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Abstract: Feature fusion techniques have been proposed and tested for many medical applications
to improve diagnostic and classification problems. Specifically, cervical cancer classification can be
improved by using such techniques. Feature fusion combines information from different datasets into
a single dataset. This dataset contains superior discriminant power that can improve classification
accuracy. In this paper, we conduct comparisons among six selected feature fusion techniques to
provide the best possible classification accuracy of cervical cancer. The considered techniques are
canonical correlation analysis, discriminant correlation analysis, least absolute shrinkage and selection
operator, independent component analysis, principal component analysis, and concatenation. We
generate ten feature datasets that come from the transfer learning of the most popular pre-trained
deep learning models: Alex net, Resnet 18, Resnet 50, Resnet 10, Mobilenet, Shufflenet, Xception,
Nasnet, Darknet 19, and VGG Net 16. The main contribution of this paper is to combine these
models and then apply them to the six feature fusion techniques to discriminate various classes of
cervical cancer. The obtained results are then fed into a support vector machine model to classify four
cervical cancer classes (i.e., Negative, HISL, LSIL, and SCC). It has been found that the considered
six techniques demand relatively comparable computational complexity when they are run on the
same machine. However, the canonical correlation analysis has provided the best performance in
classification accuracy among the six considered techniques, at 99.7%. The second-best methods
were the independent component analysis, least absolute shrinkage and the selection operator, which
were found to have a 98.3% accuracy. On the other hand, the worst-performing technique was the
principal component analysis technique, which offered 90% accuracy. Our developed approach of
analysis can be applied to other medical diagnosis classification problems, which may demand the
reduction of feature dimensions as well as a further enhancement of classification performance.

Keywords: cervical cancer; feature fusion; feature selection; deep learning structures; support vector
machine; disease discrimination accuracy; performance comparisons

1. Introduction

In 2020, 604,000 new cases of cervical cancer were estimated, and 342,000 deaths were
reported; 90% of the new cases and deaths were reported in middle- and low-income
countries [1]. These cases were due to the lack of health awareness as well as the limited
access to screening methodologies. According to the World Health Organization (WHO),
appropriate screening reduces morbidity and mortality among women [2]. In this regard,
a pap smear is the most common early screening and diagnostic tool for cervical cancer.
Hundreds of sub-pap smear images are examined under a microscope by a cytopathologist.
This makes such manual analysis a subjective, error-prone, and time-consuming process.

Computer-aided design (CAD) tools can play an important role in overcoming the
inconsistency, inaccuracy, and time-consuming problems of manual analysis. In the last
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few decades, automated methods have been developed and then approved by the food
and drug administration (FDA) to diagnose and classify cervical cancer [3–6].

The recent advances in computing and the large growing data repository have sup-
ported efficient machine learning (ML) and deep learning (DL) algorithms to aid medical
decisions. In recent years, pap smear images have been efficiently processed by adequate
machine learning algorithms for cervical cancer classification [7–12]. One of the first steps
in building such models is to identify the features that best describe the input data.

In this paper, we mainly focus on providing comprehensive testing results for the
estimation accuracy of various data fusion techniques when they are applied to cervical
cancer classification. It is noted that data fusion can occur at different levels, such as the
feature level, matching score level, or the decision level [13]. The main aim of feature
fusion is to combine information from two or more feature sets into a single dataset that
has more discriminant power than each feature vector. Accordingly, in this paper, we are
interested in utilizing this discriminant power in separating classes more efficiently. We
are conducting a comparative analysis to test the effectiveness of selected feature fusion
techniques in enhancing the accuracy of cervical cancer classification. These techniques are
applied on the feature level, which reduces the dimensionality of the feature datasets while
enhancing the accuracy of classification.

The following literature review highlights recent studies that show the effectiveness of
data fusion techniques for cervical cancer detection. However, due to the limited number
of studies that use feature-level fusion for cervical cancer classification, which is the main
purpose of this paper, the literature review is followed by other related studies that use
feature fusion on other medical images for diagnostic and classification purposes.

2. Related Work

In this section, we have selected the most recent studies that use feature engineering
specifically on cervical cancer classification. In each article, the authors used a
different fusion technique and showed how this improved the classification accuracy.
Alquran et al. [14], proposed a computer-aided diagnosis of cervical cancer classification
based on feature fusion between the well-known Shuffle Net DL structure and a novel
Cervical Net structure. The novel Cervical Net structure was proposed by Alquran. The
authors used a principal component analysis (PCA) and canonical correlation analysis
(CCA) as the feature reduction and fusion techniques. The resultant features were fed
into different ML classifiers. The best accuracy of 99.1% was obtained using a support
vector machine (SVM) to classify between five classes of pap smear images. On the other
hand, Liu et al. [15] proposed a framework to classify cervical cancer cell classification
based on DL. Specifically, they extracted local and global features using a convolutional
neural network (CNN) module and a visual transformer module, respectively, from cer-
vical cancer cell images. Then these features were fused using a multilayer perceptron
module. The framework proposed by Liu et al. obtained an accuracy of classification
of 91.72% by combining two datasets (CRIC and SIPaKMeD datasets) for an 11-class
classification problem.

Rahman et al. [16] proposed a method for enhancing computer-aided diagnosis of
cervical pap smear images using a hybrid deep feature fusion (HDFF) method. This method
was tested on the SIPaKMeD dataset and performance was compared with multiple DL
models alongside the late fusion method. The late fusion, sometimes called decision-level
fusion, leverages predictions from multiple models to make a final decision. In their paper
using the SIPaKMeD dataset, they obtained a classification accuracy of 99.85%, 99.38%,
and 99.14%, for a 2-class, 3-class, and 5-class classification. They also tested their model
on the Herlev dataset and achieved an accuracy of 98.32% for a 2-class and 90.32% for a
7-class classification. Moreover, Hussain et al. [17] proposed a computer-assisted screening
system based on DL. The paper explored six deep learning structures, namely Alexnet,
Vggnet (vgg-16 and vgg-19), Resnet (resnet-50 and resnet-101), and Googlenet architectures,
for a four-class diagnosis of cervical cancer lesions. The authors fused the best three DL
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models yielding the best accuracy for class classification. The output of each deep learning
structure mentioned above was evaluated based on performance, then the best three models
(Resnet-50, Resnet-101, and Googlenet) were combined (fused) to generate their ensemble
classifier. Their results showed that the proposed classifier achieved the highest area under
curve (AUC) = 97% between two positive and negative classes.

The above articles applied some sort of data fusion method to enhance the decision
accuracy from cervical cancer pap smear images. However, not all the above studies
used feature-level fusion. Rahman et al. and Hussain et al. used decision-level fusion.
Alquran et al. used CCA to fuse features from two datasets, and finally, Lui et al. used a
multilayer perceptron model. Due to the limited number of studies that use feature fusion
for cervical cancer classification, we listed other studies that highlight the effectiveness of
using feature fusion and reduction analysis to improve other medical image classification
problems. In the below references, we have selected articles that used feature analysis CCA,
discriminant correlation analysis (DCA), least absolute shrinkage and selection operator
(LASSO), independent component analysis (ICA), PCA, and others. Most of the feature
fusion techniques mentioned in the below articles were selected in our comparative study.

Zhang et al. [18] studied four different feature fusion and reduction techniques be-
tween two independent feature sets, namely, LungTrans features and PrRadomics features.
In their paper, the authors proposed a method for feature fusion named the ‘risk score based’
feature fusion method. Their paper showed that the proposed risk score-based feature
fusion method improves the prognosis performance for predicting the survival of pancre-
atic ductal adenocarcinoma patients, yielding an increase of 40% of AUC compared with
AUC without fusion. The feature fusion and reduction techniques used were PCA, LASSO,
Boruto, Univariant Cox proportional-hazards CPH, and the proposed risk score-based
technique. The latest was performed by feeding each feature set to two different random
forest classification models, and the resulting most significant features were fed into another
random forest-based prognosis model. In summary, Zhang et al. compared five different
feature fusion techniques on two feature datasets (lungtrans features and PrRadomics) to
improve the prognosis of PDAC. Moreover, Fan et al. [19] integrated dynamic contrast-
enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a
CCA. The paper aimed to provide related complementary information between the fused
feature datasets to improve breast cancer prediction. After fusing the two datasets, they
used SVM-based recursive feature elimination (SVM-RFE) to identify the optimal features
for prediction. They noticed an enhancement in the AUC after using fused features. More-
over, they reported that using CCA was more beneficial than using concatenation-based
feature fusion or classifier fusion methods. Another method for feature-level fusion is
the DCA, which was proposed by Haghighat et al. [20] where they introduce DCA as an
effective feature fusion method to enhance class separation. They tested DCA on multiple
biometric datasets showing the effectiveness of this approach. Using DCA combines the
information from more than one feature dataset into a single dataset that has more discrim-
inant power. This was applied to different medical diagnostic applications, for example,
Wang et al. [21] extracted features from four datasets for COVID-19 CCT images using a
novel feature learning algorithm. Then, they proposed a selection algorithm to select the
best two models. Finally, they used the DCA to fuse the two features from the two models.
The final determined model was named CCSHNET. Their proposed CCSHNET model
based on fusing features using DCA showed high-performance measures when compared
to other COVID-19 detection methods.

In this paper, we focus on the existing feature engineering techniques. The utilization
of pre-trained DL structures to extract features from whole-slice pap smear images is a
promising idea, alongside exploiting feature fusion and reduction techniques to obtain the
highest level of confidential computer-aided diagnosis system for colposcopy images. To
our knowledge, this is the first paper that employs ten deep-learning models to extract
representative descriptors, which can be utilized for the recognition of pap smear image
diseases via feature engineering algorithms. The novelty in our approach is using existing
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feature-level fusion to extract the most representative features from ten DL models to
enhance classification accuracy.

3. Materials and Methods

The method that is proposed in this paper is illustrated in Figure 1.
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Figure 1. The proposed method. Showing all sequential steps of the proposed methodology in
this paper.

The methodology followed in this paper consists of six steps. Step one: collect the
cytology dataset that consists of 1000 samples for 4 different cervical cancer classes. Step
two: perform image augmentation. Step three: extract features using CNN from ten
deep learning structures (4 features for each DL structure total of 40 features). Step four:
concatenate all the features from the ten DL structures to be fed into the feature fusion step.
Step five: apply different feature fusion techniques to fuse or select features. Step six: feed
the features into an SVM to measure classification performance. The details of each step are
described in detail in the following section. Cytology dataset acquisition and augmentation
are described in Sections 3.1 and 3.2. Extracting features using deep learning structures are
described in Section 3.3. The theoretical background of the six selected fusion techniques is
described in Sections 3.4 and 3.5. Finally, the SVM method is described in Section 3.6.

3.1. Image Acquisition

One of the cervical screening tests is liquid-based cytology (LBC). A total of 963 LBC
images are separated into four sets to reflect the four classes, namely, NILM, LSIL, HSIL,
and SCC, that make up the whole repository. It includes cervical cancer-related precancer-
ous and cancerous lesions that meet the Bethesda System requirements (TBS). A total of
460 patients visited the obstetrics and gynecology (O&G) department of the public hospital
with varied gynecological issues and were examined using the ICC50 HD microscope to
take the images at a magnification of 40×. The pathology department’s professionals then
examined and categorized the images [22].

3.2. New Image Augmentation

Data augmentation is a strategy used to expand the amount of data by adding slightly
changed copies of either existing data or freshly created synthetic data from existing data.
It serves as a regularizer and helps minimize overfitting. This paper used rotation images at
random angles in the range of [−45, 45] degrees, image resizing with random scale factors
between [0.2, 1], and translation in both directions X and Y are [−3, 3], to accomplish image
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augmentation for the abnormal cases [23]. Table 1 describes the number of images before
and after augmentation.

Table 1. The number of images before and after augmentation for abnormal cells. After augmentation
the number of images becomes equal.

Abnormal Cells Before Augmentation After Augmentation

1. Low-grade squamous
intraepithelial lesion (LSIL) 113 250

2. High-grade squamous
intraepithelial lesion (HSIL) 163 250

3. Squamous cell carcinoma (SCC) 74 250

3.3. Deep Learning Features

Several pre-trained deep learning models are employed to extract the most representa-
tive features from the last fully connected model in each one. The selected deep-learning
structures were trained on the ImageNet database to distinguish between 1000 classes from
nature. Transfer learning techniques were used to make these structures compatible with
the designed problem statement, which focused on classifying four types of whole-slice
cervical cells. The transfer learning appeared by augmenting the input size of the image
to be appropriated with the input layer of each one and removing the last fully connected
layer to make it four neurons for four classes. The represented features for each model
are extracted from the last fully connected layer. Each one provides four distinguished
features for four classes. The networks that are utilized for feature extractions are AlexNet,
ResNet18,50, and 101, Mobile Net, Shuffle Net, Xception Net, Nasnet, Dark-19, and VGG16.

3.3.1. AlexNet

AlexNet is one of the most popular convolutional networks. It was first introduced in
2012 for ImageNet recognition of 1000 nature classes. AlexNet architecture consists of five
convolutional layers, three max-pooling layers, two normalization layers, and two fully
connected layers with a softmax layer beside input and output layers. Each convolutional
layer is composed of convolutional filters, which are responsible for extracting the graphical
features, and a nonlinear activation function named ReLU. Max pooling is in charge
of the down sampling of activated extracted features. The image input size should be
227 × 227 × 3 to accommodate the parameters of the following layers [24].

3.3.2. ResNets

Residual neural networks (18, 50, and 101) are pre-trained convolutional neural net-
works. They are distinguished by their residual block property. This feature solves the
problems of vanishing or exploding gradients due to deep learning. ResNets allow the
formation of a skip connection, which enables the activation of a layer to further layers by
skipping some layers in between. That is the architecture of the residual block. ResNets
consist of stacking such blocks. Several versions of ResNet have existed that depend mainly
on the number of connected layers, such as ResNet 18, ResNet50, and ResNet101. The input
size of these networks is 224 × 224 × 3 [25].

3.3.3. Mobile Net

Mobile Net is a pre-trained convolutional neural network. It was designed for mobile
and computer vision applications. One of the most prominent properties is depth-wise
separable convolution, which reduces the number of parameters that contain problems
in the existing convolutional layers in the existing networks. That depends mainly on
depth-wise convolution, which is named channel-wise spatial convolution, followed by
pointwise convolution, with a kernel size of 1 × 1 that combines the resultant features from
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the depth-wise convolution. On the other hand, it reduces the dimension of generated
feature map. Their advantages are low latency and a low number of parameters [26,27].

3.3.4. Shuffle Net

Shuffle Net is one of the most efficient networks that is designed for mobile appli-
cations. To maintain a high level of accuracy, Shuffle Net performs point-wise group
convolution and channel convolution. These distinguished properties make Shuffle Net
more accurate, while reducing the complex time computation. It consists of a stacking
of shuffle netblocks, each one consisting of two grouped convolutional layers, channel
shuffle layer, in addition to depth-wise convolutional layers. The process within one block
considers depth-wise convolutional and point-wise convolution as well. The output from
each block passes to the ReLU layer for mapping purposes. The designed input layer is
compatible with image size 224 × 224 × 3 [28].

3.3.5. Xception Net

The insight behind the 3D convolutional layer is the capability to allow the filter to
learn within the 2D spatial domain alongside the depth via channel dimension. Therefore,
the output is obtained by the correlation between the spatial and the channel convolu-
tions. The idea behind the inception blocks makes the process easy and forward by using
several explicit series of operations ended by cross-channel correlation and spatial correla-
tions. The process operation starts with cross-channel correlation to reduce the dimension
via 1 × 1 convolution that maps the input data into 3 or 4 spaces that are lower dimen-
sional than the original input space. After that, the process proceeds via regular 3 × 3 or
5 × 5 convolutions.

The new version of the inception module is called the “extreme”. The Xception
module performs the channel convolution and obtains a spatial convolution for each
channel separately. The Xception architecture consists of 36 convolutional layers forming
the feature extraction base of the network. Moreover, the Xception structure is formed as
linear stacking of inception modules [29].

3.3.6. NasNet

Neural search architecture (NAS) networks stand for NASNET. It is a predefined
architecture that is trained over an ImageNet database of over 1000 categories from nature.
It consists of a series of cells. These cells are the normal and reduction cell, where the
normal cell is responsible for constructing the feature map via convolutional filters, and
the reduction cell oversees the reduction of the size of the feature map in terms of width
and height by factor two. Moreover, the structure of NASNET ended by the softmax layer
yields the probability for the last classification layer [30].

3.3.7. Dark-19 Net

Darknet is one of the most known deep learning structures that is used to detect objects
from images in the available dataset. Dark Net-19 consists of 19 layers, which yields to its
name. The Darknet has various applications in object detection, alongside counting as the
most known algorithm in YOLO, which stands for you only look once [31].

3.3.8. VGG-16 Net

VGG stands for visual geometry group convolutional network, which is trained on
the ImageNet database. VGG16 consists of 16 layers: thirteen are convolutional layers, and
the rest are fully connected layers. The input layer is compatible in design with image size
224 × 224 × 3. The VGG network has a small perspective field where the convolutional
filter size is 3 × 3, which influences capturing more details in the image in both left-right
and up-down directions. Moreover, the convolution of 1 × 1 acts as a linear transformation
for the input data. This network utilizes transfer learning techniques to extract the most
significant features for four pap smear image classes [25].
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3.4. Feature Fusion

Feature extraction is the genesis of the recognition between various classes in machine
learning algorithms. However, the leverage of most representative features may appear
in the performance of the designed classifier. Therefore, looking for the most influential
attributes is a crucial challenge in computer-aided diagnosis systems. This paper compares
techniques in engineering features to classify whole-slice images with highly confidential
results. Employing deep learning semantic descriptors alongside one of the most known
feature processing methods is a hot topic presented in this paper. This paper applies two
types of fusion algorithms: CCA and DCA.

3.4.1. Canonical Correlation Analysis

CCA is one state-of-art statistical analysis of multivariate data that measures the linear
relationship between two datasets. It is one of the most commonly used methods in data
fusion. CCA focuses on maximizing the correlation between the variables of the two
datasets and ignores the relationship between the variables within the same datasets [32].

CCA is defined as two sets of basis feature vectors, where x and y, the correlation of
the features between these bases, are mutually maximized.

These two datasets x and y can be written as linear combinations of their
internal features:

x = xTŵx
y = yTŵy

To maximize the above two functions, the corresponding function should be maximized

ρ =
E[xy]√

E[x2] E[y2]

The maximum values of ρ in respect to the weights of subsets x and y are called
canonical variates.

3.4.2. Discriminant Correlation Analysis

Feature fusion aims to find the highly correlated features between two separate
datasets. In DCA, the class is considered a membership of correlation analysis that enhances
the fusion process. DCA needs low computational complexity, which leads to minimizing
time in real-world applications. Moreover, it reduces the number of features that best
describes the original ones [21]. The corresponding equations illustrate the process of DCA.
The training features are:

E = {(x1, y1), (x2, y2), . . . , (xn, yn)} , where yi = {1, . . . , k}

where k is the number of classes, x, and y are features and their corresponding class.
The first step is calculating the mean of each class separately:

xi =
1

mi

mi

∑
j=1

xi
j,

where mi is the number of samples in each class. Then, evaluate the overall mean of the
training set by:

x =
1
n

k

∑
v=1

mvxv

The covariance matrix is calculated by the following equation:

sigma = ϕT ϕ,

where ϕ =
√

m1(x1 − x), . . . ,
√

mk(xk − x).
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The singular value matrices (SVD):

sigma = UΛUT ,

where Λ is the diagonal of eigenvalues λi, U donates to eigenvectors. The eigenvectors
are ordered in ascending form with their corresponding eigenvectors. The transformation
matrix is given by:

R = ϕUtΛ−1/2
t×t

All previous steps are performed on each set separately. Then, data points are trans-
formed as:

Z1 = RT
1 X1

Z2 = RT
2 X2

After that, the covariance matrix of transformed features between two sets:

Sb = Z1ZT
2

Then, SVD is calculated for Sb:

Sb = VΣVT

Then, the transformation matrix is given by:

T = VΣ−
1
2

Then, the data are generated by the following equation:

X′1 = TTZ1
X′2 = TTZ2

Finally, the output features are generated according to the equations:

X′ = X′1 + X′2

3.5. Feature Selection

Feature selection is one of the prominent topics in machine learning, processing, and
data analysis. The mean goal of attributes selection maintains that the best representative
attributes have high variance, which reduces the dimensionality of the feature maps and
reduces the time computation and complexity. Various feature selection techniques are
proposed in the literature. In this paper LASSO, PCA, and ICA are used. Below is a
description of each method.

3.5.1. Least Absolute Shrinkage and Selection Operator

LASSO is one type of penalized logistic regression, where a penalty is imposed on the
logistic model for having too many variables. This leads to shrinking the coefficients of the
least contributive variables to zero. Specifically, LASSO forces the less contributive variables
to become exactly zero. For LASSO regression, a constant lambda should be specified
to adjust the amount of the coefficient shrinkage. The best lambda can be defined as the
lambda that minimizes the cross-validation mean square error rate. The mean squared
error (MSE) measures how close a regression line is to a set of data points. In our method,
we have chosen the one standard deviation lambda λ1se to select the final model [33].

3.5.2. Principal Component Analysis

The PCA is well known as an unsupervised learning algorithm used to obtain the
most significant features using dimensionality reduction. First, the dataset is standardized
using the Z score a
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zi =
xi−µc

σc
, where xi is the feature value for each sample, µc the mean of each feature

column, and σc is the standard deviation for each column as well.
Then, the covariance matrix is built for all standardized features, where the diagonal

represents the variance of each feature, and the off-diagonal describes the covariance be-
tween two features in the whole dataset. Then, calculate the eigenvector and eigenvalues
that represent the 95% variation for the constructing covariance matrix. Finally, the eigen-
values are ascended from the highest to lowest principal components. The projection is
calculated to find the original significant features from the original dataset [34,35].

3.5.3. Independent Component Analysis

ICA is a statistical technique that reveals hidden factors (sources) from sets of random
variables, or signals [36], and these sources are maximally independent. ICA has been
used in unsupervised learning classification problems. Many studies have shown the
utility of ICA to extract independent features from the original feature dataset to reduce the
feature space and thus, improve classification accuracy [37–39]. Mathematically speaking,
assuming that x(t) = x1(t); x2(t); . . . ; xn(t) are the set of observed variables that are a
combination of the original and mutually independent sources (original features), source
s(t) = s1(t); s2(t); . . . ; sn(t), the relation can be expressed by x(t) = As(t), where A is called
the mixing matrix. In other words, the equation can be written as y = Wx, where W is the
demixing matrix W = A−1, and y = y1; y2; . . . ; yn, are the independent components. The
demixing matrix and the independent variables can be found from mixed observations
using one of the ICA algorithms such as fastICA [40], which was used in this paper.
Furthermore, the set of extracted components (y = y1; y2; . . . ; yn) are non-Gaussian and
maximally independent. One way to measure this is using the kurtosis [41] measure, which
was adopted in this paper to rank the extracted independent components.

3.6. Support Vector Machine Classifier

SVM classifier is a well-known supervised machine learning algorithm, which was
developed in 1963 by Vladimir N. Vapnik. SVM selects the extreme training points from
different classes to specify the boundary region between various labels, which is called the
margin region. If the training points are linearly separable, then the discrimination between
them is an easy task. If it is not linearly separable, then the SVM has a distinguished
property to represent this feature into higher space using the kernel trick to be linearly
separable in higher space. These kernels are radial basis functions, polynomial-Gaussian,
and many forms of kernels.

4. Results & Discussion

The whole-slice images are passed independently to ten pre-trained deep learning
structures. Each pre-trained CNN is modified using transfer learning so that the last fully
connected layers become compatible with four classes. Four features were extracted from
each CNN. The generated feature map consists of 40 features from 1000 samples. Each
class consists of 250 samples; 250 slices of the normal class; 250 samples for HISL; samples
for 250 LSIL; and samples for 250 SCC.

The generated maps are passed to different feature selection and fusion methods. The
resultant feature map is divided into a 70% training set for the SVM classifier and a 30%
to test the generated SVM model. The corresponding results describe the performance of
the SVM in discriminating four colposcopy whole-slice images using feature fusion and
selection techniques.

4.1. CCA

The whole mapped features were passed to the CCA, which resulted in the six most
correlated attributes. These were then split into 70% as a training set and 30% as a test
set for the SVM classifier. The resultant confusion matrix shown in Figure 2a shows
the performance of the trained model. The HSIL samples are classified correctly with a
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sensitivity of 100% and a precision of 98.7%. Moreover, the LSIL achieves 100% positive
predictive value (PPV) and 100% recall. The same prominent results are obtained in the
normal class, with a true positive rate of 100% and precision of 100%. For the lowest
sensitivity obtained in the SCC, the PPV is 100%. Finally, the overall accuracy achieved is
99.7. Figure 3 illustrates the receiver operating characteristics (ROC), which defines the
area under the curve (AUC) for each feature selection technique. The AUC represents the
relation between the false positive rate (specificity) on the x-axis and the true positive rate
(sensitivity or recall) on the y-axis for each class. As is clear from Figure 3a, the AUC for all
classes in the case of the CCA is one.
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4.2. DCA

The same procedure was performed for the discriminant correlated analysis. Forty
DL-labeled features were passed to the DCA. The performance of the trained SVM model
reached 98.7% for sensitivity to the HISL category, with a low PPV of 96.1%. However, the
prominent results appear in both the LSIL and normal classes, where recall and precision
reach 100%. The behavior of the designed classifier in the SCC samples is similar to the
HSIL, with the lowest sensitivity of no more than 96%, and a precision of 98.6%. The overall
accuracy of the SVM using the DCA feature fusion method is 98.7%. The confusion matrix
is shown in Figure 2b. On the other hand, the performance of the combination between
the DCA and SVM is represented in Figure 3b. Almost all classes have the highest level
of AUC.

4.3. LASSO

The feature set was passed to the LASSO algorithm to select the most representative
features. Figure 4 shows the cross-validated mean square error (MSE) for the LASSO model.
Each red dot represents a lambda (λ) value with confidence intervals for the error rate.
Two vertical lines are drawn between the lambda that achieves the lowest MSE (λmin)
and the lambda that indicates the highest value of MSE within one standard deviation of
the minimum lambda (λ1se). The numbers at the top of the plot represent the number of
features of the model at a given lambda value.
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Figure 4. MSE of LASSO model. Showing how the number of features selected is affected by the
MSE value.

In our methodology, we have selected λ1se = 0.004 to be fed into the LASSO model,
which resulted in the extraction of 19 features from a total of 40. Therefore, the selected
features that passed to the SVM were 19. The corresponding confusion matrix is shown in
Figure 2c, which clarifies the performance of the SVM model using the 19 selected features
by the LASSO algorithm. The SVM correctly distinguishes LSIL, with higher sensitivity
and precision reaching 100%. However, the lowest true positive rate in the HISL class and
its PPV do not exceed 97.3%. The performance of the normal class is 98.7% and 100% for
recall and precision, respectively. Furthermore, the SCC has the lowest precision of 96.1%
and a moderate value sensitivity of 97.3%. Moreover, the AUC for all classes is almost
equal to one. This shows the effectiveness of the proposed method.

4.4. Feature Concatenation

The feature concatenation is performed by unionizing all features into a single dataset.
All deep learning features are concatenated to obtain 40 attributes, which are split into 70%
for SVM training and the rest to evaluate the classifier. The corresponding confusion matrix
shown in Figure 2d illustrates the outputs of the test data using the fused 40 features. It is
clear from the confusion matrix of the fused 40 features, that 72 cases of HSIL are classified
correctly among the 75 cases, with recall reaching 96% and precision reaching 94.7%. For the
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LSIL 75 samples, they are classified correctly with a sensitivity and precision of 100%. The
same applies for the normal classes, where the performance is 100% in both the TPR and
PPV. The worst behavior appeared in the SCC category, with the lowest sensitivity reaching
94.7% and a precision of 95.9%. The overall accuracy is 97.7%, and the misclassification
rate is 2.3%. Furthermore, Figure 3d describes the AUC for each class, which is nearly one
for all categories.

4.5. PCA

The principal component analysis is employed to select the most significant features
that represent the four classes. Depending on a 95% variance among features, the most
independent features are selected. As shown in the corresponding Figure 5, three principal
components describe most of the variability in the data. However, the rest features have
low significance in class representation.
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Figure 5. Percentage variance of each feature according to PCA. The first three features contribute
the most to the variability of the data.

Figure 6 shows the relationship between two principal components. The scatter
representation visually shows how these two principals are capable of discriminating
between classes. The clustering describes the classification capability of these two PCAs,
where the red cluster indicates HSIL, the dark green cluster indicates normal, the cyan
color represents LSIL, and the purple grouping distinguishes the SCC. The three significant
features are exploited to train polynomial SVM. The corresponding confusion matrix in
Figure 2e shows the performance of the classifier using the three independent features. The
capability of the SVM to discriminate HSIL is low in terms of sensitivity and precision.
On the other hand, recall and precision are low for LSIL. The normal class is the best
distinguished, with a sensitivity and PPV of 100%. The precision of the SCC class is
lower, at 87.2%, whereas the sensitivity is a moderate value that does not exceed 90%. The
overall accuracy of the designed SVM using the most significant features is 90%, and the
misclassification rate reaches 10%, which is too high. Moreover, Figure 3e illustrates the
AUC for each class, which is the lowest in the SCC class with 0.95, and the highest in the
normal class where the AUC is one.
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Figure 6. Scatter plot showing the first two principal components and how they visually discriminate
between the four classes. The figure shows the effectiveness of separation between classes after
selecting the most representative components using PCA.

4.6. ICA

Forty features are passed to the independent component analysis algorithm to achieve
the best independent and representative features among all. The best six features are a
candidate. Figure 7 illustrates the scatter representation between the best two independent
components. The grouping of the scattered points indicates the capability of the ICA to
select the best representative features. According to Figure 6, the red group represents
the HSIL class, the dark green cluster illustrates the normal (negative) class, the cyan
bunch shows the LSIL class, and the purple color describes the SCC category. The best
six independent features are passed to the third polynomial SVM. The corresponding
confusion matrix shown in Figure 2f illustrates the output of the test phase. The best results
were obtained in the LSIL class, with the sensitivity and precision reaching 100%. However,
the lowest recall values in both the HSIL and the SCC classes were 97.3%. Furthermore, the
lowest precision value in the SCC was 96.1%. On the other hand, the precision value of the
LSIL was 100%. The overall accuracy using the ICA and SVM is 98.3% for all four classes,
with a misclassification rate of 1.7%. Finally, Figure 3f shows the AUC for all the classes
that are almost equal to one.

Figure 8 shows the comparison between the features engineering algorithm and its
impact on the accuracy of the SVM classifier in discriminating whole-slice cervical images.
The same data are shown in tabular form in Table 2. As illustrated in Figure 7, the highest
accuracy achieved was by the CCA feature fusion, with a maximum accuracy reaching
99.7%. However, the performance of the other algorithms is almost the same with slight
differences, apart from PCA, which exhibits the lowest accuracy value. These results show
the influence of various feature processing algorithms on obtaining accurate computer-
aided diagnosis systems.
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Table 2. Comparison between various scenarios. Showing the SVM accuracy for the six different
feature analysis techniques.

Data Fusion Method Number of Features Selected or
Fused from the Original 40 SVM Accuracy

Concatenation 40 97.7%
LASSO 19 98.3
DCA 6 97.3%
CCA 6 99.7%
PCA 3 90%
ICA 3 98.3%

Table 3 shows the study comparison for the most recent studies that used data fusion
on cervical cancer images. All mentioned studies showed the effectiveness of data fusion
in improving the classification accuracy of cervical cancer. Comparing the previous studies
that focused on cervical cancer diagnosis, the proposed approach in this paper achieves
the highest accuracy with automated features. This paper deals with whole-slice cervical



Bioengineering 2023, 10, 105 16 of 19

images, ignoring the overlapping and non-overlapping issues for cells. On top of that, all
the previous studies focused on the diagnostics of single cells, whereas this paper deals
with the whole-slice image, which is more practical for physicians and medical fields. Due
to the limited work on feature-level fusion in cervical cancer, other studies with different
medical diagnostic problems were shown in Table 4. These studies were selected based on
the feature fusion technique used. All of the studies in Table 4 used data fusion analysis
on the feature level. All the studies showed an improvement in classification accuracy
when using feature-level fusion or selection. In our paper, we have adopted some of these
existing methods. The studies listed in Tables 3 and 4 have different perspectives on dealing
with data fusion. They could be grouped into two perspectives: The first perspective is the
data level that is being fused (feature level, matching score, or decision-level fusion) listed
in Table 3. The second perspective is on the method used for fusion, the approaches mainly
used either feature reduction techniques (such as PCA, ICA, and LASSO), or feature fusion
techniques (such as CCA and DCA) listed in Table 4. These approaches have been used to
fuse different types of data to enhance diagnostic decisions.

Table 3. Comparison with literature study used on cervical cancer images. The mentioned study
focuses on using a fusion technique for the cervical cancer classification problem.

Study Author (Year) Feature Fusion
Method

Number of Fused
Datasets Best Accuracy

Alquran et al. (2022) CCA
Two datasets from

Shuffle Net and novel
Cervical Net

99.1 (four-class
classifications)

Liu et al. (2022) Multilayer perceptron
module

Two (CRIC and
SIPaKMeD)

91.7 (eleven-class
classifications)

Rahman et al. (21) Late fusion SIPaKMeD dataset 99.14 % (five-class
classification)

Hussain et al. (2020)
Ensemble classifier

based on selecting the
best three DL models

Six datasets from
(Alexnet, Vgg-16,

Vgg-19, Resnet-50,
Resnet-101, and

Googlenet)

97% (two classes)

This paper LASSO, CCA, DCA,
PCA, and ICA

Ten datasets from
(Alex Net, Resnet 18,
50, and 10, Mobilenet,
Shufflenet, Xception,
Nasnet, Darknet 19,
and VGG Net 16)

99.7% (four classes)

Table 4. Most recent studies show the effectiveness of data feature fusion in improving classification
accuracy on other medical diagnostic problems. Most of the mentioned feature fusion methods were
selected as a part of our comparative study.

Study Author (Year) Classification Problem Feature Fusion Method

Fan et al. (2019) Breast cancer prediction CCA

Zhang et al. (2021) Pancreatic ductal
adenocarcinoma prediction

PCA, LASSO, Boruto, and
proposed feature fusion
method by Zhang et al.

Wnag et al. (2021) COVID-19 classification DCA

Haghighat et al. (2016) Multimodal biometric
recognition DCA

This paper Cervix cancer images four
classes

LASSO, CCA, DCA, PCA, and
ICA
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4.7. Computational Complexity

As explained above, extracting the features using DL models has demanded substan-
tial time, which took hours of computation. Thereafter, feature fusion and SVM analyses
have required seconds of computational time for each of the considered techniques. There-
fore, the considered six techniques have demanded relatively comparable computational
complexity when they are run on the same machine.

4.8. Future Work and Real-Life Applications

To the best of our knowledge, this paper presents a unique approach of using ten
pre-trained DL models with the most common feature selection techniques to diagnose
whole-slice cervical images. The relatively high level of accuracy obtained herein can act
as a background to building robust and reliable computer-aided detection and diagnosis
systems for assessing colposcopy images. These findings can help reduce the mortality
rate and enhance the chances of survival among women. Further enhancement on the
proposed approach of analysis can be implemented in future works to expand the extracted
features and to provide more robust results for medical diagnosis under different deep
learning models.

5. Conclusions

This paper has focused on employing feature fusion techniques to enhance the classifi-
cation accuracy of cervical cancer. It involved the generation of a new, uncorrelated dataset
of features while faithfully conveying the output information. Using the new dataset of
features, we have been able to reduce the dimension of feature space without degrading
the performance of disease classification. This paper constructed a comparative analysis of
the existing feature fusion techniques to extract the best representative features from ten
independent datasets. These datasets came from ten pre-trained DL models, which were
trained on a huge ImageNet database. Our approach to this analysis involved applying
six sequential steps. The first step consisted of collecting a cytology dataset that contained
1000 samples for four different cervical cancer classes. The second step performed image
augmentation, which was then followed by extracting features using CNN from ten DL
models (4 features for each DL model for a total of 40 features). The next step concatenated
all features from the ten DL models to be fed into the feature fusion step. Step five applied
six different feature fusion techniques to extract features. Finally, the extracted features
were input into an SVM to test the classification performance. The approach of this analysis
revealed the highest accuracy of 99.7% using CCA fusion. The key benefit was reducing the
number of features introduced to SVM and obtaining state-of-the-art accuracy. Therefore,
the use of data fusion at the feature level, which was proposed in this paper, can indeed
enhance classification accuracy for colposcopy images. The presented approach herein can
be used as a guideline for other CAD medical applications to aid diagnostic decisions.
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