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Abstract: Support ector achine (SVM) is a newer machine learning algorithm for classification, while
logistic regression (LR) is an older statistical classification method. Despite the numerous studies
contrasting SVM and LR, new improvements such as bagging and ensemble have been applied to
them since these comparisons were made. This study proposes a new hybrid model based on SVM
and LR for predicting small events per variable (EPV). The performance of the hybrid, SVM, and
LR models with different EPV values was evaluated using COVID-19 data from December 2019 to
May 2020 provided by the WHO. The study found that the hybrid model had better classification
performance than SVM and LR in terms of accuracy, mean squared error (MSE), and root mean
squared error (RMSE) for different EPV values. This hybrid model is particularly important for
medical authorities and practitioners working in the face of future pandemics.

Keywords: support vector machine; logistic regression; hybrid modeling; small EPV classification;
COVID-19 prediction; machine learning classification

1. Introduction

Classification is a technique used to know or estimate a class or a category of an object
based on the attributes or characteristics of the object. This approach finds application in
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numerous fields, encompassing areas such as finance, commerce, healthcare, and industry.
Typically, classification serves as a valuable tool for making decisions in situations involving
complex problems and extensive datasets. Examples of classification techniques includeaïve
Bayes [1,2], decision tree-based approaches [3,4], rule-based methods [5,6], upport vector
machines (SVMs) [7,8], neural networks [9,10], k-nearest neighbor (KNN) [11,12], and sta-
tistical methods like logistic regression [13,14]. Support vector machine (SVM) and logistic
regression (LR) represent two widely utilized supervised classification methods [15,16].

Support vector machine (SVM) stands as both a classification and regression technique
melding computational algorithms with theoretical underpinnings [16]. These dual quali-
ties have established its strong reputation and fostered its adoption in diverse domains [17].
Typically, the adoption of forecasting techniques hinges on their accuracy and efficiency
in handling data. This study finds its primary motivation in the advancement of hybrid
forecasting models, with efficiency, accuracy, and precision serving as central themes in
prior research and garnering significant attention in various scholarly publications [18–23].

Since its inception, support vector machine (SVM) has undergone thorough com-
parisons with various classification methods using real-world data [17,24–27], yielding
valuable insights for scientists. These findings can be summarized as follows: (i) SVM
typically demands fewer input variables compared to logistic regression (LR) while achiev-
ing the same misclassification rate (MCR) [25]. (ii) In the context of diagnosing malignant
tumors from imaging data, SVM and LR exhibited similar MCRs [26,27]. (iii) SVM consis-
tently outperforms LR in classification tasks, as demonstrated in prior research [15]. Beyond
these comparisons, it is worth noting that SVM is a parametric method widely employed in
machine learning studies. Its recent surge in utilization across various domains, including
real-world applications [4,9,13,15,16,28,29], underscores its versatility and effectiveness.
However, it is important to recognize that different approaches to training and learning
techniques can yield varying levels of prediction accuracy. Therefore, there is a pressing
need to investigate and identify the mechanisms that consistently lead to high prediction
accuracy when working with SVM models.

In logistic regression analysis, the concept of small events per variable (EPV) can
significantly impact the accuracy and precision of regression coefficients associated with
independent variables as well as their individual statistical significance tests. EPV is de-
termined by dividing the number of events by the number of predictor variables used
in constructing the prediction model [30]. To be more precise, it is the total number of
occurrences divided by the total number of variables in the model. When the number of
predictors greatly outnumbers the occurrence of outcome events, there is a risk of overesti-
mating or overfitting the model’s predictive performance [31]. As the EPV decreases, the
bias in regression coefficients increases, often resulting in extreme values for the maximum
likelihood estimate (MLE), which, in turn, affects the accuracy and precision of regression
coefficients and their associated statistical significance tests. Research conducted by [31–34]
has pointed out that when the EPV value deviates from the expected minimum values,
three types of errors may occur: overfitting (Type I error), underfitting (Type II error), and
paradoxical fitting (Type III error). The detection of these errors results in the implementa-
tion of multivariable analysis as a general recommendation for the required amount of EPV.
According to the research, a particular EPV number is required for confidence in the validity
of the model [32,33]. A higher EPV signifies more stable and reliable model estimates while
reducing the risk of overfitting. Conversely, a low EPV can result in overfitting and unstable
parameter estimates. The Monte Carlo simulation was conducted for small EPV values, i.e.,
2, 3, 4, and 5. EPV 2 indicates that for every predictor variable in the model, there are only
two events (outcomes of interest). Models with an EPV this low might be at risk of poor
generalization to new data. EPV 3, still a relatively low EPV, suggests that there are three
events for every predictor variable. While better than EPV 2, it is still a modest value and
may warrant caution in terms of model complexity. With EPV 4, there are four events per
predictor variable. This is better than EPV 2 or 3 but might still be considered relatively
low. Depending on the context, model stability could be improved compared to lower EPV



Bioengineering 2023, 10, 1318 3 of 15

values. EPV 5, a higher EPV value, indicates that there are five events for each predictor
variable. While not extremely high, EPV 5 suggests a more balanced relationship between
events and predictor variables. This could lead to more reliable model estimates.

In this research, the issue under investigation pertains to the constraints of logistic
regression (LR) when it comes to forecasting a small number of events per variable (EPV).
This limitation can have an impact on the precision and accuracy of the regression coeffi-
cients as well as the statistical significance of their tests. The following is a summary of the
study’s hypotheses:

H1. The accurate prediction of the COVID-19 pandemic is important for tracking current and
future progress and evaluating countries’ performance related to COVID-19 cases.

H2. We hypothesize that the hybrid model combining SVM and LR will demonstrate better
classification performance compared to SVM or LR alone for predicting small events per variable
based on COVID-19 data.

This new model will integrate the prediction for classification performance and at the
same time can improve the accuracy and precision of a small EPV, which is not included
in the current model. It is expected that the new hybrid models derived from this study
will be able to predict future Coronavirus outbreaks. Modeling COVID-19 with accurate
prediction is important for tracking current reductions [20] and future progress [21,22]
and evaluating countries’ performance related to COVID-19 cases [23,24]. As far as our
understanding goes, there have been scientific investigations related to the COVID-19
pandemic’s spread using a hybrid model that incorporates both logistic regression (LR) and
support vector machine (SVM). As a result, this research aims to create a hybrid predictive
model that combines LR and SVM to enhance the accuracy of COVID-19 case predictions.
The ultimate goal is to provide government authorities and practitioners with valuable
insights for effective planning and decision making to curb the global spread of COVID-19.

In order to overcome these obstacles, we developed a prediction mechanism that
leverages the advantages of both support vector machine (SVM) and logistic regression
(LR). By combining these two methods into a hybrid model, we anticipate achieving more
precise results than what can be achieved with either method individually.

2. Materials and Methods
2.1. Support Vector Machine (SVM)

The novel learning machine known as the support vector machine (SVM) was initially
introduced by [17]. SVM offers several advantages that makes it a popular and power-
ful choice for various machine learning tasks: it is effective in high-dimensional spaces,
can handle non-linearity, has relatively fewer hyperparameters compared to some other
algorithms, and so on.

Over the years, support vector machine (SVM) has demonstrated remarkable gener-
alization capabilities across various domains, such as bioinformatics [35], text categoriza-
tion [36], fault diagnosis [37], image detection [38], power systems [39], financial analy-
sis [40], and more. Moreover, [41] highlighted SVM as a valuable approach for making
predictions in both classification and regression scenarios. SVM operates by identifying
the optimal separator function, or hyperplane, capable of effectively dividing datasets into
distinct classes or categories. SVM’s fundamental concept can be explained as follows:
input vector x is mapped to a very high-dimension feature space z through some nonlinear
mapping, ϕ(x), z = ϕ(x). An ideal separating hyperplane is built in this space. For a given
training dataset with n samples, (x1, y1), (x2, y2), . . . (xn, yn) where xi is a feature vector in
a d–dimensional feature space Rd and yi ∈ {1,+1} is the corresponding class label. The
task is to find a classifier with a decision function as shown below:

f (x) = wTx + b (1)
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where w represents the weight vector and b is the bias. The hyperplane is a linear separator
that divides space into two parts, which can separate the dataset by maximizing the margins.
The best hyperplane is found by maximizing the margin or the distance between two objects
from different classes. For non-linearly separable problems, the formula mentioned above
can be adapted for use in kernel SVM as

f (x) = ∑N
i αiyiK(xix)x + β0 (2)

Here, N represents the number of support vectors, where xi is the instant with label yi,
α is the Lagrange multiplier, βo is the bias, and k(xi.x) is the kernel function. For this study,
the simplest kernel function, linear kernel, was used, which is expressed as:

k(x, y) = x.y + c (3)

2.2. Logistic Regression (LR)

LR is one of the most commonly applied classification methods in medical data
analysis. Despite its popularity, this methodology can produce inaccurate estimates of
class membership [25,42], and the difficulty increases when working with a limited sample
set [31–34]. The LR model following [31,32,43] can be written as:

y(x) =
eβ0+β1x1+...+β jxp+εi

1 + eβ0+β1x1+...+β jxp+εi

where y(x) is the probability of success with the probability 0 ≤ y(x) ≤ 1 and β j is the
parameter with j = 1, 2, . . . , p.

Within this model, the x‘s represent the covariates used for classifying the response, and
the βi variables stand for the regression coefficients. The logit, represented as log(1/1 − π),
signifies the odds ratio of classifying the response into category one rather than zero. When
employing logistic regression, predicting the class involves computing probabilities. In
essence, the logistic model (also known as the logit model) in statistics is a statistical
framework where the likelihood of an event occurring is modeled by expressing the
log-odds for that event as a linear combination of one or more independent variables.
Classifying binary responses based on logistic regression analysis involves utilizing the
probability model with the following criteria: If the probability yielded from the model is
less than 0.5, then the predicted result is category zero. If the probability of the model is
greater than or equal to 0.5, then the predicted result is category one.

2.3. Proposed Hybrid Model

The importance of prediction models lies in their ability to enhance decision mak-
ing through increased accuracy, efficiency, and precision. This significance underscores
why these models remain essential, in-demand, and dynamic. However, these essential
attributes are notably absent in support vector machine (SVM) and logistic regression (LR)
models. SVM and LR models have indeed proven effective within their respective linear
and nonlinear domains, but it is important to acknowledge that they do not offer a univer-
sally applicable solution for all scenarios. As a result, a hybrid approach that leverages
both linear and nonlinear modeling capabilities is suggested as a means to enhance overall
prediction effectiveness. Consequently, there is a dearth of research focusing on improving
predictive model effectiveness, particularly in the context of COVID-19 in Malaysia, where
SVM and LR models are concerned. This study advocates for the adoption of hybrid models
for two primary reasons. Firstly, relying solely on individual SVM and LR models may not
suffice for capturing all predictive characteristics. Secondly, one or both of these models
may fail to recognize the actual data generation process.
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2.4. Statistical Performance Criteria

As previously mentioned, previous studies such as [12,31] encountered issues related
to overestimating EPV due to their constrained sample sizes. To investigate this matter,
a series of simulations with low EPV values (specifically, 2, 3, 4, and 5) was generated
following the approaches outlined in [31,32]. To evaluate the comprehensive performance of
the proposed hybrid models, we employed established statistical criteria, as recommended
by [44,45], which included accuracy, MSE (mean squared error), and RMSE (root mean
squared error):

Accuracy = TP + TN/TP = TN + FP + FN (4)

RMSE =

√
1
n ∑n

i=1 (yi −
1
n

ŷi)
2

(5)

MSE =
1
n ∑n

i=1 (ŷi − yi)
2 (6)

2.5. Data

Machine learning has been applied to COVID-19 research [46–48]. In this paper, we
used a novel Coronavirus dataset from Dec 2019 to May 2020 provided by the WHO
Coronavirus Disease database to assess the performance of hybrid, SVM, and LR models
with different events per variable (EPV 2 to EPV 5). There are four characteristics in this
dataset, which are Y = pprobability of deaths, x1 = state/province, x2 = confirmed cases,
and x3 = recovered cases. In total, 3,568,217 samples of different ages and genders were
used in this study. Out of these samples, 1,157,370 cases were recovered. The dataset
included information on 248,347 deaths that occurred at 210 different sites worldwide. A
higher number of recoveries might indicate that milder cases are prevalent in a province,
leading to a lower probability of death. A high number of confirmed cases and a low
number of recoveries, on the other hand, may indicate that the disease is fatal [49–52]. We
performed data analysis using the Python programming language. The analysis involved
utilizing various Python libraries, including NumPy for numerical operations, Pandas for
data manipulation, and Matplotlib and Seaborn for data visualization. The flow process
of the hybrid model is summarized in Figure 1 below. In our initial step, we applied
SVM classification to our training dataset. For this study, we allocated 70% of the data for
training and reserved 30% for testing, which is a common and reasonable split in the field
of machine learning. Subsequently, we assessed the accuracy of this classification using
Equation (4). Likewise, we applied LR to the same training dataset, performed classification,
conducted testing, and calculated its accuracy using the same equation. Finally, we moved
on to predict the combined output from both SVM and LR, which constituted our hybrid
model. In this approach, we considered the classifier that yielded a superior result for each
training datapoint. Specifically, when SVM provided a better outcome, we opted for SVM,
and conversely, when LR offered a superior output, we selected the LR output. Situations
where both classifiers yielded identical results were considered optimal. Now, leveraging
this trained data, we proceeded to predict the output for the testing dataset. Once again, we
determined the accuracy of these predictions using Equation (4). Through this process, we
carefully observed and established that the hybrid model consistently delivered superior
accuracy and innovation in forecasting future Coronavirus outbreaks.
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Figure 1. Flow process of hybrid novel Coronavirus dataset.

3. Results and Discussion

ANOVA was used to analyze the logistic regression model in order to test the difference
between more than two means. Table 1 shows that the logistic model was indicated to
be statistically significant since the p-value for chi-square was 0.000 and less than the
significance level (0.05).

Table 1. Model summary for logistic regression.

Chi-Square Significant p-Value Interpretation

150.627 0.000 model significant

This study primarily emphasizes achieving the best balance of consistency and ef-
ficiency, particularly when dealing with small EPV values, among the hybrid, LR, and
SVM models.

Figures 2 and 3 show the comparisons of coefficient values for the second variable
at different numbers of events per variable (from EPV 2 to EPV 5) between LR and SVM,
respectively. For example, by looking at EPV 2 for the second variable, the mean values for
LR from EPV 2 to EPV 5 were 0.13, 0.13, 0.16, and 0.16, while for SVM, the mean values
from EPV 2 to EPV 5 were 0, 0, 0.03, and 0.03. This suggests that as the EPV values decrease,
the frequency distribution of estimated regression coefficients tends to concentrate more
towards a normal distribution with an approximate mean of zero [53]. In simpler terms,
when EPV decreases, the distribution becomes “flatter,” especially in the case of the LR
distribution, while the SVM distribution becomes less peaked and exhibits thinner tails.
The standard deviation values for LR from EPV 2 to EPV 5 were 0.349, 0.349, 0.305, and
0.305. For SVM, the standard deviation values from EPV 2 to EPV 5 were 0.13, 0.13, 0.121,
and 0.121.
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Figure 2. Number of events per variable and frequency distribution of estimated regression for LR
(second variable).

Figures 4 and 5 show the comparisons of coefficient values for the third variable
between LR and SVM, respectively. By looking at EPV 2 for the third variable, the mean
values for LR from EPV 2 to EPV 5 were 0.14, 0.12, 0.12, and 0.12. For SVM, the mean values
from EPV 2 to EPV 5 were −0.1, 0.01, 0.05, and 0.05. The standard deviation values for LR
from EPV 2 to EPV 5 were 0.287, 0.356, 0.322, and 0.322. For SVM, the coefficient values
from EPV 2 to EPV 5 were 0.126, 0.166, 0.181, and 0.181. These findings offer evidence
that the stability of coefficient values is higher for SVM than for LR in the case of both the
second and third variables. As mentioned by [32,33], small EPV values lead to inconsistent
coefficients. Therefore, it is important to propose a new class of hybrid model based on
LR and SVM for predicting small EPVs. This new model will integrate the prediction for
classification performance and at the same time can improve the accuracy and precision of
small EPVs, which is not covered in the current model.



Bioengineering 2023, 10, 1318 8 of 15

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 16 
 

 

Figure 3. Number of events per variable and frequency distribution of estimated regression for SVM 

(second variable). 

Figures 4 and 5 show the comparisons of coefficient values for the third variable be-

tween LR and SVM, respectively. By looking at EPV 2 for the third variable, the mean 

values for LR from EPV 2 to EPV 5 were 0.14, 0.12, 0.12, and 0.12. For SVM, the mean 

values from EPV 2 to EPV 5 were −0.1, 0.01, 0.05, and 0.05. The standard deviation values 

for LR from EPV 2 to EPV 5 were 0.287, 0.356, 0.322, and 0.322. For SVM, the coefficient 

values from EPV 2 to EPV 5 were 0.126, 0.166, 0.181, and 0.181. These findings offer evi-

dence that the stability of coefficient values is higher for SVM than for LR in the case of 

both the second and third variables. As mentioned by [32,33], small EPV values lead to 

inconsistent coefficients. Therefore, it is important to propose a new class of hybrid model 

based on LR and SVM for predicting small EPVs. This new model will integrate the pre-

diction for classification performance and at the same time can improve the accuracy and 

precision of small EPVs, which is not covered in the current model. 

Figure 3. Number of events per variable and frequency distribution of estimated regression for SVM
(second variable).

Figures 6 and 7 show the comparisons of coefficient values for the second and third
variables for the hybrid model. The mean values for the second variable from EPV 2 to EPV
5 were −0.0360, −0.0219, −0.1489, and 0.1464, while for the third variable, the mean values
were −0.0283, −0.0229, 0.1015, and 0.1020. The standard deviation values from EPV 2 to
EPV 5 were 0.1979, 0.2247, 0.2741, and 0.2717 for the second variable, while for the third
variable, the coefficient values from EPV 2 to EPV 5 were 0.1617, 0.2045, 0.3090, and 0.3086.
As illustrated in the above figures, it is clear that the values of the mean and standard
deviation for the hybrid, LR, and SVM models were unstable as EPV values increased.
Through demonstration of improved estimating performance at larger scales, the proposed
model aims to predict accuracy, MSE, and RMSE as in Equation (4), Equation (5), and
Equation (6), respectively.
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The proposed model’s effectiveness was further examined by focusing on low EPV
cases. Values for accuracy, MSE, and RMSE are shown in Table 2, which presents a
comparison of three accuracy indices across various EPV values. The best-performing
parameter sets were chosen based on their high accuracy and low MSE and RMSE values.
Accuracy, MSE, and RMSE values for the hybrid model were comparatively lower than the
corresponding values for the LR and SVM models.

Accuracy, MSE, and RMSE values were converted to diagrams and are displayed in
Figure 8. All coefficients were found to be unstable as EPV increased. However, when
we look at the accuracy values, the hybrid model is more powerful with high accuracy
compared to LR and SVM for EPV 2 to EPV 5 values.
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Table 2. Summary of performance results obtained with the accuracy, MSE, and RMSE values for LR,
SVM, and hybrid models.

EPV 2 EPV 3

LR SVM Hybrid LR SVM Hybrid

Accuracy 0.8649 0.8538 0.8684 0.8642 0.8538 0.8691
RMSE 0.1351 0.1462 0.1316 0.1358 0.1462 0.1309
MSE 0.3539 0.3660 0.3485 0.3558 0.3668 0.3485

EPV 4 EPV 5

LR SVM Hybrid LR SVM Hybrid

Accuracy 0.8622 0.8540 0.8684 0.8678 0.8549 0.8715
RMSE 0.1378 0.1460 0.1316 0.1322 0.1451 0.1285
MSE 0.3596 0.3670 0.3496 0.3523 0.3665 0.3469
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This paper examines a comparison between the LR and SVM models for predicting
COVID-19 cases for different numbers of events from EPV 2 to EPV 5. The results show
that the hybrid model with EPV 5 is capable of obtaining good generalization prediction
accuracy, MSE, and RMSE compared to LR and SVM. Small EPV values can cause inconsis-
tent coefficients, as pointed out by Peduzzi [32,32]. Therefore, it is important to propose a
new hybrid algorithm to obtain optimal parameters and improve the prediction accuracy,
MSE, and RMSE.

The main highlight of this study is the evaluation of a new hybrid model that combines
support vector machine (SVM) and logistic regression (LR) for predicting small events per
variable (EPV) in the context of COVID-19 classification. This study demonstrates that
this hybrid model outperforms SVM and LR alone in terms of accuracy, mean squared
error (MSE), and root mean squared error (RMSE) for different EPV values. This finding
is particularly significant for local medical authorities and practitioners who are involved
in managing and responding to future pandemics. This study addresses the limitation of
LR in predicting small EPVs, which can impact the accuracy and precision of regression
coefficients. The proposed hybrid model provides a more accurate and efficient approach
for COVID-19 prediction, contributing to the field of machine learning classification in
the context of a previous infectious disease that provides a preemptive basis for future
pandemic research.



Bioengineering 2023, 10, 1318 12 of 15
Bioengineering 2023, 10, x FOR PEER REVIEW 12 of 16 
 

 

Figure 7. Number of events per variable and frequency distribution of estimated regression for hy-

brid model (third variable). 

The proposed model’s effectiveness was further examined by focusing on low EPV 

cases. Values for accuracy, MSE, and RMSE are shown in Table 2, which presents a com-

parison of three accuracy indices across various EPV values. The best-performing param-

eter sets were chosen based on their high accuracy and low MSE and RMSE values. Accu-

racy, MSE, and RMSE values for the hybrid model were comparatively lower than the 

corresponding values for the LR and SVM models. 

  

Figure 7. Number of events per variable and frequency distribution of estimated regression for
hybrid model (third variable).

Bioengineering 2023, 10, x FOR PEER REVIEW 13 of 16 
 

Table 2. Summary of performance results obtained with the accuracy, MSE, and RMSE values for 

LR, SVM, and hybrid models. 

 EPV 2 EPV 3 

LR SVM Hybrid LR SVM Hybrid 

Accuracy 0.8649 0.8538 0.8684 0.8642 0.8538 0.8691 

RMSE 0.1351 0.1462 0.1316 0.1358 0.1462 0.1309 

MSE 0.3539 0.3660 0.3485 0.3558 0.3668 0.3485 

 EPV 4 EPV 5 

LR SVM Hybrid LR SVM Hybrid 

Accuracy 0.8622 0.8540 0.8684 0.8678 0.8549 0.8715 

RMSE 0.1378 0.1460 0.1316 0.1322 0.1451 0.1285 

MSE 0.3596 0.3670 0.3496 0.3523 0.3665 0.3469 

Accuracy, MSE, and RMSE values were converted to diagrams and are displayed in 

Figure 8. All coefficients were found to be unstable as EPV increased. However, when we 

look at the accuracy values, the hybrid model is more powerful with high accuracy com-

pared to LR and SVM for EPV 2 to EPV 5 values.  

 

Figure 8. Number of events per variable, MSE, and RMSE for LR and SVM. 

This paper examines a comparison between the LR and SVM models for predicting 

COVID-19 cases for different numbers of events from EPV 2 to EPV 5. The results show 

that the hybrid model with EPV 5 is capable of obtaining good generalization prediction 

accuracy, MSE, and RMSE compared to LR and SVM. Small EPV values can cause incon-

sistent coefficients, as pointed out by Peduzzi [32,32]. Therefore, it is important to propose 

a new hybrid algorithm to obtain optimal parameters and improve the prediction accu-

racy, MSE, and RMSE. 

The main highlight of this study is the evaluation of a new hybrid model that com-

bines support vector machine (SVM) and logistic regression (LR) for predicting small 

events per variable (EPV) in the context of COVID-19 classification. This study demon-

strates that this hybrid model outperforms SVM and LR alone in terms of accuracy, mean 

squared error (MSE), and root mean squared error (RMSE) for different EPV values. This 

finding is particularly significant for local medical authorities and practitioners who are 

involved in managing and responding to future pandemics. This study addresses the lim-

itation of LR in predicting small EPVs, which can impact the accuracy and precision of 

regression coefficients. The proposed hybrid model provides a more accurate and efficient 

approach for COVID-19 prediction, contributing to the field of machine learning classifi-

cation in the context of a previous infectious disease that provides a preemptive basis for 

future pandemic research. 

  

Figure 8. Number of events per variable, MSE, and RMSE for LR and SVM.

4. Conclusions

The use of this proposed model is anticipated to yield advantageous outcomes for the
community. The improved predictive capabilities of the model will prove valuable to the
government, particularly the Ministry of Health, in formulating strategies and identifying
necessary measures to enhance the management of COVID-19 cases. Additionally, it will
benefit the general public by helping them comprehend and take preventative measures to
stop the spread of novel Coronavirus illnesses.

This study acknowledges that support vector machine with linear kernels is a quick
technique, but it may not always provide the most accurate classifications compared to
support vector machine with nonlinear kernels. The distribution of the training process for
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support vector machine with nonlinear kernels presents challenges, and as a result, these
methods were not utilized in the present study.

For future research, it would be valuable to explore the application of support vector
machine with nonlinear kernels to further improve the classification accuracy. Investigating
other ensemble methods or hybrid models that combine SVM and LR with different
machine learning techniques could provide even more accurate and precise predictions for
COVID-19 cases or future pandemics. Considering a broader range of data sources and
longer time frames could enhance the robustness and reliability of the predictive models.
Additionally, using different machine learning methods, such as k-nearest neighbor (k-NN),
which is catered to the classification of COVID-19 [54], would also have a positive impact on
future studies. Conducting real-world validation and testing of the proposed hybrid model
in different geographical regions or different ecological settings and for other infectious
diseases would validate its effectiveness, applicability, and reproducibility in various
conditions and contexts.

5. Limitation of the Study

Although SVM trained with linear kernels is quick to train, it does not always outper-
form SVM trained with nonlinear kernels in terms of classification accuracy. Distributing
the support vector machine training process using non-linear kernels is challenging, so this
approach was not implemented in this work.
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