinant interferons and tissue-type plasminogen activator (tPA) [25]. 

In 2010, approximately 70% of all recombinant proteins have been produced in CHO cells [5]. 

High productivity and posttranslational processing are the criteria for cell line selection after cell 

transfection. Other factors, such as growth behavior, stable production, cultivation in serum-free 

suspension media, adaptive behavior, amplification, clone selection and possible risk assessment are 

taken into account as well [5,43]. Li et al. (2010) [5] and Costa et al. (2010) [43] provide good overviews 

of current methods for optimizing expression vectors and transfection methods. Several methods for 

cell line optimization are employed prior to cell clone selection to improve and ensure product  

quality [5,44,46]. One important parameter of product quality is the reproducibility of the glycosylation 

profiles. These depend on the respective cell clone, medium and cultivation conditions [5,9,44,47]. 

Commonly used methods are RNAi and gene deletion technologies [48,49]. Other approaches in cell 

engineering help to avoid ammonium and lactate accumulation [50–52] and improve cell growth [53]. 

Codon optimization and various approaches for gene-amplification via different selection markers serve 

to optimize the cell line [44]. Further approaches include metabolic engineering or anti-apoptosis 

enhancements. Costa et al. (2010) provide additional resources on cell engineering and its aspects [43]. 
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The subsequent selection of the best suited cell clone is one of the most important steps of the 

upstream development process as variations in the production cell line during clinical development 

constitute a major process change. Such a change requires an additional proof of product comparability. 

The cell clones considered for final production have to fulfill the required product quality, 

processability and volumetric productivity [43,54]. Criteria for selection are: growth, cell-specific and 

volumetric productivity, glycosylation profiles, development of charge variants, aggregate formation, 

protein sequence heterogeneity and clone stability among others [5,54,55]. In addition, metabolic 

characteristics can be exploited for cell clone selection, as well as their stability, robustness, high 

viability and low lactate or ammonium generation. At the end, process performance in the bioreactor 

decides which clone will be used for production and which will be saved as a backup. Running this 

selection process in the shortest time possible presents a big challenge. Especially product quality, 

productivity, and the metabolic profiles of the cells strongly depend on cell culture conditions [5]. 

Transient gene expression (TGE) as another possibility of protein production should be mentioned 

at least briefly. TGE is used to produce recombinant proteins over a short period of time following a 

DNA transfer into single-cell suspension cultures. There is no need for genetic selection of transfected 

cells and therefore a lot of time is saved [25,56–58]. Today, TGE is applied as a screening-tool for drug 

development since only small doses of potential drugs are needed within a short amount of time [56]. 

IgG yields of 2–80 mg/L have routinely been achieved with this process [56,57] which can be 

increased of 250–300 mg/L [58]. For industrial purposes, transient gene expression is promising 

regarding its high time-savings in cell line development. For manufacturing processes, it is likely to be 

tried with low-dose proteins before an application for antibody-derived products will be attempted [25,57]. 

In this review, concepts of process optimization on a cellular level are described mostly on an 

academic level due a restricted publishing of industrial owned knowledge on process optimization 

strategies. In industrial process development, the optimization of media and process conditions is 

primarily used to create more cells and therefore more product. This resulted in processes of up to  

21 days’ cultivation time, increased viabilities and cell densities 10–15 times higher than in the 1980s [25].  

2.1.2. Media Development and Optimization  

Media optimization processes have led to progress in commercially available media over the last 

decades. Early cell culture media like Ham’s F10 or Dulbecco’s Modified Eagle Media were based on 

blood serum supplements. These include a complex mixture of unknown components. In the 1970s and 

1980s, many serum-free media were developed in order to provide better defined cultivation media like 

IMDM or CMRL medium. Further improvements eliminated all animal-derived components to avoid 

pathogen contaminations and thus resulting in chemically defined media [17,27,59,60].  

Media development is a key factor in improving productivity and growth behavior of cells but it 

also influences product quality [26]. Today, commercially available media present the basis for media 

development towards optimized conditions for a process using a specific cell line. The optimal blend 

of media components has to be solved individually due to the high diversity of cell lines, processes, 

media components, interactions of components and metabolic pathways. Effective media development 

depends strongly on the choice of optimization tools. The most common strategies are based on: 

component titration, media blending, spent media analysis and automated screening [26,59,61].  
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A combination of these methodologies provides the most rational way of media development. The 

development process itself includes a screening process to identify important components, followed by 

an optimization step and a verification of the process [59]. Standardization of these development 

approaches led to a platform-based media development [30]. 

Traditionally, media were developed by changing one factor at a time [26,27]. In order to reduce 

experimental efforts, DoE and high-throughput methods are applied in industrial development 

processes [30–32]. As an example, a top down approach is described by Ma et al. (2009) [62]. Media 

development needs to be optimized for each cell line individually but its establishment as a platform 

process in development leads only to an improvement of USP. There is still some potential for 

optimization which can be drawn upon, if necessary [5]. 

Approaches for feed media development include variations in the concentration of the basal 

medium, nutrient consumption [27,61,62], accumulation of impurities and a balance of cell growth and 

volumetric productivity [63]. Generally, methods for feed media optimization are the same as in basal 

media optimization, including the use of DoE [29]. 

2.1.3. Development of Process Strategies 

Continuous processes in USP are already well established for unstable products. Continuous  

by-product removal and nutrient addition extend the cultivation time. A short retention time of the 

product preserves the product quality. The major advantage consists in high cell number and high 

productivity in a small-sized bioreactor [64–68]. This process is more challenging regarding technique 

and sterility. It produces large harvest volumes and requires large media volumes than batch or  

fed-batch processes [65,67,68]. Perfusion processes are applied in biopharmaceutical production and 

can also be used for high density seed bioreactors and cell bank manufacturing [66,67]. Cell retention 

devices are of high importance for the removal of fermentation broth from the reactor [64,66–70]. 

They can be divided into filtration- and acceleration-based devices. In addition to effective cell 

retention, they have to be robust [64,67] and scalable [69]. Gravity-based cell settlers, spin filters, 

centrifuges, alternating tangential-flow filters, vortex-flow filters, acoustic settlers and hydrocyclones 

are commonly used in small scale applications [64,69] but only few of them can be adapted to a larger 

scale. Scalable devices are mostly based on filtration, gravity settling and centrifugation. Pollock et al. 

(2013) [68] provide an overview of industrially applied retention devices in continuous antibody 

manufacturing. Internal spin-filters are used in production volumes of up to 500 L, and external ones up 

to 1000 L. On a larger scale, mostly gravity settlers are used [68]. A comprehensive overview of principles 

of sedimentation, centrifugation and filtration as cell retention devices is provided by Henzler (2012) [71].  

Recent developments resulted in a new device, called the ATF System (Refine Technology) [7,66–69]. 

The system uses tangential flow filtration with an alternating cell broth flow direction. A diaphragm 

pump is used to alternate these directions without additional shear stress and a cycle time of about  

1 min. The back flush created by the alternated movement reduces possible fouling effects [66,67]. 

This system is easy to scale up and presents a possibility for single-use applications in USP [67,69].  

It is used to generate ultra-high-density cell cultures such as concentrated fed-batch and concentrated 

perfusion processes [69]. Cell densities up to 2.14 × 108 cells/mL [67] as well as product titer of up to 

25 g/L are reached [7]. 
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The choice of a fed-batch or continuous process depends mostly on product quality issues, existing 

facilities and experiences. The development and optimization concentrates on defining optimal operation 

parameters including among others temperature shifts, gas exchange, shear stress, transfection process, 

feeding strategy, duration of the cultivation and perfusion rate [2,17,23,65,72–74]. This part of 

development aims for high cell numbers, defined product quality, high titer und an extension of 

fermentation duration [17,73,74] and is mostly performed by use of DoE. The same criteria are valid 

for the choice of a bioreactor system.  

2.1.4. Optimization of Bioreactor Systems 

A new trend addresses an implementation of single-use bioreactor systems. They have the advantages 

of lower capital investment and operational costs, flexibility [75–77], improved production scheduling 

and higher process replication [75,76]. They are applicable for GMP manufacturing and available up to 

2000 L in scale [76,77]. Different designs of single-use reactors are available, such as wave, orbital 

shaken, pneumatically mixed and stirred tank bioreactors [75,77–80]. They eliminate the need for 

cleaning or sterilization and, thus, significantly reduce contamination rates [76,80]. One new bioreactor 

system, based on cylindrical or square-shaped vessels which are orbital shaken, distinguishes itself by 

high gas transfer rates through surface aeration and a working scale of up to 2500 L as a disposable 

reactor [25]. First descriptions and simulations of fluid motions in these vessels were published by 

Reclari et al. (2014) [81]. Other disposable bioreactors have been developed based on a bag concept [80]. 

They are used not only in research but also in manufacturing processes in mini- and mid-scale as well 

as seed trains in perfusion mode. However, there is still a lot of work to be done in optimizing disposable 

bioreactor systems, especially in terms of aeration and mixing [78,80]. Up to now, the scale is limited 

up to 2000 L–2500 L [25,76,77], the diversity of options is restricted, and there is a lack in 

standardization, instrumentation and some remaining performance issues. Furthermore, there is a 

shortage of a validation process concerning the nature, quantity and risk of leachables and extractables 

from the disposable plastics [76,79,80]. The bags can also bind media components thus, decreasing the 

process performance [80]. These problems are currently in focus of development activities. 

For similar production organisms and growth behavior, the development a generic harvest process [16], 

which consists mostly of a depth filtration or a centrifugation [2,16], could be attractive. Recently, 

depth filters have been shown to absorb soluble impurities, like proteins or DNA. An implementation 

of such a filter needs to be investigated in terms of a process integration [2]. Other developments 

include flocculation as a primary recovery step [16]. For products which are not completely compatible 

with the platform, additional development is necessary [16].  

All development and optimization approaches in USP provide an increase in monoclonal antibody 

concentration from 50 mg/L in 1986 to 5–20 g/L today [7,8,82]. In spite of these achievements, the 

focus of optimization often neglects the drawbacks of impurities. Impurities will only be considered if 

they are highly toxic or if changes in their metabolic routes result in a higher production of the desired 

product. Considerations regarding subsequent separation problems are carried out rarely [1,13]. 
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2.2. Process Development in Downstream Processing 

DSP development focusses on yield and productivity as well as on purity and process capacities. An 

increase in separation efficiency of single unit operations is achieved by expansion of existing facilities 

and by optimization of existing and alternative processes [2]. New methods for process development 

are under investigation. These include the establishment of platform technologies, high-through-put 

methods with approaches based on QbD and DoE-based experimental optimizations [2,21,36]. 

Additionally, an integration of modeling and simulation of unit operations as well as the use of  

mini-plant facilities is applied in process development (see Figure 2). 

Figure 2. Optimization fields in downstream processing. 

 

Figure 3. Schematic manufacturing process of monoclonal antibodies from cell culture [84]. 
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Traditionally, monoclonal antibodies were purified by a sequence of different chromatographic and 

membrane-based operations [2,7,8,11,16,83,84]. A virus-inactivating operation, a filtration-based 

virus-reducing step and a final diafiltration have to be included [1,7,16,17,83,84]. Figure 3 represents a 

typical process for antibody purification. A selected number of these individual steps are discussed in 

more detail in the following sections.  

2.2.1. Chromatographic Separations  

After cell harvesting by centrifugation or filtration, a chromatographic separation unit is used to 

isolate antibodies from fermentation broth [2,8,16,18,84,85]. Protein A chromatography is one of the 

most important unit operations for antibody capturing [16,85,86]. It distinguishes itself by high 

selectivity towards IgG-type antibodies, high flow rate and capacity. The dynamic binding capacity 

ranges from 15–100 g mAb/L resin depending on antibody, flow rate and adsorbent [16,87,88]. The 

degree of purity is consistently higher than 95% [4,85,86,89]. Process-related impurities like HCP, 

DNA, media components and virus particles are removed [16,85,86]. One of the major advances in 

recent years of process development consists in a better integration of chromatography to the overall 

manufacturing process. Elution conditions of the initial Protein A capture step are adjusted to the 

following unit operation in order to enter a subsequent virus inactivation step or an ion exchange 

chromatography [16]. This eliminates any need for buffer exchange between these unit operations and 

it is one example for a successful integration of single separation operations during the last decades. 

Problems exist in form of Protein A leaching and non-specific binding of impurities like HCP and 

DNA. Leached Protein A reduces the binding capacity of Protein A chromatography and needs to be 

removed in subsequent purification steps [16,86,90]. The amount of bound impurities depends on  

the adsorbent, composition of cell culture harvest, column loading and washing conditions [16,86].  

Tarrant et al. (2012) [86] and Shukla et al. (2008) [85] published studies on HCP interacting with 

different Protein A matrices and the product. 

Cation exchange chromatography (CEX) presents an alternative to Protein A chromatography [7,16,88,89]. 

It requires a pH shift of the feed and a decrease of the conductivity before loading onto the column in 

order to optimize the dynamic binding capacity [7,16]. Older CEX processes distinguished themselves 

by a capacity of 20–30 g/L which cannot cope with new increasing product titers [7]. Optimizations of 

the resin resulted in capacities as high as 100 g/L at high flow rates und purity [88,89,91,92]. This 

technique can be used for antibodies with a basic isoelectric point [16]. Antibody variants, e.g., charge 

variants or aggregates, can be removed as well as most negatively charged impurities [16]. The costs of 

CEX are approximately one fifth of the costs for Protein A chromatography [7]. Synagis and Humira are 

two examples of commercially available mAbs which are purified by an application of CEX as capture 

step [7,88].  

Another alternative of Protein A chromatography are mimetic resins. The resins possess ligands 

which bind immunoglobulins (Ig) specifically and can potentially replace Protein A [90]. These can be 

Ig-binding proteins like protein G and L, synthetic ligands, bioengineered peptides [90,93–95] or 

Protein A like porous polymeric monoliths [95]. Different approaches of Protein A mimicking are 

described by El Khoury et al. (2013) [93], Qian et al. (2012) [96], Roque et al. (2005) [97] and Teng et al. 

(2000) [98], among others. 
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Subsequently, up to three chromatographic separations are applied in a classic manufacturing process. 

Ion exchange chromatography (IEC) is often used to reduce residual impurities including product 

variants, remaining HCP and DNA, leached Protein A, media components, endotoxins and virus from 

the cell line [16]. Anion as well as cation exchange chromatography can be run in flow-through or in 

bind-and-elute mode. They are often applied directly after Protein A Chromatography. Hydrophobic 

interaction chromatography (HIC) is complementary to ion exchange chromatography and Protein A and 

is mostly used as polishing step. In flow-through mode, HIC removes mostly aggregates, in bind-and-elute 

mode process- and product-related impurities [16]. These separations are significantly less expensive 

than Protein A chromatography but they are limited in capacity and throughput. Considering increasing 

product titers and new separation tasks, they have reached their limits [11,16,99]. Different optimization 

approaches regarding resins, operation modes or elution conditions are tested in order to avoid these 

limitations. 

Optimization of a chromatography step includes the design of improved ligands and matrices. These 

improvements may allow shorter residence times, higher flow rates [11,16,100] and longer life cycles. 

Future effort should be directed towards increased binding capacity at manufacturing scale, the number 

of cycles to process a harvested batch and the establishment of an intermediate washing step to  

remove remaining impurities [16,86]. Gagnon (2012) reviews different development trends regarding 

chromatography [4]. Another focus consists in connected processing including salt tolerant media or 

mixed-mode application [101–103]. To eliminate Protein A as the currently most expensive 

chromatographic step, lower-cost alternatives are under investigation. Possible alternatives are 

combinations of ion exchange and hydrophobic interaction chromatography [104]. 

2.2.2. Non-Chromatographic Separations  

Further trends in DSP address the development of non-chromatographic operations such as 

membrane-based procedures [4,11,105], aqueous two-phase extraction (ATPE) [99,106–108], 

precipitation [2,4,6,18], crystallization [109,110] or affinity alternatives [11]. This trend aims to reduce 

or even eliminate chromatographic operations. Non-chromatographic separations are in many cases 

proven in non-pharmaceutical processes with much higher feed volumes. Therefore, they are particularly 

useful for DSP now that higher titers are involved and greater amounts of buffer are required. These 

“low-tech” separation methods are good for high-volume feeds and rapidly remove a lot of liquid. This 

development may allow a reduction of costs, process time and yield losses. 

Membrane processes are one of the most important unit operations in biopharmaceutical processing. 

In USP, microfiltration membranes filtrate media, buffer and gases; in DSP they can be used as initial 

harvest operation for removal of biomass [16,105,111], particles prior to chromatographic operations 

and DNA from cell cultures [105]. Ultrafiltration membranes with a range of 1–100 nm are used to 

concentrate and diafilter biomolecules [16,105]. In order to ensure virus clearance, symmetric membranes 

are necessary with a narrow pore size distribution of 20–50 nm [105,111]. The separation mechanism 

is mainly based on molecular weight and to a lesser extent on shape and charge [16,105,112]. Other 

membranes frequently used are depth filters or high performance tangential flow membranes which 

can be neutral or charged [16,111]. Kumar et al. (2013) separated biomolecules based on their charge 

by charged ultrafiltration membranes [113,114]. 
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The former function of membranes as selective barrier for filtration is extended towards a selective 

adsorption of molecules to separate them according to their chemical behavior [2,102,105,115,116]. 

This relatively new development in membrane technology is called membrane chromatography [16,105,111]. 

These are symmetric microfiltration membranes functionalized with specific ligands attached directly 

to the convective membrane pores [16,105,111,117]. Diffusive pores are eliminated, mass transfer of 

biomolecules depends on convection and the binding capacity is largely independent of flow rates [16]. 

Significant advances have recently been made in developing high permeability and high capacity 

sterile filters by application of composite membranes. Membrane adsorbers are used for polishing 

applications to remove contaminants [105,111]. Viruses, endotoxins DNA, HCP and leached Protein A 

binds to the membrane at neutral to slightly basic pH and low conductivity [16]. Additionally, salt-tolerant 

membrane adsorbers have been developed for viral clearance as well as HIC membranes which have 

comparable dynamic binding capacities to conventional HIC resins [111]. Other development trends 

investigate the possibility to apply membrane adsorber in capture and purification of large biomolecules 

and will focus on new designs of structures for bind-and-elute processes [105]. Other fields in need of 

optimization concern flow distribution, membrane size distribution and thickness [16]. 

Research activities on aqueous two-phase extraction (ATPE) show potential applications of this 

process for separation of cells and undissolved components, of impurities and product. ATPE is 

considered a simple and low-cost technology compared to Protein A chromatography. It has 

advantages in scalability, can be applied in continuous processes and has a high capacity [99,106–108]. 

Unfortunately, there is still a limited understanding of molecular mechanisms of ATPE [118]. Other 

downsides are difficulties regarding its use as a platform step due to complex interactions of the 

multiple components involved. Another problem might be a sensitivity to feed stream variability [11]. 

In spite of this, strategies for ATPE design and process implementation are being developed [118] and 

already applied in purification processes of recombinant proteins [119].  

Precipitation can also be used for protein purification in industrial scale [106,120–122]. Current 

research indicates possible applications for product concentration and the separation of product and 

impurities. Volume limitations of the subsequent unit operation can be accommodated [120]. Membrane 

filtration removes the supernatant and is followed by dissolving the precipitate in a preferred buffer 

volume. This filtration process can be carried out either by dead-end filtration in lab-scale or by  

cross-flow filtration in industrial scale [4,123]. Centrifugation can be used as a substitute for  

filtration [4,120]. Another application of precipitation could be as a purification step before a capture 

by CEX. HCP and media components would be separated before a chromatographic capturing would 

take place [124]. Antibodies can be separated by either ammonium sulfate precipitation [4,121,125] or 

co-precipitation with negatively charged polymers [4]. Another possible application consists in a  

co-precipitation of several impurities with positively charged polymers. Those impurities include 

acidic HCP, DNA, and residual media components [4,120,126]. 

Crystallization is mostly applied in protein structure analysis and is already used as a cost effective 

and scalable purification procedure for small molecules [109,110]. Examples are the purification of 

low molecular weight substances like amino acids or industrial enzymes [11], like industrial lipase, or 

ovalbumin [109,110]. In insulin purification, crystallization is applied as polishing step benefitting 

formulation aspects of higher stability [109]. Its application in antibody purification is limited due to 

their size and heterogeneity [11]. A possible establishment in the purification process could be 
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performed inexpensively and with large volumes [110]. Crystallization would benefit formulation due 

to a higher stability of the final product in crystalline form [109]. It might be a suitable alternative to 

chromatography or ultra- and diafiltration [109,110]. However, this procedure is currently not ready 

for use. Only three recent studies presented potential µl-scale crystallization of whole antibodies [110] 

and Smejkal et al. (2013) [110] reported a successful crystallization of an IgG1-type antibody in a 

stirred L-scale. 

Other technologies for process development and integration include flocculation [106,127] and 

magnetic separations [11], among others. 

A successful integration of new technologies into a separation sequence requires a lot of time  

and effort in process development. New methods, e.g., high-throughput-screening and/or modeling 

approaches, may be able to improve the manufacturing process. A standardization of a new unit 

operation, resulting in a reliable and robust operation which can be applied to other products, may 

allow its use as potential platform technology. This platform should be able to reduce time and effort 

in DSP development of other products significantly [2,16,18,30]. 

3. Critical Parameters in Process Development 

Current separation technologies in antibody purification are designed for feeds of 2–5 g/L product 

concentration [6,8] which are routinely reached in generic fed-batch processes [128]. In USP, further 

optimizations are aiming to increase the product volumes significantly. Product concentrations of up to 

25 g/L were achieved by a two week long modified perfusion process of PER.C6® [7,9]. Product titers 

of above 5 g/L are going to exhaust existing capacities in DSP [2,7,18] and extensions of these 

capacities would shift the main costs of manufacturing towards DSP [7,8,10,11].  

An increased antibody titer upstream requires a higher amount of chromatography resin, buffer and 

membranes downstream and consequently, costs scale. Strube et al. (2012) [10] presented studies on 

cost distributions in downstream processing depending on product concentrations. They show the shift 

of production costs towards DSP and a possible increase of costs of the overall manufacturing process 

in case of higher titer in USP development in future processes. Based on the assumption of a constant 

spectrum of impurities, the overall cost of goods (COG) decrease with increasing product titers. In 

contrast, downstream costs dominate the overall production costs with increasing titer. Assuming a 

change in the composition of impurities with increasing titers due to optimizations of cultivation 

parameters [12–16], the costs of DSP are significantly higher [10]. Considering the trend towards 

further increasing product titers in future processes, a similar trend of increasing costs is expected for 

downstream processing [10,17,84]. 

Impurities in Biopharmaceutical Manufacturing 

Impurities generally consist of product and process related components as well as contaminants [129]. 

Product related components are molecular variants of the desired target molecule [129], precursors, 

degraded products [130,131], aggregates or product variants by different posttranslational  

modification [131,132]. They arise from production or during storage and possess different properties 

compared to the product regarding activity, efficacy or safety aspects. Process related impurities are 

cell components like host cell proteins (HCP) or DNA, chemical additives, residual media  
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components [15,129,133] or leachables like Protein A [15]. Residual media components or digested 

components include carbohydrates, amino acids, vitamins, salts and lipids, among others. Contaminants 

include all adventitiously introduced materials which are not part of the manufacturing process, such as 

(bio-) chemical materials or microbial species. They should be strictly avoided [129]. 

Especially, host cell proteins (HCP) are a main source of impurities. This complex group of 

proteins is defined by their broad variety of properties. HCP of one process differ significantly from 

each other in their molecular mass, isoelectric point, hydrophobicity and structure. They can easily be 

a challenge for product purification due to the changing level, composition and property distribution 

during a single fermentation process.  

Few studies have investigated problematic HCP and their removal in DSP. Pezzini et al. (2011) [101] 

monitored the fate of HCP through chromatographic operations. Low et al. (2007) [11] and Guiochon 

and Beaver (2011) [134] reported the HCP profiles in eluates from Protein A chromatography. 

Hogwood et al. (2013) [13] also reported the significant impact of harvest operations on the HCP 

profile. According to them, early DSP operations impact the HCP profile and the relative abundance of 

particular proteins throughout product purification.  

HCP compositions depend strongly on metabolic pathways which are characteristic for the chosen 

cell line and clone and result in a characteristic pattern of proteins [14]. Other pathways are changed in 

order to optimize metabolic production routes of the product and thereby, changing production routes 

of secondary metabolic products [14,135,136]. Their composition depends on several factors: host 

organism [14], cell clone [137], protein of interest [136], route of metabolic expression [14,135], 

viability [12,137], stage of cell culture, process conditions in fermentation and harvest conditions [12]. 

Tait et al. (2012) [12] demonstrated the impact of age and viability of the cell culture on HCP 

composition. During the fermentation, cells produce different proteins at the end than they do in the 

beginning. This is due to changes in the environment and their metabolism. Additionally, the amount 

of HCP increases significantly at a stage of decreasing viability. Process conditions influence the HCP 

profile, too. According to Jin et al. (2010) [14] the HCP level can change by a factor of 0.5–7 due to 

variations of temperature, aeration, feeding strategy, medium composition, cell culture duration and 

harvest conditions, among others. The results of Tait et al. (2012) [12] indicate that the time of harvest 

is crucial towards the resulting spectrum of impurities which enters the downstream processing. Along 

these results, it should be investigated if an earlier harvest results in an easier separable HCP spectrum. 

This can improve the overall process in spite of a potential loss of production time. 

The changes in levels of HCP, their composition and distribution of properties present a high 

optimization potential in bioprocess development. The high dependency of HCP profiles from different 

USP parameters is suitable as an optimization tool. By changing the focus of early upstream 

development, it is possible to reduce the HCP production or to influence its composition and improve 

DSP performance. By identification of unfavorable proteins in DSP, a screening for cell lines which 

produce HCP at lower levels would improve product purification [13].  

4. Trends in Process Development and Optimization Strategies 

Integration of different downstream operations will advance. An integration of ion exchange and 

hydrophobic interaction chromatography would, for example, permit the use of only one buffer system 
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for both operations [104]. Further trends in purification technology include other non-chromatographic 

processes like membrane adsorbers [102,105], crystallization [109,110], precipitation or aqueous  

two-phase separation [99,106–108]. Predictive biopharmaceutical process design will gain importance 

in process development as well. Possible applications will result in cost reduction and improve the 

success rate of commercial viability [138]. In DSP, rigorous modeling is already established. Other 

approaches are developed regarding USP needs. For example, Kontoravdi et al. (2013) [139] presented 

an approach to model scale up and glycosylation behavior in USP of mAbs.  

Another new approach consists in the application of quantitative structure–activity relationship 

(QSAR) modeling. Data analysis methods and statistics are applied to develop models that can 

accurately predict biological activities or properties of compounds based on their structures [140,141]. 

QSAR modeling might be able to predict the chromatographic separation of proteins [142]. One 

example was published by Buyel et al. (2013) [142]. They described the use of QSAR modeling to 

optimize chromatographic removal of tobacco host cell proteins in biopharmaceutical production.  

Transient gene expression might be another interesting option in future manufacturing processes. It 

has already been established in process development in screening steps for possible proteins of interest. 

Its establishment as a manufacturing technology is going to require more effort on product titer, cell 

number, ensuring product quality [56] and industrial acceptance [25] but its application has significant 

potential to save time and therefore costs. An established transfection/expression process might allow 

running production campaigns for a diversity of different recombinant proteins, including antibodies, 

using one facility and one host cell line. It is likely to be significantly faster and more flexible.  

Girard et al. (2002) [57] presented a successful transient transfection on a 100 L scale. 

The implementation of new separation technologies on an industrial scale will require significant 

investments in development, scale up and validation including associated risks. Therefore, they need to 

differentiate themselves by distinct increases in efficiency and cost reduction and should be evaluated 

carefully [8]. To reduce production volumes, the need for facility flexibility and faster turnarounds will 

increase. This can lead towards implementation of disposables in manufacturing [2,80], continuous 

processing [143,144] and dedicated but decentralized manufacturing concepts in containers [145].  

Advances in single-use technology lead to its increased implementation in biopharmaceutical 

production in order to lower capital and operational costs, increase production flexibility and enable a 

rapid set-up of bioprocessing and progressive manufacture of multiple products [77]. Today, single-use 

product lines include devices from storage bags to bioreactors resulting in the possibility for a complete 

single-use upstream process [77]. Trends in development address limits in scale and scarcity of 

standardization and validation as well as interactions between the plastic bags and process  

components [80]. The possibilities of leachables and extractables need to be worked on as well.  

In DSP, it has been difficult and expensive to implement a fully single-use process up to now [77,80]. 

Recent advances achieved product-dedicated fixed columns and fully disposable columns [80]. 

Disposable membrane cassettes seem to be an appropriate alternative to flow-through chromatography 

steps [80]. Membrane adsorption technologies, single-use moving bed, countercurrent chromatography 

and other chromatography methods are likely to be implemented as single-use in coming years [77]. 

The limit in scale of disposable technologies results in considerations of alternatives in process 

strategies for fed-batch processes. Continuous processing in mAb manufacturing is one trend to be 

considered in the coming years. Vogel et al. (2012) [20] published a development strategy for a 
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platform process based on continuous operations on a small scale including membrane adsorber for 

processing of complex biopharmaceuticals, however not antibodies. A transfer of this scheme to 

antibody purification would require membrane adsorber of a much higher capacity. Other options consist 

in the development of continuous operation modes of ATPE [107,146,147], centrifugation [148] or 

new continuous principles in chromatography, like MCSGP [149] or iCCC [150]. In upstream 

processing, continuous cultivations are already well established, as described before. Today, 

development trends concentrate on new cell retention devices and modifications of operation modes. 

The most interesting example in USP consists in a possible application of ATF as modified perfusion 

or concentrated fed-batch process [66,67,69]. In combination with continuous DSP and disposable 

technologies, it presents the opportunity to small-scale manufacturing processes of low investments 

costs and risks. In addition, the creation of high-volume cell banks could also be achieved resulting 

into a shortened bioreactor train in manufacturing processes [69]. 

In terms of capacity, it is most likely that current large facilities (>10,000 L) will remain. New 

capacities, however, will be added on a lower scale. Other products, for example individualized 

biologics and personalized medicines, will probably be produced in small scale using single-use 

technologies due to small required volumes. This trend is likely to advance towards modular facilities. 

Bioprocessing unit operations can be housed in container-like transportable clean rooms allowing the 

whole manufacturing process to be transported, constructed and operational within the shortest amount 

of time [77]. They also have the advantage of possible use in GMP-challenged countries. 

Current optimization approaches are aimed at single unit operations within the overall manufacturing 

process. Optimizations between USP and DSP currently focus on titer, aggregates and, if required, 

isoforms. Turbidity may be another parameter as well. DNA content is considered by choosing an 

appropriate harvest operation which reduces possible cell damage to a minimum. Other impurities are 

seldom taken into account during process development. This is going to be a problem since steadily 

increasing product titers involve creating impurities which are more difficult to separate. In order to 

optimize the overall manufacturing process, it is necessary to take these impurities into account. The 

question is: Would it be better to produce less product in order to change the impurity profile towards 

less impurities or at least to create only impurities which are easy to separate? Such a concept might 

result in a less expensive manufacturing process due to reduced yield losses. This integration of 

upstream and downstream processing can be considered a first useful tool. It addresses this challenge 

regarding HCP and changes the focus of upstream development. Foci of media and process 

optimization need to be adapted as well as new selection strategies for cell lines, and cell clones have 

to be implemented. Data by the groups of Hogwood (2013) [13] and Liu (2009) [151] suggested that 

such a change of early process development in USP focusing on HCP should seriously be considered. 

5. Concluding Remarks and Outlook 

Demands for high quality biologics will continue to increase in the coming decades. However, the 

boundary conditions will change substantially. Amounts to be produced and the number of products will 

increase. Additionally, there will be less, or even no blockbusters due to a shift towards stratified 

medicine. Many of the current blockbusters will be “running out of patent” during the next years.  
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In combination with increasing pressure from regulatory agencies for enhanced quality and lower 

process costs from the health care systems, we are facing a major challenge. 

The trend towards stratified therapeutics will support a change in plant design aiming for highly 

flexible multi-purpose facilities for small production volumes. Such a development will not only  

push innovation in the development of single-use technologies but also in the development of  

non-chromatographic, continuous and flexible downstream operations. As one consequence of these 

changes in process development, an integration of USP and DSP development regarding impurity 

profiles would be useful as a supporting tool for process optimization which can be established at 

reasonable expense. 
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