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Abstract: Generative models, such as Variational Autoencoders (VAEs), are increasingly employed
for atypical pattern detection in brain imaging. During training, these models learn to capture
the underlying patterns within “normal” brain images and generate new samples from those pat-
terns. Neurodivergent states can be observed by measuring the dissimilarity between the gener-
ated/reconstructed images and the input images. This paper leverages VAEs to conduct Functional
Connectivity (FC) analysis from functional Magnetic Resonance Imaging (fMRI) scans of individuals
with Autism Spectrum Disorder (ASD), aiming to uncover atypical interconnectivity between brain
regions. In the first part of our study, we compare multiple VAE architectures—Conditional VAE,
Recurrent VAE, and a hybrid of CNN parallel with RNN VAE—aiming to establish the effective-
ness of VAEs in application FC analysis. Given the nature of the disorder, ASD exhibits a higher
prevalence among males than females. Therefore, in the second part of this paper, we investigate if
introducing phenotypic data could improve the performance of VAEs and, consequently, FC analysis.
We compare our results with the findings from previous studies in the literature. The results showed
that CNN-based VAE architecture is more effective for this application than the other models.

Keywords: fMRI; functional connectivity; autism spectrum disorder; autoencoders; conditional
variational autoencoders

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder/condition in
which individuals experience difficulties in social communication and interaction and
exhibit limited or repetitive behaviors and interests. Additionally, autistic individuals may
have alternative learning styles, movements, and attention patterns [1]. Several studies
have consistently shown that ASD is more commonly found in males than females, with an
approximate ratio of 3 to 1 [2]. One of the approaches used to investigate neurodivergence
associated with ASD is Functional Connectivity (FC) analysis of functional Magnetic
Resonance Imaging (fMRI) data. FC analysis helps to examine statistical dependence
between the activity of different brain regions based on their blood oxygenation levels
measured by fMRI [3]. Hence, FC represents the extent to which various brain regions
exhibit synchronized activity over a period of time, which is commonly believed to be
representative of the structural and functional organization of the brain [3].

Functional Connectivity (FC) studies in ASD have led to the development of two main
theories about the connectivity of the brains of individuals with ASD: under-connectivity
and over-connectivity [4]. Under-connectivity is defined as a decrease in brain activ-
ity between brain regions compared to a neurotypical population [5]. Conversely, over-
connectivity is understood as higher statistical correlations between different areas of the
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brain appearing in affected individuals compared to unaffected individuals [6]. Finally,
as more recent studies indicate, it is more likely that both over- and under-connectivity
patterns are present in the brains of individuals with ASD [4]. Traditional methods for
FC analysis include Seed-Based Correlation Analysis (SCA) [7], Independent Component
Analysis (ICA) [8], graph-theory-based analysis [9], clustering-based approaches [10], dy-
namic connectivity analysis [11], Granger causality analysis [12], and dynamic causal
modeling [13]. While these approaches have helped uncover neurodivergent patterns in
fMRI data, they entail certain limitations, such as inherent biases or limited interpretability.
Several inconsistencies have been reported in studies using these methods when examining
functional connectivity patterns in fMRI in ASD. The discrepancies are mainly attributed to
the varied age and sex compositions within the study samples and the diverse nature of
ASD [4]. Notably, an apparent trend of under-representation of females with ASD in FC
studies of fMRI can be seen [4]. Limited interpretability arises from technical constraints
inherent to each of these methods, which are comprehensively examined in Section 2.1.

To address the issues of limited interpretability and under-representation, we propose
a novel approach to FC analysis of fMRI data using Variational Autoencoders and Condi-
tional Variational Autoencoders. The Variational Autoencoder (VAE) is a deep generative
model that learns to encode data into a low-dimensional latent space and then decodes
low-dimensional features back to the original data [14]. The Conditional Variational Au-
toencoder (CVAE) is an extension of the standard VAE, which incorporates conditional
information, such as additional class features or attributes, into the generative model to
enable targeted data synthesis [15]. This study examines the application of three different
VAE architectures for FC analysis for individuals with ASD. We then apply phenotypic
data to VAEs in an attempt to reduce sex-related bias. For a more quantitative and struc-
tured analysis, we have employed three commonly used VAE architectures in the fMRI
domain: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and
a hybrid model combining CNN and RNN in parallel. Our evaluation of the VAE and
CVAE includes comparing the performance in the reconstruction of neurotypical samples
and the efficacy in conducting FC analysis for fMRI samples of individuals with ASD. Our
evaluation compares the identified FC divergences between female and male populations
for both VAE and CVAE. We aim to provide a structural and systemic investigation with
diverse AE architecture variations in the fMRI domain, specifically addressing the issues of
dynamic processing of highly complex brain imaging data and sex under-representation
with statistical modeling.

This paper is structured as follows: we first discuss the pertinent literature on tradi-
tional FC methods and the utilization of VAEs and CVAEs in the fMRI domain. Additionally,
we provide a concise overview of previously investigated FC divergences in ASD. Subse-
quently, in Section 3, we introduce the dataset, explain the data preprocessing techniques
employed, elaborate on the VAE and CVAE architectures utilized, and detail our FC analy-
sis approach. In Section 4, we present our findings and the results of our experiments, and
in Section 5, we draw comparisons between our findings and those of previous studies. In
Section 6, we summarize our findings and discuss possible future directions.

2. Related Works
2.1. Traditional Approaches to FC Analysis

Various methods have been developed to examine brain functional connectivity using
fMRI data [16], which includes Seed-Based Correlation Analysis (SCA) [7], independent
component analysis (ICA) [8], and graph-theory based analysis [9]. SCA involves selecting
a Region of Interest (ROI) and computing its correlations with other brain regions over time
series. High correlations indicate over-connectivity, and low correlation under-connectivity.
However, SCA can potentially introduce bias due to ROI selection, overlooking impor-
tant connectivity patterns outside the chosen regions [17]. On the other hand, ICA is a
data-driven, multivariate method that decomposes fMRI data into spatially independent
components, each representing a unique spatial pattern associated with a distinct time
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course [8,18]. ICA has been applicable in revealing lower-level spatial and temporal pat-
terns in brain connectivity. Nevertheless, the drawback of ICA analysis is that the signal
from a single brain region may appear in multiple components within lower-dimensional
space, complicating the identification of high-level correlations [4]. Graph theory provides
a framework for investigating local and global connectivity patterns. However, effectively
capturing the temporal dynamics inherent in fMRI data presents a significant challenge.
More advanced traditional approaches to Functional Connectivity Analysis (FC) include
clustering-based approaches [10], dynamic connectivity analysis [11], Granger causality
analysis [12], and dynamic causal modeling [13]. Most studies using traditional methods
have focused on male fMRI data with ASD, and there has been a lack of research specifically
exploring females with ASD. When the dataset is imbalanced, SCA, ICA, and graph-based
analyses face several challenges. For example, SCA is often used to compare connectivity
patterns between different subgroups; thus, an imbalance in the studied data can influence
the statistical power and robustness of the comparisons. In ICA, while the analysis is not
inherently affected by class imbalance, subsequent classifiers that use ICA-derived features
may favor the majority class, affecting classification performance. In graph-based methods,
graph construction could also be hindered by the greater presence of certain populations.
Therefore, there is a need for an approach that encompasses both the spatial and temporal
distribution of the data and is robust to under-representations in the dataset.

2.2. Application of VAEs in fMRI Domain

To address some of the challenges mentioned in Section 2.1, recently, there has been
a surge in the utilization of VAEs to identify brain connectivity patterns within affected
populations or fMRI signal patterns related to specific tasks. VAEs offer the advantage
of allowing for the studying of both low- and high-level features of fMRI data, setting
them apart from techniques such as ICA and SCA. Several papers used VAEs to extract
meaningful features to classify the data [19–21]; some studies also researched the abilities
of VAEs to identify task-related activities [22,23], and finally, some utilized VAEs for FC
analysis of the fMRI data [24,25].

The most closely related to our works is the paper by Zuo et al., in which the re-
searchers utilized a disentangled VAE to identify structural and functional connectivity
differences between control, individuals with early mild cognitive impairment (MCI),
and individuals with late mild cognitive impairment [24]. Using a graph convolutional
VAE, researchers have identified under- and over-connectivity patterns associated with
the progression of MCI. Likewise, another study by Choi et al. applied a Deep Neural
Network (DNN)-based VAE to analyze connectivity patterns in ASD [25]. The study has
also presented under- and over-connectivity patterns correlated with the full-scale IQ
scores.

A considerable number of encoder and decoder architectures have been studied in
the application of fMRIs, which vary depending on the main objective of the application.
However, the most common architectures include convolutional layers (CNN), recurrent
layers (RNN), and a combination of the two in sequence and parallel. CNN layers have
proven to be helpful in identifying spatial correlations; however, the temporal patterns of
the decoded data are not meaningful since the convolution is not capable of capturing the
temporal dynamics. And vice versa, recurrent layers have shown to have better temporal
feature extraction, but spatial patterns could not be well preserved. Therefore, we believe
that there is a need to evaluate different model architectures.

2.3. Application of CVAEs in fMRI Domain

Conditional Variational Autoencoders (CVAEs) are an extension of the VAEs that
incorporate additional information into the generative model [15]. The generative process in
a CVAE is improved by considering additional information, such as class labels, attributes,
or any other relevant data. Conditional variables are then passed into both the encoder
and decoder parts of the VAE (Figure 1). Therefore, the encoder takes the input data
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and associated conditional variables and maps them to a distribution in the latent space.
The decoder then uses the sampled latent distribution from the encoder along with the
conditional variables to reconstruct the input data point. By adding additional information
to the generation process, CVAEs allow for more targeted and controlled data generation.
In the context of fMRI imaging, CVAEs have been used for image synthesis and data
augmentation [26], brain image segmentation [27], classification [28], and connectivity
network detection [29]. The most closely related to our study is the study by Wang et al.,
which used adverse CVAE to identify high-level neurodivergent patterns associated with
Alzheimer’s Disease (AD) in fMRI data [30]. Researchers have demonstrated that applying
conditions to the network helps reduce the effect of age and sex bias in the latent vectors.
Another paper that used CVAE is the study by Gao et al., where researchers integrate age
and sex attributes through an attention mechanism that optimizes VAE for the classification
of brain connectivity from fMRI data of individuals with attention-deficit/hyperactivity
disorder from multiple sites [31]. The study showed that phenotypic information has
improved learning discriminative embedding and helped identify affected brain regions
functionally by reconstructing the latent features.

Figure 1. Summary of the difference between VAE and CVAE. In CVAE, both the encoder and
decoder part receive conditional attributes; in our study, it is an embedding consisting of age, sex,
and group label.

2.4. Functional Connectivity in ASD

The most commonly studied brain networks in ASD include Default Mode Network
(DMN), limbic, visual, somatomotor, and salience networks. The regional components of
each of these networks have a tendency to slightly change study by study. The DMN is
a large-scale brain network that is most active during rest periods or when the mind is
wandering [32]. It is involved in various cognitive processes such as self-thinking, episodic
memory recovery, and social cognition [32]. In most studies, the DMN includes regions
such as the medial prefrontal cortex, the posterior cingulate cortex, and the medial temporal
lobes [4]. The limbic network is a group of interconnected structures that play a critical
role in emotion, motivation, and memory processing [33]. The limbic network is closely
associated with the management of emotional responses, the processing of reward and
punishment, and the formation and recovery of memories. Key structures in the limbic
system include the amygdala, hippocampus, and cingulate gyrus [34]. The visual network
is responsible for processing visual stimuli, and its nodes are located primarily in the
occipital lobe [35]. The somatomotor network is involved in the planning, enactment,
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and management of voluntary movements [3]. It includes the primary motor cortex, the
supplementary motor area, and the primary somatosensory cortex, all located in the frontal
and parietal lobes. Finally, the salience network is a large-scale brain network that is
involved in catching and focusing attention to relevant internal and external stimuli [36].
Key regions within the salience network include the anterior insula and the dorsal anterior
cingulate cortex [37].

Previous findings suggest that under-connectivity between various brain networks is
associated with social impairments and deficits observed in ASD. Most under-connectivity
patterns were associated with DMN, including decreased interconnectivity between DMN-
limbic, DMN-visual, and DMN-somatomotor. For example, in the study by Abrams et
al., the researchers reported under-connectivity between DMN (pSTS with orbitofrontal,
temporal lobe) and limbic networks (amygdala), suggesting that ASD individuals experi-
ence a less pleasant response to human voice processing [38]. Under-connectivity between
the DMN (Precuneus (PrC)) and the visual cortex has also been previously reported [39].
However, the study reported that this under-connectivity pattern was not found to be
related to socio-behavior deficits. Finally, under-connectivity between DMN and several
regions in somatomotor has also been reported in multiple studies [40,41].

Over-connectivity patterns are primarily associated with salience networks. For exam-
ple, a study by Green et al. has demonstrated the over-connectivity of the salience network
with sensory processing areas, such as the visual and limbic networks, in individuals with
ASD. It is believed that this over-connectivity may contribute to heightened responsiveness
to irrelevant stimuli and deficits in social interactions [42]. DMN-salience network was
shown to have higher interconnectivity in ASD subjects compared to TD in work by Yerys
et al. [40], which has been hypothesized to be attributed to the ability to switch between
intra-person and extra-person processing.

A handful of studies specifically looked into the difference between female and male
functional connectivity. One of the few studies of specifically sex-related differences
revealed that commonly associated DMN hypoconnectivities are primarily present in male
populations [43]. Increased connectivity in the female population compared to males has
also been supported by the studies by Lawerence et al. [44] and Smith et al. [45].

3. Materials and Methods
3.1. Dataset

The ABIDE-I (Autism Brain Imaging Data Exchange) dataset is a publicly available,
large-scale collection of resting-state fMRI data of individuals with ASD [46]. The ABIDE-I
dataset consists of 1035 rs-fMRI scans, including 505 individuals with ASD and 530 neu-
rotypical control subjects. The data were collected from 17 different imaging sites, each
with its own scanning protocol. The dataset has undergone various preprocessing steps,
including motion correction, spatial normalization, and noise reduction, to ensure uniform
data quality and comparability across different sites. However, different imaging sites had
different default fMRI scanners; therefore, Repetition Time (TR), Echo Time (TE), and flip
angle degree are varied across sites. The subset of scans with TR of 2000 (ms) from the
ABIDE-I dataset has been extracted. Thus, for this study, we have only used data samples
collected from 9 out of 17 sites, resulting in 236 ASD samples, 276 typically developing
samples. The subjects were then randomly split into training and testing sets. The train-
ing and testing sets consisted of 231 control and 235 neurodivergent samples and 35 and
41 samples, respectively. In Figure 2, phenotypic data distributions for the studied data
could be found. It could be noted that there are a higher number of male samples than
females in both typically developing and neurodivergent subgroups.
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Figure 2. Summary of phenotypic data is presented. In particular, the number of male samples is
higher than that of females in both subjects with typically developing ASD and subjects with ASD.

3.2. Data Preprocessing

Schaefer’s 200-parcel functional deterministic atlas has been used for brain parcella-
tion of the original fMRI scans, which divided the cerebral cortex into 200 distinct, non-
overlapping regions based on the derived functional connectivity patterns (Figure 3A) [47].
The resulting 200 parcels are distributed across both hemispheres and cover the entire
cortex. Time-series data were extracted from each of the 200 parcels, resulting in a 2D
matrix consisting of signals from 200 parcels with 200 time steps (TR = 2000 ms). As
the length of scans varied across imaging sights, each scan was augmented into multiple
samples using a sliding window of 200 time steps with a step size of 10 applied to each
voxel per time matrix. The sliding window was then applied to each sample in training and
testing subsets, resulting in disjoint 3472 neurotypical and 2973 neurodivergent samples
for the training set and 364 and 364 samples for the testing set. The testing and training
fMRI splitting, described in Section 3.1, have not been mixed during data augmentation to
ensure fairness. Finally, the parcel versus time matrices were normalized to the range of 0
to 1.

Figure 3. Details on different structures of the model architecture for our FC analysis with fMRI data.
(A) The overall signal processing framework. (B) CNN CVAE. (C) RNN CVAE. (D) Hybrid CVAE
with CNN and RNN in parallel.

3.3. Variational Autoencoder (VAE)

The Autoencoder (AE) is a type of neural network architecture commonly employed
for capturing low-dimensional representations of fMRI data. AE comprises an encoder
and a decoder [48]. The encoder part of the AE transforms the input data into a set of
low-dimensional latent variables, and the decoder part subsequently reconstructs those
latent variables into the original data space [48]. During training, the encoder and decoder
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aim to minimize the reconstruction error between the input data and the reconstructed
output [48]. A unique subtype of AEs is the Variational Autoencoder (VAE). Similar to the
AE, the VAE also consists of an encoder and a decoder, but the encoder maps the input
data to a set of latent variables that are assumed to be drawn from a prior distribution.
The decoder randomly samples from the latent distribution and learns to map these latent
variables back to the original data space to reconstruct the sample. Sampling from a learned
latent space and decoding these latent features into the original data space allows for the
generation of new data samples.

In our study, the VAE is deployed as a deep generative model using different architec-
tures of the encoder g(x; φ) and the decoder f (z; θ). The encoder learns to compress the
high-dimensional input (parcels versus time matrix) x into lower-dimensional latent repre-
sentations z, and φ and θ are both hyperparameters of the networks. The VAE aims to learn
a model for the true data distribution, denoted by p(z, x). The latent space dimensionality
is denoted as d (i.e., z ∈ Rd). The variational posterior distribution is denoted by q(z, x),
which is an approximation of the true posterior. The network is trained using the Evidence
Lower Bound (ELBO) loss, consisting of the reconstruction and KL divergence terms. The
reconstruction term aims to ensure that the VAE can accurately reconstruct the input data,
which is represented as the expected negative log-likelihood log p(x|z), where p(x|z) is
modeled by the decoder part of the VAE. The KL divergence term is used to make the
variational posterior distribution, q(z|x), as close to the prior distribution, p(z), as possible.

The ELBO loss, denoted as LELBO(x), can be written as:

LELBO(x) = Eq(x,z)

[
log

p(z, x)
q(z|x)

]
= Eq(z,x)[log p(x|z) + log p(z)− log q(z|x)]
= Eq(z,x)[log p(x|z)]− DKL[q(z|x)|p(z)],

(1)

During training, the encoder network g(x; φ) models the variational posterior distri-
bution q(z|x). The encoder outputs the parameters of a Gaussian distribution, µ̃ and log σ̃2,
which represent the mean and log-variance of the latent space distribution, respectively.
Sampling from q(z|x) allows us to generate new data samples similar to those present in
the training data distribution.

3.4. Conditional VAE

We propose using a CVAE for a more controlled fMRI sample reconstruction. The
CVAE is an extension of the VAE that allows the generation of data samples conditioned on
certain attributes or labels [15]. In our CVAE design, both the encoder and decoder receive
additional input variables, which is an embedding (denoted as y) containing age, sex (M or
F), and subgroup (TD or ASD) labels, with the assumption that all conditions are statistically
independent of each other. This can be viewed as concatenating the embedding to the
input of the encoder x and the input of the decoder z. The changes made in comparison
to the generative process of a VAE can be understood as introducing an identity function
with respect to y into the model. In the CVAE, the encoder learns to extract hidden
representations of an image x while taking into account conditional variables y (represented
by the distribution q(z|x, y)). The decoder then translates this data representation in the
form of (z, y) to the input space (i.e., p(x|z, y)).

Specifically, the generative process of the CVAE takes the form(
µ̃xy, log ˜σxy

2
)
= g(z, y; φ),

q(z|x, y) = N
(

x; µxy, diag
(

σ2
xy

)) (2)
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And the ELBO loss can then be written as:

LELBO(x|y) = Eq(z,x,y)

[
log

p(z, x|y)
q(z|x, y))

]
= Eq(z,x,y)[log p(x|z, y) + log p(z|y)− log q(z|x, y)],

(3)

In the CVAE model, the reconstruction of a sample is dependent on the given set of
input conditions. To generate a TD-like output for an atypical sample, the conditional
variable must be adjusted to a control condition while retaining the remaining conditions
unchanged. Consequently, when calculating the discrepancy between the atypical input
and the reconstructed output, the difference is assumed to be solely attributed to the
modified conditions. This ensures that the identified divergence depends exclusively on
the altered conditional variable.

3.5. Experimental Setup

Three commonly used VAE architectures in the fMRI domain were trained to learn a
compact representation of the data from neurotypical control fMRI samples. A Convolu-
tional Neural Network (CNN) variational autoencoder, Recurrent Neural Network (RNN)
variational autoencoder, and a hybrid of CNN and RNN VAEs in parallel (Figure 3). For all
CNN VAEs in this study, the CNN encoder consisted of three convolution layers with 32,
64, and 128 filters, respectively, followed by a fully connected layer. Subsequently, the CNN
decoder comprised transposed convolution layers with 128, 64, and 32 filters, followed
by a fully connected layer. Batch normalization and the leaky ReLU activation functions
were utilized. The RNN encoder contained three unidirectional Long-Short-Term Memory
(LSTM) layers followed by a fully connected layer. Decoder, respectively, consisted of a
fully connected layer followed by three LSTM layers as well. Finally, the parallel structure
model was built as a combination of those CNN and RNN structures in parallel. Latent
features are fused using element-by-element multiplication. A more detailed summary of
the structures of VAEs can be found in Figure 3. All three VAEs have 2000 latent features
extracted by the encoding part (d = 2000), and the latent space was modeled using a
mixture of Gaussian assumptions. Furthermore, all VAEs were optimized using the Adam
algorithm with a learning rate of 0.0001. In the context of the CVAE, all the architectures
of the models remain the same; however, the phenotypic data embedding is incorporated
by concatenating it with both the input of the encoder and the input of the decoder. The
embedding dimensionality is specifically set to 200, allowing for concatenation as another
parcel feature to the input matrix, resulting in a total dimensionality of 201× 200. Con-
catenation to the latent vector z resulted in the dimensionality of 2200. It is important to
note that for the training of VAEs, only a neurotypical sample has been used; however,
due to the conditional embedding, the CVAE allows for training on both neurotypical
and neurodivergent samples. All of the experiments that are reported in this paper were
performed on the server that contains an NVIDIA RTX 3090 running CUDA version 10.2
and PyTorch 1.13.1 + cu117 [49]. We believe that this is the first study in the fMRI domain
comparing different encoding and decoding architectures.

3.6. VAE Performance Evaluations

Evaluation of VAE performance consisted of analysis of the reconstruction of the
neurotypical samples, analysis of latent space features, and analysis of the regeneration
abilities of the decoder.

Upon completion of the training, assessment of the VAE and CVAE reconstruction
abilities involved three evaluation methods. The cosine similarity score was computed to
capture the overall resemblance between the input and the reconstructed output. However,
cosine similarity does not explicitly account for positional information. Thus, Pearson’s
correlation coefficient (R, PCC) was additionally calculated for the validation subsets of
the data. Finally, the difference between the input and decoded output was evaluated
through L1 (Mean Absolute Error (MAE)). L1 quantified the average absolute difference
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between the reconstructed BOLD signal intensity and the intensity of the original signal. To
compute the L1 error, we leveraged the validation samples of the subgroup present during
the training phase. We believe that a combination of these metrics will help us quantify the
ability of VAEs and CVAEs to reconstruct samples from lower-dimensional data within the
validation dataset.

To assess the encoding abilities of each model, we encode both populations and
conduct a comparative analysis of their latent representations. To determine the statistical
significance of the differences in the encoding feature, a two-sided t-test is employed
(p < 0.05). The null hypothesis is that the mean of the neurotypical subgroup is equal to
the mean of the neurodivergent. It is believed that the optimal encoder architecture will
have a pronounced distinction in the latent space, meaning that the encoder learned to
extract meaningful features from the input samples. Consequently, our objective is to reject
the null hypothesis in favor of the alternative hypothesis, which is that the mean latent
representations of the TD and ASD groups are different.

Evaluating the performance of accuracy of synthetic data outputted by VAEs poses a
significant challenge, especially when the ground-truth effects are unknown in real data.
Therefore, to provide an initial assessment of atypical pattern detection, we calculate L1
of synthetic samples. In the context of VAE experiments, where the model is trained on
TD samples only, we formulate a hypothesis that the L1 error would be more pronounced
when reconstructing ASD validation samples in comparison to the TD validation samples.
For the CVAE experiments, where model architecture accommodates training on both TD
and ASD samples, synthetic outputs were generated for the ASD validation dataset with
target conditional embedding of TD samples. Consequently, the L1 error is computed
between the input ASD samples and the synthetically generated outputs.

3.7. Functional Connectivity Analysis

In this study, we conducted FC analysis of the ASD subgroup alongside FC analysis
for female and male populations within the ASD group. The FC analysis was performed
using trained VAEs and CVAEs in three steps.

In VAE experiments, we first processed each neurodivergent sample from the valida-
tion subset through all three architectures. We hypothesized that since VAEs were trained
to reconstruct neurotypical samples only, the output of the neurodivergent sample from the
decoding process would resemble the features of the training data (Figure 4A). Next, we
grouped the brain parcels into five prominent brain networks—the Default Mode Network
(DMN), Limbic, Visual, Somatomotor, and Salience. Due to limitations in Schaefer’s atlas,
we could only analyze connectivity within these five networks. We then calculated pairwise
connectivity using Pearson correlation coefficients between these networks (Figure 4B). The
resulting averaged correlation matrices were then subjected to a two-sided Welch t-test
to compare interconnectivity within networks between the two subgroups. Statistically
significant results (p < 0.05) were then visualized using chord diagrams. A negative Welch
t-value indicated that the mean of the neurodivergent input was lower than that of the
neurotypical-like synthetically generated group, while a positive Welch t-value suggested
that the mean of the input group was higher than the generated group. As depicted in
Figure 4C, the color of the connecting line between the outer circles of the chord diagram
corresponds to the Welch t-value. In this representation, blue shades indicate negative
t-values (lower connectivity), while yellow hues correspond to positive t-values (higher
connectivity).
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Figure 4. Summary of functional connectivity analysis steps. (A) Process neurodivergent samples
from the validation subset through VAE or CVAE. Adjust the condition to the target in CVAE. (B)
Compute pairwise connectivity between networks. (C) Perform a two-sided Welch t-test and visualize
statistically significant results using a chord diagram.

For the CVAEs, the training data included both neurodivergent and neurotypical data,
which allows for a more targeted generation of the synthetic output. The overall steps for
FC with CVAEs were similar to those with VAEs, but the input embedding of the condition
was adjusted to the desired output. For instance, if the input sample was a female with ASD,
12 years old, the embedding was adjusted to generate a neurotypical-like female, 12 years
old, sample. The remaining FC analysis steps—grouping parcels, calculating pairwise
connectivity, conducting two-sided Welch t-tests, and visualizing chord diagrams—are the
same as with VAEs.

To explore sex-related neurodivergence, we performed separate analyses for female
and male samples from the validation dataset. To assess the influence of the conditions on
the FC results, we calculate cosine similarity between VAE and CVAE pairwise correlation
matrix between networks (Figure 4B). We believe that the cosine similarity score should be
higher for CVAE than VAE, indicating reduced sex-related bias.

4. Results
4.1. VAE Performance Evaluations

As detailed in Section 3.6, we begin by evaluating the reconstruction performance
of all VAEs and CVAEs. Upon visual inspection of Figure 5, we observe that all models
have adeptly learned to reconstruct the data from the low-dimensional representation. In
Figure 6, one can observe the decoded signal from one parcel of the validation sample,
and the decoded signal closely follows the input signal, demonstrating a high level of
reconstruction. Additional quantitative results are summarized in Tables 1 and 2. It i
worth highlighting that integrating conditional variables into the models has increased
the accuracy in reconstructing latent features, as indicated by both the cosine similarity
and PCC metrics. The CNN architecture has outperformed other architectures in terms of
reconstruction across both the VAE and CVAE experiments as evidenced by the highest PCC
scores in Tables 1 and 2. Moreover, the increase in PCC by adding conditional embedding
to the CNN model (9.37%) is higher compared to the increases in other models (4.54% in
RNN and 3.18% in CNN+RNN).

Table 1. Summary of reconstruction performance of VAE experiments: cosine similarity scores and
PCC for the neurotypical samples in the validation dataset. The average L1 reconstruction error for
both neurotypical and neurodivergent samples within the validation dataset is presented.

Model Cosine
Similarity PCC L1 TD L1 ASD

CNN 0.9930 0.6551 0.0693 0.0781
RNN 0.9817 0.6105 0.0728 0.0819

CNN and RNN 0.9820 0.6356 0.0717 0.0803
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Table 2. Summary of reconstruction performance of CVAE experiments: cosine similarity scores
and PCC for the neurotypical samples in the validation dataset. Additionally, the average L1
reconstruction error for validation neurodivergent samples and synthetically generated neurotypical-
like samples.

Model Cosine
Similarity PCC L1 ASD L1 TDsynthetic

Conditional
CNN 0.9961 0.7165 0.0643 0.0733

Conditional
RNN 0.9818 0.6382 0.0681 0.077

Conditional
CNN and RNN 0.9825 0.6558 0.0687 0.0778

Figure 5. Sample reconstruction of parcels vs. time matrix for a neurotypical control sample from
validation subset. LH: Left Hemisphere, RH: Right Hemisphere, Vis: Visual, SM: Somatomotor,
Lim: Limbic, Sal: Salience, Def: Default.

Figure 6. Sample reconstruction of one parcel for the neurotypical control sample from validation
subset. PCC and MSE are also stated for the displayed parcel reconstruction.
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To evaluate the encoding capabilities of each model, a comprehensive analysis was
conducted on both neurotypical and neurodivergent samples from the validation dataset.
Figure 7 depicts the resulting means of latent distribution. Notably, among the VAE models,
the CNN architecture and the hybrid CNN with RNN models exhibit statistically significant
differences in their latent features between affected and unaffected samples. Therefore,
the models have successfully learned to extract meaningful features from the input data.
As anticipated, adding conditional embedding to the models resulted in a higher degree
of separation within the latent space than unconditional models. All the CVAE models
display statistically significant differences in latent space between the two subgroups.

Figure 7. Summary of mean distribution of the latent space for validation subsets for each model.
T-test significance is also reported on each of the subplots.

To further assess the performance of VAEs, we conducted a preliminary evaluation
of atypical pattern detection by calculating the reconstruction error on both neurotypical
and neurodivergent samples from our validation datasets, summarized in Table 1. The
reconstruction L1 error for the ASD validation set is higher than that of the TD set. This
difference implies that VAEs can reconstruct ASD samples in a manner that makes them
resemble TD samples. For the CVAEs, we conducted a similar analysis. Given that the
CVAE was trained on both ASD and TD samples, our approach involved computing the
reconstruction L1 error for the ASD samples first. Subsequently, we compared this with
the synthetically generated outputs, employing a target conditional embedding based on
a TD sample. The results, presented in Table 2, show that the construction error for the
synthetic samples exceeds that of the reconstructed ASD samples. This disparity serves as
an indication that the conditioning mechanism is effective in detecting certain divergences
within the data.

4.2. Functional Connectivity Analysis

Figures 8 and 9 present the results of the FC analysis, following the steps outlined
in Section 3.7. In Figures 8 and 9, the top row is the connectivity trends for both female
and male samples of the testing data, the middle row is the trends for the male population,
and the bottom is female. We first highlight results shared consistently across all rows,
which indicates the trends that are unaffected by the sex imbalance within the dataset.
Subsequently, we summarize the identified patterns in functional connectivity that were
affected by this sex bias.

In the VAE experiments (Figure 8, top row), a consistent trend of under-connectivity
between the Limbic and DMN networks emerges across all models for the combined
male and female populations. This pattern remains evident in both the female and male
subpopulations,except for the RNN female results (Figure 8, bottom row). Similarly, CNN
and hybrid models identified under-connectivity between the salience and visual networks,
which has remained similarly apparent in both male and female populations. Finally, the
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trend that is found to be common across males subpopulation and females subpopulation
(middle and bottom rows) is the under-connectivity between limbic and somatomotor
networks.

Figure 8. Statistically significant results of FC analysis presented as the chord diagram from VAE
experiments (two-sided Welch’s, p < 0.05). The bluish color of the lines indicates lower connectivity,
while yellowish colors represent higher connectivity of ASD samples compared to neurotypical-like
synthetic samples. The top row displays combined results for both female and male populations, the
middle row focuses on the male population only, and the bottom row pertains to female samples.

One notable consequence of the dataset’s bias is exemplified by the consistent trend of
over-connectivity between the salience and limbic networks in the male population, which
is reversed in females for all of the models (Figure 8, middle and bottom rows). Thus,
connectivity between the salience and limbic networks for the combined populations (top
row) reveals contrasting outcomes. Furthermore, a noteworthy difference between males
and females lies in the connectivity between the somatomotor and DMN networks. In
females, the connectivity between the somatomotor and DMN networks exhibits a notably
stronger presence in comparison to males. This can be concluded by higher Welch t-values
observed within the female population for the connections between the somatomotor and
DMN networks.

In the CVAE experiments, some trends are similar to those identified with VAE models.
For example, in Figure 9, a trend of under-connectivity between limbic and DMN is
apparent for both the male and female populations, with the exception of the CNN model.
In RNN-based and hybrid models, the trend of under-connectivity between limbic and
DMN in males and females remains true for CVAE experiments. Remarkably, the trend
of increased connectivity between the Somatomotor and DMN networks in females, as
opposed to males, persists in CVAE experiments as well.
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Figure 9. Statistically significant results of FC analysis presented as the chord diagram from CVAE
experiments (two-sided Welch’s, p < 0.05). The bluish color of the lines indicates lower connectivity,
while yellowish colors represent higher connectivity of ASD samples compared to neurotypical-like
synthetic samples. The top row displays combined results for both female and male populations, the
middle row focuses on the male population only, and the bottom row pertains to female samples.

Interpreting the chord plots and discerning the extent to which the CVAE mitigated
sex-related influences presents a challenge. As outlined in Section 3.4, the identified
neurodivergence in the CVAE is expected to have a lower correlation with sex labels
compared to the VAE. To measure this, we quantitatively assess the similarity between
the pairwise correlations underpinning these chord plots (Table 3). This similarity score
revealed that all the conditional models have a higher overlap between male and female
neurodivergence compared to the unconditional models. Conditional hybrid model had
the highest values for the similarity between female and male pairwise correlation matrices,
suggesting the most unbiased FC neurodivergence patterns in relation to sex. However,
it is important to note that the CNN model compared to the rest of the models had the
highest increase in similarity by adding conditional embedding, which is indicative of the
fact that CNN layers are particularly sensitive to the inclusion of conditional embedding.

Table 3. Similarity between male and female FC pairwise correlations for VAE and CVAE experiments.

Model Architecture Unconditional FC Similarity Conditional FC Similarity

CNN 0.35 0.70
RNN 0.66 0.80

CNN parallel with RNN 0.78 0.85
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5. Discussion

In this study, we investigated the application of generative models to FC analysis in the
context of ASD with fMRI data. Our exploration began with a comprehensive assessment
of the reconstructive abilities of various VAE architectures, using neurotypical samples as
the input data.

We believe that the CNN-based VAE and CVAE are more effective in reconstruction
and conditional generation of synthetic data. This conclusion has been derived from the
combination of the metrics and results provided in Section 4. First and foremost, cosine
similarity and PCC measures for CNN VAE and CNN CVAE reconstruction are higher
compared to the other models. Even though introducing phenotype data has improved both
reconstruction in higher dimensional space and discrimination in lower-dimensional space
for all of the models, it i worth highlighting that the CNN model has demonstrated superior
reconstruction performance with conditioning, as evidenced by the highest observed
increase in PCC by comparing Tables 1 and 2. Secondly, in Table 3, the CNN model stands
out with the highest increase in similarity between female and male connectivity, almost
doubling the improvement seen in other models. These findings collectively indicate that
the CNN model exhibits heightened sensitivity to conditioning mechanisms in comparison
to other models. One plausible explanation for this could lie in the way the condition
is introduced to the model. In all models, conditional embedding is concatenated as
another feature, resulting in the absence of explicit temporal ordering within conditional
embeddings. Consequently, CNN demonstrated superior performance in handling this
conditioning mechanism when contrasted with the RNN model. We interpret this as it is
more effective for the VAE to model spatial patterns rather than temporal ones. We believe
that unconditional CNN in parallel with RNN is better for classification applications.As
shown in Figure 7, the degree of separation for the unconditional hybrid model is higher
than the other models. Secondly, the addition of conditional information to the hybrid
model resulted in the most unbiased results in relation to sex labels results, as indicated by
the highest values in Table 3. Nevertheless, the hybrid model has reduced sex-related bias
the most, the results were accompanied by poorer reconstruction performance compared to
the CNN-based model.

To provide initial validation for the decoder architectures, we calculated the Mean
Absolute Error for the reconstruction of the subgroup that was present during the training
and the new sample subgroup. VAEs had higher reconstruction errors for ASD samples
compared to TD samples, indicating their ability to model ASD samples resembling TD
ones. For CVAEs, which were trained on both ASD and TD samples, we computed
reconstruction loss for ASD samples. Comparing this loss of synthetically generated
outputs using a TD-based target conditional embedding, we found higher reconstruction
errors for synthetic samples. This finding also suggests the conditioning mechanism
effectively detects neurodivergence and can make the generation process more targeted.
Moreover, in comparison to the work of Kim et al. [22], our VAE models demonstrate better
performance in data reconstruction, showcasing a lower range of reconstruction errors
ranging from 0.06 to 0.07, while Kim et al. reported a range of 1.2 to 1.7.

Next, we proceeded further to FC analysis with trained VAEs and CVAEs. We consis-
tently identified under-connectivity between the limbic and DMN networks across most
VAE experiments, which is consistent with previous findings in the literature [38]. The
trend of higher connectivity between salience and limbic networks in the male popula-
tion compared to female has been identified by all VAEs and CVAEs. In the study by
Green et al. [42], where the studied group consisted predominantly of the male population,
they concluded that male individuals tend to exhibit over-connectivity between salience
and limbic networks. However, we extend these findings and show this trend does not
hold true in the female population.

One of the findings in the previous literature is that males tend to have decreased
under-connectivity with the DMN network compared to females [44]. Based on our anal-
ysis, both the VAE and CVAE revealed this pattern as well, specifically between DMN
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and somatomotor networks. Due to the limitations of Schaefer’s atlas, we have focused
on exploring network connectivity. However, in future works, we aim to expand the
investigation to other atlas configurations and within network analysis. All of the above
are consistent with the connectivity patterns that have been reported previously in other
literature, summarized in Section 2.4.

It was hypothesized that adjusting conditional embedding would reduce sex-related
bias in the models and potentially result in sex-independent FC. By evaluating the pairwise
connectivity matrix overlap between female and male subgroups, it is concluded that
patterns discerned through CVAE have reduced correlation with sex labels. We believe
the remaining differences shown in the chord plot between male and females in CVAE
experiments are primarily due to the age difference and diverse nature of the disorder.

In recent years, many studies have explored the capabilities of generative models
(including VAEs, GANs, and Diffusion flow models) in the medical domain. However,
many models are found to struggle with at least one of the following: high-quality outputs,
mode coverage, sample diversity, and computational costs [50]. VAEs are probabilistic
models, which makes them well-suited for modeling and generating complex distributions.
As shown in this paper, VAEs can learn the underlying probability distribution of the input
data, allowing for probabilistic sampling and interpolation. However, as stated in previous
works, VAEs tend to suffer from comparatively low quality in generation compared to
GANs or Diffusion flow models [50]. Therefore, our future work will also investigate
different generative frameworks to improve the quality of generated samples and develop
methods for assessing them.

6. Conclusions

This paper presents a novel approach to FC analysis of fMRI data using a generative
model such as the VAE. We also attempted to study if introducing additional phenotype
data to the model would reduce bias and increase the generalizability of the FC analysis.
Our main finding includes that the CNN-based model has been shown to be the most effec-
tive architecture for the FC analysis, as it showed superior performance in reconstruction
with and without conditional information. We show that introducing phenotypic data to
the model generally improves reconstruction performance and reduces bias in FC analysis.
Conditioning of the CNN model has shown to have the most effect on the results; however,
the CNN model parallel with RNN has shown to be the least biased with respect to sex
labels.
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Abbreviations
The following abbreviations are used in this manuscript:

ASD Autism Spectrum Disorder
TD Typically Developing
FC Functional Connectivity
fMRI functional Magnetic Resonance Imaging
BOLD Blood-Oxygen-Level-Dependent
CNN Convolutional Neural Network
RNN Recurrent Neural Network
VAE Variational Autoencoder
CVAE Conditional Variational Autoencoder
DMN Default Mode Network
PCC Pearson’s Correlation Coefficient
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