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Abstract: The COVID-19 pandemic has produced social and economic changes that are still affecting
our lives. The coronavirus is proinflammatory, it is replicating, and it is quickly spreading. The most
affected organ is the lung, and the evolution of the disease can degenerate very rapidly from the early
phase, also known as mild to moderate and even severe stages, where the percentage of recovered
patients is very low. Therefore, a fast and automatic method to detect the disease stages for patients
who underwent a computer tomography investigation can improve the clinical protocol. Transfer
learning is used do tackle this issue, mainly by decreasing the computational time. The dataset is
composed of images from public databases from 118 patients and new data from 55 patients collected
during the COVID-19 spread in Romania in the spring of 2020. Even if the disease detection by the
computerized tomography scans was studied using deep learning algorithms, to our knowledge,
there are no studies related to the multiclass classification of the images into pulmonary damage
stages. This could be helpful for physicians to automatically establish the disease severity and decide
on the proper treatment for patients and any special surveillance, if needed. An evaluation study
was completed by considering six different pre-trained CNNs. The results are encouraging, assuring
an accuracy of around 87%. The clinical impact is still huge, even if the disease spread and severity
are currently diminished.

Keywords: deep learning; transfer learning; convolutional neural network; medical imaging processing

1. Introduction

SARS-COV2 (severe acute respiratory syndrome coronavirus 2) in humans was first
reported in Wuhan, China, on 31 December 2019; it is a single-strand ribonucleic acid
virus from the Coronaviridae family [1]. It is a highly infectious disease, and its main
symptomatology includes fever, dry cough, respiratory distress, and tiredness; it can
worsen with difficulties in breathing, hence causing low oxygen saturation and chest pains.

Three new, more severe coronaviruses have emerged from the animal reservoir in
the last two decades: SARS-CoV in November 2002, MERS-CoV in September 2012, and
SARS-CoV-2, which caused COVID-19 in China in December 2019 and was declared a
pandemic by the WHO (World Health Organization) in March 2020 [2].

Scientists and medical equipment manufacturers, on the other hand, strive to use
the latest innovative techniques to develop new systems based on artificial intelligence
algorithms, modeling, and simulation. New funding sources are opening in the digitization
of the health system, offering new opportunities for employment, training programs,
and entrepreneurship.
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The stages of lung damages caused by this disease are roughly split into mild, moder-
ate, and severe. The moderate phase has similar symptoms as pneumonia, whereas the
severe phase is difficult to distinguish from pulmonary cancer [3]. If a patient with mild
lung symptoms is not treated correctly, the disease can quickly evolve to further stages and
can even cause death.

The standard medical protocol for patients’ detection is polymerase chain reaction
(PCR) testing followed by scans, to monitor the progression of lung damage [4]. There
are medical reports that suggest an axial computerized tomography (CT) scan is more
reliable for the diagnosis of COVID-19 disease than X-ray radiography [5]. CT is a fast and
frequently used medical procedure, especially in emergency cases, such as the evaluation
of heart attacks [6].

As physicians are overwhelmed by the increasing number of cases every day all over
the world, a fast, automatic detection of the disease stages from CT scans can help medical
staff, which in many countries are outnumbered in comparison with the real demand. A
computed-aided diagnosis will help with the overall management of the disease and save
time and resources. Therefore, every step to increase and speed up the disease diagnosis
has a huge social impact in these pandemic times.

A faster classification of the disease stages will improve the efficiency of treatment
administration. Depending on the lung damage stages, dedicated drugs must be admin-
istrated to a patient to prevent their symptomatology worsening. There is a high level
of interest among scientists to develop algorithms and tools for helping medical staff in
dealing with this pandemic disease.

Artificial intelligence (AI) can improve the performances of the fast and automatic al-
gorithms that tackle this problem [7]. The trade-off for medical AI applications is gathering
data from multiple centers worldwide. Medical images, in a wide range of formats acquired
from different types of medical equipment, were uploaded in renowned free databases
to support the development of AI-based methods and to perform data classification or
lung damage segmentation [8]. Moreover, researchers and medical centers worldwide are
sharing data and knowledge via Kaggle competitions.

A couple of papers dealt with COVID-19 disease detection by X-ray radiography or
CT scans. Considering X-ray radiography as the input dataset, in [9], a deep learning
neural-network-based method, nCOVnet, was presented with the aim of detecting the
lung damage caused by COVID-19 infection. Another strategy is using Shannon’s entropy
and fractal theory to analyze image complexity for detecting the level of infection among
different respiratory diseases, including COVID-19 [10]. In the Darwin AI open-source
project [11], a dedicated convolution neural network (CNN) called CovidNet was developed
and trained with normal, non-COVID-19, and COVID-19 patients via chest radiography.
Finally, deep learning techniques are used on CT scans for the following purposes:

- to classify images into normal and COVID-19: in [12], which uses for data augmenta-
tion the stationary wavelets; in [13], which uses a neural network, after automated
selection of open lung images; and in [14] which presents nine different kinds of
classification systems based on ML algorithms;

- to differentiate the disease from common types of pneumonia: in [15], which uses
pretrained networks such as VGG16 and RESNET50; in [16], which uses a multi-scale
convolutional neural network with an area under the receiver operating characteristic
curve (AUC) of 0.962; in [17], where normal cases were added, and Q-deformed
entropy handcrafted features are classified using a long short-term memory network
with a maximum accuracy of 99.68%;

- to consider a data augmentation using a Fourier transform [18] for reducing the
overfitting problems of lung segmentation.
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On the software market, Myrian COVID-19 is a protocol based on XP-Lung, an au-
tomatic lung segmentation tool of radiography and CT scans that aims to measure lung
deficiency. The main characteristics of this software include the automatic calculation
of global lung volume, visualization of healthy lung areas, visualization of pathological
lung areas (opacity of ground glass, crazy pavement, consolidations, and emphysematous
areas), automatic calculation of the lung reserve ratio, and complete lung volume density
histogram. The tools were used in [19] to quantify the chest CT extent for cancer patients
with a positive PCR test.

This paper presents a transfer learning approach for assessing lung damage stages on
a new enhanced and labeled-from-scratch COVID-19 axial CT scans dataset. To the best of
the authors’ knowledge, there are no papers dealing with lung damage stages’ classification
caused by SARS-CoV2 virus from CT scans. The clinical impact will be important because
a CT scan is the principal medical imaging for diagnosing the disease, so it will speed up
the diagnosis and treatment of the patient.

Regarding the methodology, the image database is improved by the data collected
from a hospital dedicated to COVID-19 patients and from five available free datasets,
e.g., the COVID-19 Open Research Dataset Challenge. Deep learning techniques have been
used, and their classification results are compared in the Section 3.

2. Materials and Methods
2.1. Medical Context

Coronaviruses are a family of viruses that cause mild and moderate diseases of the
respiratory tract. From the six types of coronaviruses identified in humans, only two
could degenerate into moderate to severe respiratory symptoms and lead to high rates
of mortality: Middle East respiratory syndrome (MERS) and severe acute respiratory
syndrome (SARS). The mean period of incubation is around 5.2 days [20].

The standard protocol for COVID-19 diagnosis (Figure 1) is a PCR test, which takes
samples of saliva and mucus. The complementary protocol includes a chest X-ray, due to
rapid screening and offering of insights into risk level and severity of the lung damage.
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Figure 1. The standard protocol for COVID-19 diagnosis.

As reported in [21–23], the most frequent COVID-19 patterns found in CT scans, by
percentage, are ground glass patches (93.3%), followed by subpleural linear abnormalities
(53.3%), consolidation patches (23.3%), and air bronchograms (23.3%), along with bronchial
wall thickening (16.7%), crazy paving patterns (13.3%), and discrete nodules surrounded
by ground glass appearance (10%).

In Figure 2 presents the changes in lung tissues at different stages of the disease. As
the disease evolves, the tissues are invaded by small patches of fluid.



Bioengineering 2023, 10, 6 4 of 13Bioengineering 2022, 9, x FOR PEER REVIEW 4 of 13 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. The evolution stages of COVID-19 infection in lungs. (a) Severe, (b) Moderate, (c) Mild, 
(d) Normal. 

2.2. Data Acquisition 
CT or computed axial tomography is a medical image technique that uses multiple 

X-ray detectors located in certain positions to give measurements at different angles and 
finally build up the tomographic image of the investigated body part. It offers the possi-
bility of 3D reconstruction of organs from images acquired in axial, coronal, and sagittal 
planes. It is dedicated to investigating different categories of organs, such as lungs, ves-
sels, heart, brain, etc. 

The image is stored in bytes because each gray value is an array of binary numbers. 
For example, the medical images need around 10 to 12 bytes per pixel, which means 1024 
or 4096 different gray levels. The numbers of rows and columns of an image are carefully 
chosen by a compromise between the image storage and the capture of as many of the 
anatomical details as possible. The image dataset characteristics are summarized in Table 
1. 

Table 1. Parameters of CT scan acquisition. 

Parameters Unit Values 
Exposure Time ms 600 
Tube Current mA 106 

Color Type - grayscale 
Bit Depth - 12 

Intensifier Size mm 250 

Figure 2. The evolution stages of COVID-19 infection in lungs. (a) Severe, (b) Moderate, (c) Mild,
(d) Normal.

2.2. Data Acquisition

CT or computed axial tomography is a medical image technique that uses multiple
X-ray detectors located in certain positions to give measurements at different angles and
finally build up the tomographic image of the investigated body part. It offers the possibility
of 3D reconstruction of organs from images acquired in axial, coronal, and sagittal planes.
It is dedicated to investigating different categories of organs, such as lungs, vessels, heart,
brain, etc.

The image is stored in bytes because each gray value is an array of binary numbers.
For example, the medical images need around 10 to 12 bytes per pixel, which means 1024
or 4096 different gray levels. The numbers of rows and columns of an image are carefully
chosen by a compromise between the image storage and the capture of as many of the
anatomical details as possible. The image dataset characteristics are summarized in Table 1.

Table 1. Parameters of CT scan acquisition.

Parameters Unit Values

Exposure Time ms 600

Tube Current mA 106

Color Type - grayscale

Bit Depth - 12

Intensifier Size mm 250

Image Width pixels 512

Image Height pixels 512

Number of frames per series frames 200–350
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2.3. Deep Learning Principles

Artificial intelligence techniques currently have a huge impact, and they are intensively
used in medical image processing with very good results [24]. This has encouraged
scientists to collect medical images acquired by different equipment and the development
of dedicated convolutional neural networks.

Supervised learning tries to replicate human learning, for example, by solving op-
timization problems. Deep learning (DL) is usually applied on a lot of labeled data [25].
Hence, the more input data an algorithm has, the better the performances are. In the
medical field, the data are not easy to collect, due to patient confidentiality policies. There-
fore, to increase the amount of data, some strategies can be implemented; one is data
augmentation, which applies on the raw data different transformations such as translation,
rotation, reflection, etc., and another one is building an artificial dataset that resembles the
initial data. Depending on the validation strategy, the dataset is split into training (more
than 50% of data), validating, and/or testing.

Transfer learning principle is to use the predefined CNNs trained on thousands of
images stored in the ImageNet database. This model is used to extract the general features
of the objects by preserving the weights of the network layers [26]. The cut-off strategy
will replace the top layers for feature extraction or fine-tuning. Feature extraction replaces
only the top classificational layer with a dedicated new one, suitable for the problem to be
solved. Fine-tuning replaces at least a top convolutional layer, followed by a classification
layer, and trains the new CNN with the new dataset. The target will be the computation
of the new weights of the updated layers for detecting the specific features of the objects
found in the images.

Data augmentation (image resizing, rotation, translation, and different nonlinear filter-
ing [27]) will help with expanding the dataset and, hence, avoiding overfitting problems,
which occur when the neural network tends to memorize the training data, rather than
extracting the general features of the objects. This step includes image resizing operations,
rotations, translations, reflection, etc.

For optimization algorithm, in the current study, the stochastic gradient descending
with momentum was used in fine-tuning approach because it updates the network parame-
ters such as weights and bias, to minimize the cost function of a single element. It computes
its gradient at each iteration, which makes it more efficient than the classical algorithm that
calculates the sum of all examples [28]. For feature extraction, Adam method was preferred.

The challenges facing a machine learning researcher are selecting the proper layers
configuration and setting up the hyperparameters of the algorithm such as minibatch (the
size of the data subset), learning rate, momentum, L2 regularization, number of epochs, etc.

One of the most important and tedious steps in supervised learning is data labeling.
Medical imaging experts are not easily found, so a lot of time is spent on their training
because it requires a lot of medical practice. Labeling suffers from human subjectivity,
which implies a team of experts is need for the labeling for serious DL studies. The labeling
errors’ curation is very important to assure the best results. When this is not possible, it is
better to remove a suspicious dataset from the study.

The evaluation metrics were also developed over time, to best approach the dataset
amount. This includes the confusion matrix, from where the accuracy, precision, F1 score,
sensitivity, etc., can be computed.

2.4. Classification Algorithm Overview

Even if there many medical images from normal or COVID-19 patients have been
uploaded, it is sometimes still difficult to find good annotated medical images databases
with a good spatial resolution.

The mandatory requirement of AI techniques is a large amount of labeled data. There-
fore, efforts have been made to find CT scans from different regions all over the world via
Kaggle competitions to provide proper requests to train dedicated neural nets.

The present paper applies supervised learning to the multiclass classification problem.
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The dataset comprises new data from 55 patients acquired from a clinic during the
rapid spreading of the disease in the spring of 2020, along with data collected from available
online databases from Kaggle [29–33], summarizing a total of 7300 images.

The dataset was collected from different sources and was acquired in the png, jpeg,
and tif (after conversion from DICOM files) formats, in different sizes (from 140 × 140 pixels
to 512 × 512), as can be seen in Figure 3. The complete dataset has been manually revised
by a medical imaging expert to remove the images that are not corresponding to the open
lung phase (Figure 4).
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The proposed algorithm is divided into the following steps:
Selection of the open lung views in the final dataset;
Normalize and further augment the data for the training dataset;
Find the top learnable layer and classification layer of the pre-trained neural network;
If the learnable layer is a fully connected layer replace it with a new one having a

weight learn-rate factor of 10 and bias learn-rate factor of 10;
Otherwise, if the learnable layer is a convolution 2D layer, replace it with a new one

having a weight learn-rate factor of 10 and bias learn-rate factor of 10;
Replace the top classification layer with a new one with 4 classes.
The input size for every simulation was in fact the required input layer size for

each CNN.
Image augmentation was completed by using random reflection in the left-right

direction, which means that each image was reflected horizontally with 50% probability,
zoom range of 0.1, and horizontal and vertical translation with pixel range [−50, 50]. The
models training options are presented in Table 2.

Table 2. Training options.

No. Hyperparameter Value

1 Algorithm Type Adam

2 No. of Epochs 30

3 Learn-Rate Schedule piecewise

4 Learn-Rate Drop Factor 0.2

5 Learn-Rate Drop Period 5

6 Mini-Batch Size 32

7 Initial Learn Rate 10−4

8 Validation Frequency 40

9 Validation Patience 15

10 Shuffle Every epoch
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The external validation was completed by splitting the dataset with the ratio 80:20
for training and testing (never seen by the training process at all). For assuring that there
is not any mixing of images of the same patient into these two groups and for a good
balance regarding the number of images and patients, respectively, this splitting was
completed manually by a medical expert, after careful attention. For internal validation, the
training dataset was further randomly split into 80:20 for adjusting the network weights
and in-training validation (used only to check the metrics of the model after each epoch)
with a fixed random seed. This last step was repeated 5 times to perform the 5-fold
cross validation.

In addition to well-known evaluation metrics, the Cohen’s kappa coefficient and
Matthew’s correlation coefficient (MCC) are computed. The kappa score measures the
degree of agreement between the true values and the predicted values: a value of 1
means perfect agreement, and 0 means chance agreement. A value less than 0 means a
disagreement, so the classifier is incorrect.

MCC applied for binary classification identifies the ineffectiveness of the classifier in
classifying, especially for the negative class samples, and it has high values if the classifier
is doing well. However, F1 score is highly influenced by which class is labeled as positive.
Still, F1 score is different from MCC in respect to its magnitude, as the minority class is
usually labeled as negative.

3. Results

The algorithm was implemented in a copy of MATLAB®2022a with an academic
license. Considering the speeding up, the running time of the computational environment
for these tests was completed on a supported GPU device, an NVIDIA GeForce 1650 with 4
GB RAM.

The dataset distribution into classes for the training, validation, and testing is orga-
nized in Table 3.

Table 3. The dataset distribution into classes.

No. Patients/No. Images Total Images Mild Moderate Normal Severe

Training 4754 832 1021 2454 447

Validation 1188 208 255 613 112

Testing 1358 244 286 714 114

The global evaluation metrics, when considering five-fold cross validation, re given
in Table 4. Considering the best performance model for Resnet50, the mean evaluation
metrics for each class for five-fold cross validation are presented in Table 5.

Table 4. The global evaluation metrics when considering 5-fold cross validation (mean value,
min value, and max value).

Training
Network Accuracy (%) Recall Specificity Precision False Positive

Rate F1 Score
Matthews’

Correlation
Coefficient

Cohen’s
Kappa

Coefficient

Resnet 50 86.89
(86.01,87.19) 0.8 (0.79,0.82) 0.96 (0.96,0.96) 0.81 (0.78,0.81) 0.04 (0.04,0.04) 0.79 (0.78,0.8) 0.76 (0.74,0.77) 0.65 (0.63,0.66)

Inceptionv3 85.99
(82.11,86.97) 0.78 (0.72,0.8) 0.96 (0.95,0.96) 0.8 (0.75,0.82) 0.04 (0.04,0.05) 0.77 (0.71,0.8) 0.74 (0.68,0.77) 0.63 (0.52,0.65)

Googlenet 83.4
(82.4,84.54) 0.76 (0.74,0.77) 0.95 (0.95,0.95) 0.78 (0.77,0.79) 0.05 (0.05,0.05) 0.74 (0.72,0.76) 0.71 (0.69,0.73) 0.56 (0.53,0.59)

Mobilenetv2 84.15
(83.65,86.75) 0.76 (0.74,0.81) 0.95 (0.95,0.96) 0.77 (0.76,0.8) 0.05 (0.04,0.05) 0.75 (0.74,0.8) 0.71 (0.7,0.76) 0.58 (0.56,0.65)

Squeenet 85.71
(84.17,87.78) 0.79 (0.76,0.81) 0.96 (0.95,0.96) 0.79 (0.77,0.82) 0.04 (0.04,0.05) 0.78 (0.75,0.81) 0.75 (0.72,0.78) 0.62 (0.58,0.67)

Shufflenet 80.65
(80.04,80.65) 0.73 (0.71,0.73) 0.94 (0.94,0.94) 0.73 (0.72,0.73) 0.06 (0.06,0.06) 0.69 (0.68,0.69) 0.66 (0.65,0.66) 0.48 (0.47,0.48)
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Table 5. The mean evaluation metrics for each class when considering 5-fold cross validation for the
best model (Resnet 50).

Class Precision Recall F1 Score False Positive Rate Specificity

Mild (%) 67.816 92.376 78.07 9.712 90.288

Moderate (%) 78.214 54.334 63.738 4.16 95.84

Normal (%) 99.972 100 99.986 0.032 99.968

Severe (%) 77.568 74.738 76.018 2.01 97.99

The plots for the convergence of accuracy and loss for both training and validation
are presented in Figure 5. For a clinical investigation of the results, the predictions on
validation images are represented by colors, considering red as the object and blue for the
background, as shown in Figure 6.

For comparison, model 2 from [16] was considered with the following properties:
Resnet50 with a retrained convolution base, followed by these layers: Global MaxPooling,
a fully connected layer with 512 neurons with RELU as its activation function, a batch
normalization, a dropout of 0.5, a fully connected layer with 512 neurons with RELU as its
activation function, a batch normalization, a dropout of 0.5, and a fully connected layer
with four neurons with softmax as its activation function. The mini-batch size was 128,
and the number of epochs was 350. The training loss was 0.8435, the validation loss was
1.250677227973938, the training accuracy was 68.79, and the validation accuracy was 53.4;
and a very small test accuracy with the plots of convergence is shown in Figure 7.
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training (in light blue for accuracy and in orange for loss) and validation (dotted).
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4. Discussion

The main contributions of the presented paper are as follows:

• development of a new classification algorithm for the suggestive aspect of COVID-19
lung damage into mild, medium, or severe stages, for the axial view of computed
tomography images using deep neural networks;

• enhancement of the five different online databases with new images collected from
55 patients;

• manual selection of the open lung phase images and their labeling into four classes.

The main challenge was the poor quality of the available online datasets. There were
cases of sample duplication when the data were merged. Moreover, some images were
labeled with different landmarks or text indications. An imagistic expert was needed to
revise, to identify the images belonging to each patient, and to label them into four classes.

Due to restrictions on acquiring new medical data and to speed up the computational
time, transfer learning via fine-tuning was used for 7300 images belonging to 173 patients.
An evaluation study was completed by considering six different pre-trained CNNs. The
results were compared regarding the precision, accuracy, recall, etc.

The best model was obtained with Resnet50, by considering 30 epochs and 32 mini-
batch size. The model performance was evaluated considering its accuracy of more than
86%. The Cohen’s kappa coefficient of 0.65 approached 1, which means a good degree of
agreement between the true values and the predicted values. The Matthews’ correlation
coefficient of 0.76 means an effectiveness in the classification of the four classes.
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The best matching class was the normal one, which is explainable considering the
lung aspect, while the worst case was the mild class, which may be due to the rather small
lung damages.

The main pitfall of deep learning is collecting more and more data for improving the
models. A bigger dataset will not always produce better results, due to a lack of attention
or expertise regarding the quality of the input data [34].

Hence, one of the limitations of this study is the significance of the database of images
used to instruct the network (both qualitatively and quantitatively). Our future work will
include a more robust instruction of the AI tools, with the type of data distribution and a
possible dimension reduction like in [35].

5. Conclusions

Discovering ways to enhance the process of diagnosing and treating COVID-19 pa-
tients is a worldwide emulation.

The proposed technical solution will impact our society in the battle against COVID-19
disease, in terms of the faster screening of patients. The medical protocol for diagnosing
patients is a physical exam and PCR testing. Since the result of the PCR test can take almost
24 h, physicians can choose to examine the patients’ lung damage using CT scans. Having
a powerful computing tool with an AI-enhanced diagnosis will assist medical staff, will
improve clinical management, and will even improve treatment of COVID-19 disease.
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