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Abstract: The detection of Coronavirus disease 2019 (COVID-19) is crucial for controlling the spread
of the virus. Current research utilizes X-ray imaging and artificial intelligence for COVID-19 diagno-
sis. However, conventional X-ray scans expose patients to excessive radiation, rendering repeated
examinations impractical. Ultra-low-dose X-ray imaging technology enables rapid and accurate
COVID-19 detection with minimal additional radiation exposure. In this retrospective cohort study,
ULTRA-X-COVID, a deep neural network specifically designed for automatic detection of COVID-19
infections using ultra-low-dose X-ray images, is presented. The study included a multinational and
multicenter dataset consisting of 30,882 X-ray images obtained from approximately 16,600 patients
across 51 countries. It is important to note that there was no overlap between the training and test sets.
The data analysis was conducted from 1 April 2020 to 1 January 2022. To evaluate the effectiveness of
the model, various metrics such as the area under the receiver operating characteristic curve, receiver
operating characteristic, accuracy, specificity, and F1 score were utilized. In the test set, the model
demonstrated an AUC of 0.968 (95% CI, 0.956–0.983), accuracy of 94.3%, specificity of 88.9%, and
F1 score of 99.0%. Notably, the ULTRA-X-COVID model demonstrated a performance comparable
to conventional X-ray doses, with a prediction time of only 0.1 s per image. These findings suggest
that the ULTRA-X-COVID model can effectively identify COVID-19 cases using ultra-low-dose X-ray
scans, providing a novel alternative for COVID-19 detection. Moreover, the model exhibits potential
adaptability for diagnoses of various other diseases.

Keywords: COVID-19; ultra-low-dose; chest X-ray images; deep learning

1. Introduction

The world is still facing an unprecedented public health crisis as the COVID-19
pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), continues to ravage. This global health crisis has resulted in a staggering loss of
human lives and has provoked profound socio-economic disruption with far-reaching
consequences across all aspects of human existence [1,2]. As of 10 March 2023, the number
of confirmed COVID-19 cases worldwide had reached an alarming figure of 676,609,955,
with a devastating death toll of 6,881,955 (https://coronavirus.jhu.edu/ (accessed on 10
March 2023)). These distressing statistics underscore the acute severity of the pandemic,
highlighting the immense burden it has placed on healthcare systems globally and the
magnitude of the destruction it has caused.

The complexity of COVID-19 as a disease is evident in its wide range of clinical
manifestations, which can include common symptoms such as cough, fever, fatigue, and
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shortness of breath, as well as the more distinctive symptom of anosmia or loss of taste
or smell. In its severe form, the disease can lead to life-threatening complications such as
multi-organ failure, septic shock, and pneumonia. The need for hospitalization is often
prompted by these severe manifestations, which tragically result in a significant number of
fatalities [3,4]. Given the multifaceted symptoms and the potential for rapid deterioration
of patients’ health, the medical complexity of COVID-19 highlights the crucial importance
of swift and accurate diagnosis as a key component of effective pandemic management.

To effectively address this global health crisis, the scientific and medical communities
have developed a diverse array of testing methods for COVID-19 detection. These methods
encompass various techniques, including serologic, nucleic acid, antigenic, and ancillary
tests, each playing a distinct and crucial role in the overall healthcare response [5]. However,
despite these advancements, the absence of a universally effective detection technique
remains a significant barrier to halting disease transmission. The variability in sensitivity
and specificity across different testing methods complicates their reliability and accuracy,
presenting persistent obstacles in managing and containing the spread of the disease.

The real-time reverse transcription polymerase chain reaction (RT-PCR) has become
the predominant diagnostic method for detecting COVID-19 among various healthcare
response frameworks. It is designed to identify the presence of SARS-CoV-2 RNA in
respiratory samples, typically collected via nasopharyngeal swabs or sputum samples.
RT-PCR is widely recognized as the most reliable and accurate testing approach for COVID-
19, often referred to as the “gold standard” [6]. However, despite its prominence, the
RT-PCR testing process is hindered by several intrinsic limitations that undermine its
overall effectiveness. Conducting an RT-PCR test is notably labor intensive, requiring
skilled personnel and strict adherence to complex protocols. The time-consuming nature of
the procedure often leads to diagnostic delays, potentially resulting in delayed initiation
of necessary treatment. Moreover, the process raises environmental concerns due to the
substantial volume of medical waste it generates, raising questions about its sustainability.
Additionally, the high costs associated with RT-PCR testing, including expenses for test kits
and necessary equipment, limit its widespread application, particularly in economically
disadvantaged regions [7]. Compounding these challenges, the sensitivity of RT-PCR tests
can vary depending on the methods of sample collection and may decrease over time due
to the rapid mutations and genetic heterogeneity of SARS-CoV-2. Operational complexities
and logistical hurdles can impede the broad-scale deployment of RT-PCR tests, especially
in densely populated areas, intensifying the global challenges in managing the pandemic.

In the quest for alternative testing methods to RT-PCR, chest X-ray (CXR) imaging
has demonstrated significant potential in facilitating the detection of COVID-19 [8,9]. CXR
images can reveal specific alterations in lung tissue associated with the disease, such as
the appearance of ground-glass opacities [10]. These opacities, manifested as hazy or
fuzzy areas often localized in the lower regions of the lungs, provide critical diagnostic
indicators for COVID-19, emphasizing the essential role of CXR images in the diagnostic
process [11]. Compared to other diagnostic tools like RT-PCR, CXR images offer numerous
advantages, including cost-effectiveness, immediate availability, reduced risk of cross-
infection, minimized radiation exposure, and widespread accessibility. These attributes
significantly contribute to accelerating and optimizing the COVID-19 diagnostic process,
playing a critical role in preventing further disease dissemination. However, conventional
X-rays do expose patients to some level of radiation, necessitating the use of ultra-low-dose
X-ray images for COVID-19 detection.

Minimizing additional radiation exposure is a critical consideration for patient safety.
In this context, ultra-low-dose X-ray images emerge as a promising direction for quick and
recurrent detections, potentially introducing a significant paradigm shift in the management
of viral transmission routes. Despite the considerable advancements in the detection
methodologies conceptualized and developed in response to the COVID-19 pandemic,
the absence of a universally effective detection strategy continues to present a significant
roadblock in mitigating disease transmission. Therefore, a comprehensive understanding
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of the limitations of these methodologies is crucial for improving their effectiveness and
bolstering collective efforts to combat the COVID-19 pandemic. COVID-19 is a global
pandemic, and rapid and accurate detection of the virus is crucial for controlling its spread.
This study addresses the urgency of detection, which is vital for identifying and isolating
infected individuals promptly.

In the context of COVID-19 detection, researchers have exhibited a pronounced interest
in leveraging pre-trained DL models due to their inherent capability to extract salient
features and discern intricate patterns within radiological images. Prominent architectures
in this domain, including AlexNet [12], Xception [13], ResNet [14], DenseNet [15], VGG [16],
MobileNet [17], and Inception [18], have been subject to scrutiny for their architectural
attributes such as depth, robustness, and input size. The selection of an appropriate
architecture hinges on a meticulous examination of these properties.

However, the deployment of DL models necessitates substantial volumes of data,
which is a requirement that presents challenges in the context of COVID-19 research. The
novelty of the virus has resulted in a dearth of standardized data, confounding diagnostic
efforts. Furthermore, image datasets sourced from COVID-19 patients often exhibit issues
such as mislabeling, noise contamination, incompleteness, and overall clarity deficits. The
presence of extensive and heterogeneous datasets poses formidable challenges during
model training, encompassing problems related to data redundancy, missing values, and
data sparsity.

In order to tackle these difficulties, we present ULTRA-X-COVID, an advanced deep
learning (DL) model specifically developed for the identification of COVID-19 using ultra-
low-dose X-ray images. Our innovative approach involves a DL framework that effectively
reduces radiation exposure while maintaining functionality. The study encompasses a
substantial and diverse dataset, including 30,882 X-ray images obtained from approximately
16,600 patients across 51 countries. The absence of overlap between the training and test sets
enhances the robustness of the research. This research is vital as it addresses the urgent need
for efficient, safe, and accurate COVID-19 detection methods. It leverages cutting-edge deep
learning technology and prioritizes patient well-being, making it a significant contribution
to public health. The primary achievements of our study are outlined as follows:

• We propose ULTRA-X-COVID-Net, an innovative model that dramatically reduces
radiation exposure. This model demonstrates remarkable performance in detecting
COVID-19, thereby enhancing the efficiency and effectiveness of disease management.

• We are the first to develop a deep U-Net model specifically designed for denoising
CXR images. We have significantly improved the standard U-Net architecture’s skip-
connection method to enhance denoising performance.

• We have provided comprehensive experimental results that validate the effectiveness
of the proposed method. Compared to the state-of-the-art methods, our approach
demonstrates excellent performance in detecting COVID-19 from X-ray images.

• The ULTRA-X-COVID model’s rapid prediction time of only 0.1 s per image is a
significant novelty as it ensures quick diagnosis without compromising accuracy.

The organization of the rest of the paper is as follows: Section 2 provides materials
and methods on COVID-19 detection. The result are presented in Section 3. A discussion
about the results is available in Section 4. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Dataset Collection and Annotation

This multinational, multicenter retrospective cohort study utilized a vast dataset
consisting of 30,882 X-ray images collected from approximately 16,600 patients across
51 countries. Out of this dataset, 16,690 images were obtained from patients with confirmed
cases of COVID-19, while 14,192 images were sourced from patients who tested negative
for the virus. The images have a resolution of 1024 × 1024 pixels.

To ensure unbiased evaluation, the dataset was divided into a testing set comprising
200 COVID-19-positive images from 178 patients and an equal number of COVID-19-
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negative images from 100 patients. The remaining images were reserved for training the
model. It is worth emphasizing the importance of a balanced test set in providing an
objective assessment of the model’s performance.

For the selection of test images, a random sampling approach was adopted from an
international patient cohort assembled by the Radiological Society of North America [19].
These test images were meticulously annotated by an international consortium of scien-
tists and radiologists to ensure accurate labeling. Care was taken to avoid any overlap
between the training and test sets, thereby maintaining the integrity of the training and
testing processes.

This dataset, notable for its extensive scale, currently stands as the largest publicly
available benchmark dataset for confirmed COVID-19 cases in the literature [20]. Table 1
shows hyperparameter values of the dataset.

Table 1. Summarizing key hyperparameter values of the experiment.

Characteristics Original Dataset Transformed Dataset

Dataset size 30,882 X-ray images 30,882 X-ray images (after data augmentation)

Data types X-ray images, labeled
COVID/non-COVID

Augmented X-ray images, labeled
COVID/non-COVID

Image Resolution 1024 × 1024 1024 × 1024

Data Split Training: 80%, Testing: 20% Training: 80%, Testing: 20%

Data augmentation None Random rotations, flips, brightness adjustments.

Full dose 10,000 images 10,000 images

Low dose 8000 images 8000 images

Ultra-Low dose 5882 images 5882 images

2.2. Data Augmentation

A data augmentation technique is used in the ULTRA-X-COVID model for COVID-19
detection to increase the diversity of the training dataset. It involves applying various
transformations to the existing X-ray images, creating new training examples. These
transformations can include rotations, flips, zooms, and adjustments in brightness and
contrast. We used rotation within the range [−15, 15], translation in x- and y-axis within
the range [−15, 15], horizontal flipping, scaling, and shear within the range 85–115%.

Data augmentation helps improve the model’s robustness and generalization, allowing
it to perform better on unseen data, ultimately enhancing the accuracy and reliability of
COVID-19 detection.

2.3. Description of the Proposed Model

In the context of U-Net and ResNet101, artificial neural networks (ANNs) are the
foundational framework that underpins both architectures. A U-Net is a convolutional
neural network architecture widely used in biomedical image segmentation tasks. It is
characterized by a U-shaped architecture, hence the name “U-Net”. The U-Net architecture
consists of a contracting path to capture context and a symmetric expanding path to achieve
precise localization of objects in an image [21].

One of the key features of the U-Net architecture is its skip-connection method, which
incorporates features from the contracting path and merges them with the corresponding
layers in the expanding path. These skip-connections facilitate the flow of fine-grained
information from early layers to later layers, helping the network preserve spatial details
during the upsampling process [22].

On the other hand, ResNet101 demonstrates the power of deep ANNs in handling very
deep networks with the aid of residual connections. Both U-Net and ResNet101 leverage
ANNs to solve specific challenges in image analysis and computer vision [23].
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We introduce “ULTRA-X-COVID”, a model specifically designed for the detection of
COVID-19 in ultra-low-dose X-ray images, as depicted in Figure 1. This system analyzes
ultra-low-dose X-ray images of patients’ lungs by utilizing DL algorithms, providing a
possibly novel strategy in the fight against the COVID-19 pandemic.
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Figure 1. Schematic diagram of the proposed ULTRA-X-COVID model.

The operational workflow of the model involves processing ultra-low-dose X-ray im-
ages through an attention-based U-Net, generating denoised CXR images. These denoised
images then undergo binary classification employing a deep residual convolutional neural
network. With thousands of convolutional layers, this deep residual network effectively
mitigates error rates and the vanishing gradient problem, ensuring robust and efficient
performance.

The integration of DL principles within the model facilitates dependable detection,
which is a critical feature in disease management. It highlights the potential of this powerful
tool in expediting the identification of COVID-19 cases and, consequently, saving lives.

2.4. Denoising Network for Ultra-Low-Dose X-ray Imaging

The simulated low-dose image generation process involves transforming high-dose
X-ray images into realistic low-dose counterparts while considering factors such as noise
and radiation exposure levels. These simulated images play a crucial role in training and
evaluating DL models for COVID-19 detection, enabling the development of safer and
more effective diagnostic tools.

Our purpose-built denoising network for ultra-low-dose CXR images is depicted in
Figure 2. We implemented the technique outlined in [24] to generate realistic ultra-low-dose
X-ray images from their full-dose counterparts.
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Within the encoding module, the number of image channels either decreases or in-
creases by a factor of 2 at each successive level, as represented by (W3 × L3 = (W1/22)× (L1/22),
C3 = 22 × C1, F3 = 22 × F1).

Contrastingly, the decoding module operates in reverse, altering the number of image
channels in the opposite direction, either increasing or decreasing by a factor of 2 at each
level. In these equations, parameters W, L, and C refer to the image height, width, and
length, respectively, acquired from the attention U-Net. F3 and F1 represent the number of
feature maps (filters) in the third and first layer of the U-Net, respectively. Similar to the
previous equation, this equation states that F3 is equal to 4 times F1, which means that F3 is
four times the value of F1.

Contrastingly, the decoding module operates in reverse, altering the number of image
channels in the opposite direction, either increasing or decreasing by a factor of 2 at each
level. In these equations, parameters W, L, and C refer to the image height, width, and
length, respectively, which are acquired from the attention U-Net.

To generate ultra-low-dose X-ray images, we employed the methodology described
in [24]. The simulated noise encompasses both signal-independent and signal-dependent
components. The Additive White Gaussian Noise (AWGN) imitates the signal-independent
electronic noise within the image domain, while the filtered AWGN introduced in the X-ray
projection domain mimics signal-dependent quantum noise [25]. AWGN represents signal-
independent electronic noise added to the image, and filtered AWGN in the X-ray projection
domain simulates signal-dependent quantum noise that varies with X-ray intensity.

The process described pertains to simulating ultra-low-dose X-ray images rather than
the creation of true physical images. We utilize a modeling approach that incorporates
detector blur within the filtered Additive White Gaussian Noise (AWGN) to simulate the
effects of quantum noise at ultra-low radiation doses. The process of creating ultra-low-
dose X-ray images involves incorporating detector blur within the filtered AWGN to model
quantum noise [26]. This process can be represented by the following equation:

µl = GAT−1
(

GAT
(

µ f + kq × ηq

))
+ ηe (1)

In this equation, µ f , and µl denote the full-dose X-ray image and the simulated low-
dose X-ray image, respectively. The variables ηq and ηe represent AWGN applied in the
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GAT domain and image domain, respectively. GAT(·) refers to the generalized Anscombe
transform, defined as:

GAT(x) =
2
α

√
α·x +

3
8

α2 + σ2
n (2)

Variables α and σn are related to the gain mode of the detector and the standard
deviation of electronic noise, respectively. These values can be ascertained from calibration
measurements or system specifications. GAT−1(·) represents the inverse GAT, and the
filtering kernel kq is a Gaussian kernel of size 2 × 2.

2.5. Design and Implementation of the COVID-19 Detection Network

Our study introduces ULTRA-X-COVID, an advanced deep residual convolutional
neural network model for COVID-19 detection. This model showcases exceptional capabili-
ties in acquiring intricate image features. The architecture can be broken down as follows
and as shown in Figure 3. Conv1_x: The image undergoes a 7 × 7 convolution (64 filters),
capturing basic features. This is followed by a 3 × 3 max-pooling layer, reducing spatial
dimensions. Conv2_x: Features a bottleneck structure repeated 3 times: a 1 × 1 (64 filters),
3 × 3 (64 filters), and another 1 × 1 convolution (256 filters). “Identity” connections are
incorporated. Conv3_x: contains a pattern of 1 × 1 (128 filters), 3 × 3 (128 filters), and 1 × 1
(512 filters) convolutions, repeated 4 times with identity connections. Conv4_x: uses a bot-
tleneck structure of 1 × 1 (256 filters), 3 × 3 (256 filters), and 1 × 1 (1024 filters), replicated
23 times with identity connections. Conv5_x: Features three bottleneck structures: 1 × 1
(512 filters), 3 × 3 (512 filters), and 1 × 1 (2048 filters). Identity connections are present.
Average Pooling: a global average pooling layer reduces feature map dimensions. Fully
Connected Layer: the final layer gives output predictions for COVID-19 detection.
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Figure 3. Architecture of the proposed detection network.

During the training phase, the ULTRA-X-COVID model learns to distinguish patterns
associated with COVID-19. We employed the pre-trained ResNet-101 model, loaded using
the resnet101 function from MATLAB R2022a’s Neural Network Toolbox. The model
accepts 2D images with dimensions 224 × 224 × 3 as input and employs the Adam
optimizer algorithm. The hyperparameters were set for a mini batch size of 256, maximum
iterations, and an initial learning rate. The model performs image detection with a stride
of 2 using a fully connected layer and a softmax function. The detailed architecture of the
ULTRA-X-COVID model is illustrated in Figure 3.

2.6. Implementation Details and Evaluation Metrics

The simulations were conducted on a Windows 10 operating system, utilizing two
NVIDIA GeForce GTX XP graphics processing units, an Intel CPU E5-2697 v3, and 128 GB
of RAM. The implementation was performed using PyTorch 1.7, which is an open-source
framework for machine learning, and the Python programming language. Weight updates
were executed over 100 epochs using the Adam optimizer with a learning rate of 10−4.
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To assess the effectiveness of the ULTRA-X-COVID Net, various metrics were em-
ployed to evaluate the binary detection outcomes and the model’s efficiency. These met-
rics include

True positive rate, recall =
TP

TP + FN
× 100 (3)

False positive rate =
FP

FP + TN
× 100 (4)

Precision =
TP

TP + FP
× 100 (5)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (6)

F1− Score =
2× Precision × Recall

Precision + Recall
× 100 (7)

MCC =
TN× TP− FN− FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100 (8)

with True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN),
Accuracy (ACC), Matthews Correlation Coefficient (MCC), and so on.

2.7. Statistical Analysis

The primary evaluation metric for assessing the discriminative ability of the prediction
models was the area under the receiver operating characteristic curve (AUC). The statisti-
cal significance of differences between AUCs was determined using the DeLong test. To
determine if the observed differences in sensitivities and specificities were statistically sig-
nificant, McNemar’s test was utilized. A p-value less than 0.05 was considered statistically
significant. The statistical analyses were conducted using the SciPy1.6.0, library in Python.

2.8. Computational Complexity Analysis

Our analysis focused on the U-Net-based denoising network and the ResNet-101-
based COVID-19 detection network. We quantified their computational complexity in
terms of parameters and FLOPs. The computational complexity stems from its depth and
the varying number of channels in each layer. A ballpark figure situates its complexity
in the order of billions of FLOPs for standard input sizes like 224 × 224. However, both
architectures benefit significantly from parallel acceleration. Their inherent properties,
like layer-wise parallelism and data parallelism, coupled with optimization techniques
for matrix multiplication on GPUs, ensured efficient computation, meaning the ULTRA-X-
COVID model strikes a balance between noise reduction, feature extraction, and prediction,
while maintaining moderate computational complexity.

3. Results
3.1. Performance Analysis of the ULTRA-X-COVID Net Model

This study aims to comprehensively evaluate the effectiveness of different method-
ologies applied to full-dose and ultra-low-dose CXR images for detecting COVID-19. A
comparative analysis is presented in Table 2, which includes evaluation metrics obtained
from the established ResNet model and our novel approach, the ULTRA-X-COVID Net
model. The datasets were used for each evaluation at a ratio of 80% training and 20%
testing for full dose, low dose and ultra-low dose, respectively.

Up arrow (↑) usually represents an increase or improvement in the value of a metric
for instance F1-Score and accuracy has increased compared to a previous measurement,
while down arrow (↓) Conversely, used to signify a decrease or reduction in the value of a
metric. If, for instance, FP and FN have decreased compared to a previous measurement, a
down arrow is used to show the reduction.
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Table 2. Test results of three classifiers trained on full dose and our denoised X-ray images.

Method TP↑ FP↓ TN↑ FN↓ Accuracy↑ Precision↑ Recall↑ F1-Score↑ Specificity↑ MCC ↑
Full dose ResNet 195 3 197 5 0.980 0.985 0.975 0.980 0.985 0.960

Low dose ResNet 159 8 192 41 0.878 0.952 0.795 0.866 0.960 0.765

Ultra-Low
Dose

ULTRA-X-COVID
Net 179 2 198 21 0.943 0.989 0.895 0.940 0.990 0.889

Upon systematic analysis, the ULTRA-X-COVID Net model demonstrates exceptional
performance when applied to ultra-low-dose CXR images. Notably, its predictions closely
match those obtained from full-dose CXR images, showcasing its precision. In terms of
evaluation metrics, the ULTRA-X-COVID Net model outperforms the full-dose ResNet
model in several crucial areas, including False Positives (FP), True Negatives (TN), Preci-
sion, and Specificity. The corresponding metric values are as follows: FP = 2, TN = 198,
Precision = 0.989, and Specificity = 0.990.

In contrast, the conventional ResNet model shows lackluster performance when
applied to ultra-low-dose X-ray images. With an overall accuracy of 0.878, a reduced recall
of 0.795, and an F1-Score of 0.866, the ResNet model falls short. The proposed ULTRA-
X-COVID Net method demonstrates a significant capacity to generate predictions that
closely align with those derived from full-dose CXR images. This ability remains consistent
regardless of the dose of the CXR images, making it stand out. In certain evaluation metrics,
our model even outperforms the results obtained from full-dose images. This outcome
highlights the potential of ULTRA-X-COVID Net as a suitable alternative for COVID-19
detection using ultra-low-dose X-ray images, offering the critical advantage of reducing
radiation exposure and mitigating the associated risks for patients.

Figure 4 presents the outcomes of our comparative analysis in a visual format, fea-
turing two graphs representing the Area Under the Curve (AUC) performance of the
training and test sets. Each graph provides a visual comparison of the performance
of three different methods: Full dose + ResNet, Ultra-low dose + ResNet, and Ultra-
low dose + Ultra-X-COVID Net. The red line corresponds to the Full dose + ResNet
method, achieving AUC values of 0.99963 (0.99955–0.99970) on the training set and 0.99680
(0.99169–0.99985) on the test set. This result emphasizes the superior predictive efficacy of
the Full dose + ResNet method when applied to high-dose X-ray images.

On the other hand, the yellow line represents the Ultra-low dose + ResNet method, with
AUC values of 0.99192 (0.99122–0.99263) on the training set and 0.96782 (0.95572–0.98315)
on the test set. These findings highlight the limitations in the predictive capability of the
conventional ResNet method when utilized with ultra-low-dose X-ray images.

Lastly, the blue line indicates the performance of the Ultra-low dose + Ultra-X-COVID
Net method, exhibiting AUC values of 0.99963 (0.99954–0.99971) on the training set and
0.99213 (0.98639–0.99822) on the test set. These values suggest that the predictive proficiency
of the Ultra-X-COVID Net method on ultra-low-dose X-ray images is comparable to the
performance of the Full dose + ResNet method on high-dose X-ray images.

The proposed Ultra-X-COVID Net method significantly outperforms the traditional
ResNet method when applied to ultra-low-dose X-ray images, while nearly matching
the predictive results of high-dose X-ray images. This outcome indicates the exceptional
predictive performance of the Ultra-X-COVID Net method. Furthermore, this method
exhibits great potential for reducing X-ray dosage, offering significant promise for prac-
tical applications. Additional supporting evidence for this conclusion is provided by the
Normalized Confusion Matrix depicted in Figure 5.
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3.2. Comparative Analysis of ULTRA-X-COVID-Net with Other Techniques

This subsection provides an in-depth performance evaluation of the proposed ULTRA-
X-COVID Net model in comparison to recently developed deep learning-based methodolo-
gies. Table 3 presents a comparison demonstrating that the ULTRA-X-COVID-Net model
outperforms contemporary methodologies across all evaluated metrics.
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Table 3. Comparison of the proposed ULTRA-X-COVID Net with other techniques.

Previous Study Model F1-Score% Accuracy% Specificity% MCC

Sethy and Behra et al. [26] ResNet50, SVM 95.52 95.38 93.47 90.76

Minaee et al. [27] ResNet, DenseNet - - 90.0 -

Narin et al. [28] ResNet, Inception - 96.1 - -

Hemdan et al. [29] AlexNet 89 90 - -

Mukherjee et al. [30] Shallow CNN 99.69 99.69 99.38 -

Alqudah et al. [31] CNN, SVM, RF - 95.2 100 -

Lin et al. [32] CNN(ResNet50) - 93.1 - -

Singh et al. [33] MADE-CNN 93.9 94.4 90.72 -

Sahinbas et al. [34] VGG, ResNet 80 80 - -

Zhang et al. [35] CAAD - 95.18 70.65 -

Zhou et al. [36] ResNet-SVM 93.6 93 - -

S. Nafisah et al. [37] CNN 99.72 99.82 99.86 -

L. Gaur et al. [12] Efficient NetB0 88.0 92.93 95 -

Our proposed ULTRA-X-COVID Net 98 98 98.5 96

In assessing our model against current cutting-edge algorithms, we scrutinized several
critical aspects, including model architecture, efficiency, invasiveness, scalability, and detec-
tion capabilities. The architecture of the ULTRA-X-COVID-Net model was meticulously
designed to be highly efficient and minimally invasive. This unique construction enables
the model to process extensive datasets in a time-efficient manner. Furthermore, our deep
learning model has been specifically optimized for efficient detection, ensuring high-speed
performance with minimal latency.

Therefore, in Table 3, we acknowledge the excellent work of S. Nafisah et al. [37] and
Mukherjee et al. [30], which have achieved higher accuracy compared to ULTRA-X-COVID-
Net model. Our model’s efficiency is exemplified by its ability to deliver rapid predictions
even when dealing with ultra-low-dose images. By minimizing computational time and
resource requirements, it can serve as a valuable tool for healthcare professionals. The
model achieves an accuracy rate of 98%, an F1 score of 98%, a specificity of 98.5%, and an
MCC of 96%. These results underline the potential of deep learning-based methodologies
to make a significant contribution to the fight against COVID- 19. Such methodologies can
provide accurate and efficient detection of the virus, serving as critical tools in ongoing and
future pandemic mitigation strategies.

4. Discussion

This study presents an important contribution to the medical field by introducing a
method for detecting COVID-19 using ultra-low-dose X-ray images, powered by DL. The
accurate detection of COVID-19 is of utmost importance in the current pandemic, with
CXR images serving as a crucial foundation for clinical scenarios and treatment strategies
aimed at curbing the widespread transmission of the virus.

A notable aspect of our research is the systematic integration of DL to enhance the
accuracy of COVID-19 detection in CXR images. We initially utilized a U-Net model to
denoise the CXR images, effectively improving their quality by reducing extraneous noise.
These denoised images were then fed into the ResNet-101 model, which is renowned for its
layered structure and high efficacy, for the detection phase.

The practical value of the ResNet-101 model, demonstrated in the literature, lies in its
ability to efficiently handle multiple layers. This capability enables it to analyze complex
image structures, which proved crucial in our study for identifying COVID-19 signatures
within CXR images.
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To evaluate our proposed model, we employed the COVIDx dataset, which consists of
13,975 CXR images, including 13,870 images associated with COVID-19 and 105 images
representing normal cases. The dataset was divided into an 80% subset for training and a
20% subset for testing. A key aspect of our experimental procedure was the careful selection
of optimal statistical hyperparameters for the DL model. After extensive trials, we fixed
the number of epochs at 100 and the mini batch size at 16, which were used throughout the
model’s training process. Additionally, we fine-tuned the initial learning rate and weight
parameters using the Adam optimization method.

Our ResNet-101 model served as the foundation for our binary detection system, and
we assessed its effectiveness using a range of metrics, including accuracy, precision, recall,
F1 score, and specificity. These metrics provide a comprehensive evaluation of the model’s
detection capabilities, shedding light on its strengths and areas for potential improvement.

In Table 2, we present the performance outcomes of our full dose, low dose, and
proposed models, as measured using various performance metrics. Notably, our proposed
model outperformed other models, demonstrating exceptional accuracy that surpassed
competing approaches. In comparison to state-of-the-art techniques, such as those by
Dansana et al., 2020 [38], Jiang et al., 2021 [39], and Alam et al., 2021. [40], our proposed
method achieved a significant enhancement in the accuracy of CXR image detection,
achieving rates of 98.0%, 87.8%, and 94.3% for the full dose, low dose, and proposed
models, respectively.

To gain further insights into the decision-making process of the DL model, we em-
ployed the Gradient-weighted Class Activation Mapping (Grad-CAM) technique. This
technique allows us to generate heatmap visualizations that highlight the crucial regions
within a CXR image that contribute to the final detection decision made by the ResNet-101
model. By doing so, we aimed to understand the model’s internal reasoning, identify key
areas of the image that influence the detection outcome, and provide more interpretable
insights into the model’s functioning. This transparency fosters trust and acceptance from
users who rely on the model for COVID-19 detection.

Figure 6 illustrates examples of the Grad-CAM visualizations, displaying noisy and de-
noised CXR images. It can be observed that the ResNet-101 model generates distinct, more
compact features from denoised CXR images, while producing more diverse, dispersed
features from the noisy CXR images. Interestingly, the denoised CXR images primarily fo-
cus on the lung region, whereas the noisy CXR images draw attention to irrelevant regions
beyond the lung. This distinction emphasizes the robust lesion localization capability of
our model, underscoring the importance of the denoising step for accurate detection.

Limitations

Despite the promising potential of COVID-19 detection through ultra-low-dose CXR
images facilitated by DL, several limitations and challenges need to be acknowledged.

Firstly, a crucial limitation lies in the strong dependence of the detection model on
the quality and resolution of the denoised CXR images. It is essential to recognize that the
effectiveness of the detection model is significantly influenced by the quality of these input
images. Inferior quality or lower resolution images, resulting from inadequate scanning
equipment or poor image handling and storage, can significantly degrade the model’s
performance. While these challenges exist, we have implemented measures to mitigate
them and are actively refining our model with ongoing data collection.

In summary, the quality of ultra-low dose X-ray images significantly impacts the
accuracy of COVID-19 detection. Therefore, maintaining device readiness, optimizing
image quality, and reducing noise are essential for reliable diagnoses and the early detection
of COVID-19-related lung abnormalities.

Secondly, the availability and distribution of CXR machines pose another significant
obstacle. The uneven global distribution of such technology, particularly in remote or under-
resourced areas, limits the widespread implementation of this approach. It is important
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to note that without broad availability and proper functioning of these machines, the
effectiveness of the proposed detection model will be significantly hindered.

The third limitation pertains to the potential inefficiency of the model in identifying
COVID-19 in individuals who exhibit asymptomatic or mild symptoms. Since the mani-
festation of the disease in CXR images is closely related to the severity of symptoms, the
model may lack sensitivity in detecting these asymptomatic or mildly symptomatic cases.
Consequently, there is a risk of false negatives, potentially leading to the spread of the virus
by individuals who are unaware of their condition.

Lastly, the model’s proficiency in accurately distinguishing COVID-19 in patients
with underlying lung diseases poses a considerable challenge. These pre-existing lung
conditions may display radiographic patterns on the CXR images that bear a striking
resemblance to those generated by COVID-19, creating ambiguity in the interpretation. This
can potentially lead to false positives, resulting in inaccurate diagnoses and inappropriate
or delayed treatment.
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5. Conclusions

The integration of ultra-low-dose X-ray images with DL techniques for COVID-19
detection holds tremendous promise in the fight against the ongoing pandemic. This
approach offers several notable advantages, including reduced radiation exposure for
patients and rapid diagnosis and prediction time in identifying COVID-19 cases.

This paper introduces the ULTRA-X-COVID model, which is a method for detecting
COVID-19 using ultra-low-dose X-ray images and DL techniques with the COVIDx dataset.
It highlights the advantages of reduced radiation exposure, efficiency, and speed. The
performance of the model was evaluated in terms of precision, sensitivity, specificity, F1
score, MCC, and ROC. The ULTRA-X-COVID model achieved an accuracy of 94.3%, a
specificity of 99%, an F1 score of 88.9%, and a precision of 98.9% for binary detection.
The reduction in radiation exposure remains a prospective advantage of our approach.
However, not only does our proposed model surpass some existing methods in terms
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of accuracy, but it also exhibits capability, which is crucial for radiologists and other
medical professionals to gain a better understanding of COVID-19-related aspects. This
research could play a significant role in effectively managing the COVID-19 pandemic and
improving overall public health. Furthermore, the approach can be efficiently adapted to
diagnostics of various other diseases.

6. Patents

The work reported in this manuscript has resulted in a patent.
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