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Abstract: In contemporary practice, intraoral scans and cone-beam computed tomography (CBCT)
are widely adopted techniques for tooth localization and the acquisition of comprehensive three-
dimensional models. Despite their utility, each dataset presents inherent merits and limitations,
prompting the pursuit of an amalgamated solution for optimization. Thus, this research introduces
a novel 3D registration approach aimed at harmonizing these distinct datasets to offer a holistic
perspective. In the pre-processing phase, a retrained Mask-RCNN is deployed on both sagittal and
panoramic projections to partition upper and lower teeth from the encompassing CBCT raw data.
Simultaneously, a chromatic classification model is proposed for segregating gingival tissue from tooth
structures in intraoral scan data. Subsequently, the segregated datasets are aligned based on dental
crowns, employing the robust RANSAC and ICP algorithms. To assess the proposed methodology’s
efficacy, the Euclidean distance between corresponding points is statistically evaluated. Additionally,
dental experts, including two orthodontists and an experienced general dentist, evaluate the clinical
potential by measuring distances between landmarks on tooth surfaces. The computed error in
corresponding point distances between intraoral scan data and CBCT data in the automatically
registered datasets utilizing the proposed technique is quantified at 0.234 ± 0.019 mm, which is
significantly below the 0.3 mm CBCT voxel size. Moreover, the average measurement discrepancy
among expert-identified landmarks ranges from 0.368 to 1.079 mm, underscoring the promise of the
proposed method.

Keywords: orthodontics; cone-beam computed tomography; intraoral scan; 3D registration

1. Introduction

With the advancement of new Computer-Aided Design and Computer-Aided Man-
ufacturing (CAD/CAM) technologies in dentistry, clinicians are increasingly employing
virtual simulations for various dental treatments. Dental cone-beam computed tomography
(CBCT) is a widely utilized imaging modality known for its low-dose radiation capabilities,
enabling the visualization of teeth and craniofacial structures. It provides comprehensive
3D diagnostic capabilities and finds extensive application in various dental treatments,
including orthodontics, dental implants, and orthognathic surgery.
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For instance, the visualization of impacted teeth supports the precise formulation of
treatment plans to align and establish final tooth positions for orthodontic treatment goals.
In the case of dental implants, fixture diameter, and positioning can be determined based
on a patient’s alveolar bone morphology. In orthognathic surgery, a 3D virtual model of
patients’ jaws can be generated, enabling the computer-simulated surgery to accurately
correct jaw deformities. Subsequently, leveraging the simulation data, various devices like
clear aligners for orthodontic treatment, 3D printed surgical guides, and splints for dental
implants and orthognathic surgery, respectively, can be manufactured.

However, it is essential to acknowledge that the spatial resolution of dental CBCT
may be insufficient for precisely defining tooth crowns and occlusion. Therefore, the
imperative task of acquiring and integrating high-resolution IOS data with CBCT data
arises to overcome this limitation [1,2].

The integration between the IOS and CBCT data, referred to as registration, aligns
these two data sets by utilizing common reference points captured separately via the IOS
and CBCT machines. The accuracy of this registration process is of utmost importance,
especially in the context of appliance manufacturing, as it directly influences the success of
treatments following the translation of virtual simulations based on the registration results.

For example, even a small amount of variance during the registration process between
CBCT and IOS data for the creation of surgical splints in orthognathic surgery can lead to
inaccuracies in jaw positions during surgery, which can have permanent consequences [3].
While manual registration, supported by various commercial software [4–7], is a feasible
option, it demands a significant investment of time and effort and is susceptible to the
operator’s level of expertise [8,9].

The automated registration of heterogeneous CBCT and IOS data presents several
challenges, despite their shared patient origin. CBCT comprises a range of cross-sectional
images, including the skin, craniofacial skeleton, tooth crown, root, and soft tissues. The
low-dose imaging modality often results in limited contrast between different anatomical
structures, making object recognition difficult. In contrast, IOS provides high-resolution
surface data of the tooth crown and adjacent soft tissues. To achieve accurate registration
between CBCT and IOS data, an initial segmentation of the tooth crown from the CBCT
data is essential.

Jang et al. [10] developed a method to generate metal-artifact-free panoramic images
from CT scans, combined with a tooth detection approach that classified teeth into four
types based on their morphology. However, identifying neighboring teeth in panoramic im-
ages, especially in cases involving missing teeth with similar types, remains a challenging
task. Chang et al. [11] introduced a deep-learning-based metal artifact reduction method
that utilized intra-oral scan data as supplementary information to aid tooth segmenta-
tion. Nonetheless, the training data were limited to axial views, which had limitations in
achieving a clear separation between the upper and lower teeth in the 3D CBCT model.

To improve the alignment between CBCT and IOS data, particularly in the crown
region, an initial alignment was attempted using principal component analysis (PCA) [12],
a commonly used statistical method for dimensionality reduction [13]. PCA transforms
data into a new coordinate system, effectively capturing data variation in fewer dimensions.
However, conventional PCA can be sensitive to noise [14,15], making it challenging to
differentiate noise from signal variance and handle missing observations.

In contrast, the random sample consensus (RANSAC) algorithm [16], a machine learn-
ing technique, estimates model parameters via iterative sampling, enabling the achievement
of optimal fitting results in datasets containing both inliers and outliers [17].

In this paper, we not only implemented a Mask-RCNN [18], which was retrained for
CBCT slices in the sagittal direction of the NHP posture, to facilitate the clear separation of
upper and lower teeth from the entire CBCT raw data as the appropriate region of interest
(ROI), but we also measured the position of the tooth arch in the sagittal view, supported
by the tooth arch extraction scheme along the axial view [19]. This approach allowed us
to separate and categorize the teeth into upper and lower teeth based on the panoramic
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view obtained using Mask-RCNN. Once the CBCT and IOS data were properly extracted,
focusing on the crown part, we applied the RANSAC algorithm for the initial alignment.
In the case of CBCT, it included both the crown and root, while IOS only encompassed
the crown. After achieving the initial alignment, matching the data sets based on the
center position of the crown, a fine alignment was performed using the point-to-plane
algorithm [20].

To validate the integration of automatically registered data, we employed the Bland–
Altman method [21–23], focusing on the cross-sectional tooth area. The quantitative inte-
gration assessment involved the chamfer and Hausdorff distances [24,25] between matched
CBCT and IOS data planes. These distances were evaluated by three experienced orthodon-
tists, who manually measured four key crown feature positions.

2. Data Preparation
2.1. 3D Dental Data

This study was approved by the institutional review board of Hallym University
(2022-04-018). We collected CBCT and plaster mold from 200 patients who had visited the
Department of Orthodontics at Kangnam Sacred Heart Hospital, Hallym University, Seoul,
Republic of Korea, for orthodontic diagnosis. IOS 3d data were collected from plaster
molds of patients. Patient consent was waived due to the retrospective nature of this study.

A single CBCT with a full field of image measuring 230 × 170 (mm × mm) was
acquired using an I-CAT CBCT scanning machine (KaVo Dental GmbH, Biberach, Ger-
many). The operational parameters for this scan were set at 120 kV, 37.1 mA, with a
voxel size of 0.3 mm and a scan time of 8.9 s. It consists of 576 slices at a resolution
of 768 × 768 × 576 pixels with a slice thickness of 0.3 mm. The capture conditions were
standardized with the patient’s eyes instructed to focus on a 400 mm × 500 mm mirror,
which was positioned on the wall approximately 1500 mm away from the patient’s head
(maintaining the natural head position, NHP [26]). Prior to operating the CBCT scanning
machine, patients were asked to exercise their heads up and down in accordance with
Solow and Tallgren’s method [26].

IOS data were acquired using the Trios3 intraoral scanner (3Shape, Copenhagen,
Denmark). This scanner falls into the category of structured light scanners and employs
confocal microscopy and ultra-optical scanning technologies. It offers a field of view
measuring 20.6 mm × 17.28 mm with an accuracy of 6.9 ± 0.9 µm.

Figure 1 illustrates the CBCT and IOS systems, and Table 1 provides the specifications
of the measuring machines used in this study.
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Table 1. Specifications of digital dentistry device.

CBCT Intra-Oral Scanner (IOS)

Device brand Imaging sciences international 3shape
Device model Digital i-CAT FLX MV Trios 3

Accuracy 0.3 mm (voxel size) 6.9± 0.9 µm
Measuring time ~3 min/case ~5 min/case

Measurement area Upper part of the neck Teeth surface, gingiva

2.2. ROI Extraction

To enhance both the efficiency and accuracy of the automated registration process
between cone-beam computed tomography (CBCT) and intraoral optical scanning (IOS)
data, a necessity arises to selectively extract only the pertinent target objects, namely
teeth, from the comprehensive dataset. Traditional CBCT datasets encompass not only the
geometric attributes of teeth but also a composite depiction of the craniofacial skeleton,
muscles, skin, and additional soft tissues. Similarly, IOS data inherently encompass the
geometric profiles of both teeth and gingival tissues.

In the case of CBCT, the region of interest considered for this segmentation ranged
from A-point to Pog-point along the z-axis and between two mandible heads with respect
to the y-axis.

In the extracted CBCT image X, X(x, y, z). represents the Hounsfield units in the CBCT
at the voxel position (x, y, z). Firstly, along the sagittal direction, the 3D segmentation
process is performed by applying the re-trained Mask-RCNN [18] on every slice.

Different from the previous research [10,11], which processes along the z direction of
the inputted CBCT, we had difficulties dealing with cases in which patients clench their
teeth. In this situation, if it is processed along the z direction of the inputted CBCT, there
are multiple positions where there is no empty space between the upper and lower teeth
and the boundary consequently cannot be defined. Therefore, in this research, the method
for tooth segmentation is performed along the y direction, which allows us to observe the
cross-sectional shape, including the crown and root section of a tooth, and is considered
the most convenient circumstance for defining the boundary for upper and lower teeth.

In every slice s, the segmentated mask Msagittaln(s) is represented by a center point
pMsagittal n(s)

of the detected bounding box (xn(s), zn(s), hn(s), wn(s)), as shown in Figure 2.
The coordinate of the representative point pMsagittal n(s)

is shown in Equation (1).

pMsagittal n(s)
(x, y, z) =

(
xn(s) +

wn(s)
2

, s, zn(s) +
hn(s)

2

)
(1)
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Secondly, on the axial view, the dental arch curve C is detected on the mean intensity
projection using the technique proposed in the previous study of Ahn et al. [19]. Based
on the obtained results of the dental curve, the panoramic image is extracted using by
Equation (2).

PX(c, z) =
∫ w

−w
X(r(c) + tn(c), z)dt, (2)

where c is the index of the point in the dental arch, r(c) ∈ C, n(c) is the unit normal vector
at r(c), and w is the considered range from the dental arch along the normal vector n(c), as
shown in Figure 3.
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Figure 3. Panoramic view extraction based on the defined dental arch on the axial view.

Thirdly, based on the obtained panoramic view, teeth segmentation is performed by
applying the Mask-RCNN. The masks obtained are split into upper masks Mpanoupper and
lower mask Mpanolower, which, respectively, represents upper and lower teeth, by applying
the linear regression to estimate the boundary between the jaws [19], as shown in Figure 4a.
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The representative points pMsagittal n(s)
, which represents segmentated masks along the

sagittal axis, are projected on the panoramic image as psagi
pano, similarly to the converting

process for panoramic view in Equation (3).

psagi
pano = {p(r) = (q(r), z(r)) : 1 ≤ r ≤ Nr}, (3)

where Nr is the number of representative points projected.
Consequently, as shown in Figure 4b, considering cells pxpanoupper

∈ Mpanoupper, if

p(r) ∈ pxpanoupper
, the segmented mask Msagittaln(s), which is represented as p(r), is col-

lected into the group of upper teeth masks
∼
Xupper. Similarly, if p(r) ∈ pxpanolower

, the

segmented mask Msagittaln(s) is given into the group of lower teeth
∼
Xlower, with the ob-

tained results shown in Figure 4c.
Concerning the IOS data, with the objective of optimizing the efficacy of the matching

procedure, exclusive focus is placed on the segment corresponding to dental structures. This
selected dental portion is then employed for alignment with the CBCT data. Consequently,
the need arises for a methodology to segregate the dental structures encompassing teeth
and gums from the original IOS dataset. The color attributes inherent in the IOS point cloud
are harnessed to categorize each individual point within the dataset into one of two distinct
groups. Within the input IOS point cloud, every point is characterized by RGB color values,
denoting the red, green, and blue color channels. To enhance user-friendliness, these values
are subsequently converted into the Hue–Saturation–Value (HSV) color model, where the
Hue channel specifically encapsulates color information. In this proposed framework, the
K-Nearest Neighbor (KNN) machine learning model [27] is enlisted for the purpose of
categorizing each individual point within the IOS dataset into two primary color groups:
one representing teeth and the other representing gums. In effectuating this classification,
the KNN model assesses neighboring points that lie within a pre-defined distance based
on the H, S, and V values of each given point. The predominant color group among these
proximate points is then assigned to the color category of the particular input point under
consideration, as illustrated in Figure 5.
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In some cases, CBCT data and IOS data did not align due to patients having orthodon-
tic appliances or completed treatment. For these patients, we utilized their initial plaster
models obtained at the outset of treatment, coinciding with CBCT data acquisition, for this
study. These plaster models were scanned to obtain IOS models via the process depicted in
Figure 6. Since some of these IOS data had a fixed white color, manual separation of teeth
and gum was performed within the Trios 3 program as an alternative to the color-based
separation method proposed in this study.
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3. Registration Algorithm

Regarding the data derived from CBCT and IOS sources, both manifested as point
clouds, an initial step involves the application of voxel down-sampling. This reduction
in point cloud density serves a dual purpose: diminishing computational workload and
refining registration precision. The automated registration procedure unfolds systemati-
cally, encompassing two distinct phases of alignment: a preliminary coarse alignment and
a subsequent refined alignment. This division is grounded in the specific aim of achieving
alignment between the two dataset sets, culminating in an origin-based correspondence.
Notably, the coarse alignment phase is intentionally engineered to avoid extensive itera-
tions, thereby bolstering registration efficiency. The subsequent refined alignment stage
consummates the automated registration process, affording heightened precision via the
implementation of a localized matching algorithm.

Initially, the RANSAC algorithm is employed to achieve a rough alignment of the two
models’ positions during the initial matching process. The RANSAC algorithm consists
of two main stages: the hypothesis process and the verification process. In the hypothesis
process, a sample model is created by randomly selecting a subset of source data. The
verification process then compares this model with the target data, recording the count of
matches. This iterative procedure selects matched data points with match rates surpassing
a predefined threshold as the output, as shown in Figure 7.

After achieving the initial approximate alignment, the focus shifts to fine alignment,
aiming to attain a model sufficiently precise for clinical utilization. The fine alignment
process employs the iterative closest point (ICP) algorithm, which minimizes point-to-point
distances to narrow the gap between the objects. In particular, we employ the point-to-
plane variant well suited for three-dimensional alignment. Figure 8a,b depict the principle
of the point-to-plane algorithm and the alignment process. A virtual plane is created
within the target data points, and the source data points adjust along the direction of their
corresponding plane’s normal vector. This iterative process effectively brings the datasets
into close proximity, minimizing interpoint distances.
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4. Validation

Following automatic alignment, the alignment’s efficacy is assessed via a triad of
evaluation methodologies—statistical, quantitative, and clinical. Bland–Altman analysis, a
statistical tool, probes the alignment trend between disparate datasets. For gauging align-
ment accuracy, we computed the 3D Euclidean distances’ mean and standard deviation,
which provided a measure of alignment precision. Lastly, to gauge the aligned data’s
clinical viability, dentists employed passive evaluation methods.

4.1. Statistical Validation

Bland–Altman analysis, extensively applied in medical, healthcare, and chemical
domains, is adopted here to assess the matching trend between the two datasets. The graph
plots the difference and mean difference as axes, constructing a 95% confidence interval.
As the datasets vary in three-dimensional coverage, the aligned data’s crown segment is
coronally sliced, and cross-sectional areas in this plane are analyzed. Figure 9 showcases the
Bland–Altman results for six randomly selected cases. The presented outcomes indicate an
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absence of a pronounced trend, with over 95% of the 20 points falling within the confidence
interval. This suggests a propensity for the two datasets to align.
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4.2. Quantitative Validation

To assess matching accuracy, the mean and standard deviation of 3D Euclidean dis-
tances are calculated for quantifying alignment precision. A color-mapping scheme was
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implemented to visualize inter-dataset distance discrepancies. Colors ranged from blue
(0 mm minimum) to red (maximum). Figure 10 illustrates this technique: Figure 10a depicts
the lingual perspective of the same teeth, while Figure 10b presents a distance histogram.
The red dotted line within the histogram signifies the average distance, incorporating
standard deviation and Fitness/Inlier_rmse. Table 2 outlines registration accuracy for a
specific set of 10 randomly chosen cases. Remarkably, the mean distance is 0.234 mm, with
a standard deviation near 0.132 mm.
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Table 2. Registration accuracy for 10 sample cases.

Value
Case Number

Average
1 2 3 4 5 6 7 8 9 10

Mean (mm) 0.226 0.292 0.215 0.221 0.217 0.229 0.249 0.227 0.217 0.249 0.234
Std (mm) 0.125 0.202 0.108 0.114 0.112 0.118 0.157 0.112 0.118 0.155 0.132

F/I 2.813 3.167 2.693 2.880 2.813 3.025 2.455 2.989 2.821 2.746 2.840

Std: standard deviation; F/I: Fitness/Inlier_rmse.

4.3. Clinical Validation

To gauge the practicality of automatically registered data in clinical contexts, dentists
employ passive evaluation methods utilizing aligned data. Figure 11a,b demarcate specific
parameter locations for assessment. Figure 11a segments human teeth into four sections,
utilizing ball cuff, U6MB, L6MB, and C measurements as parameters.

Figure 11c outlines the clinical evaluation process involving these parameters. It
encompasses documenting parameter positions in each organized dataset and noting corre-
sponding parameter distances. This dual-weekly assessment involves three orthodontists,
ensuring reliability by averaging expert outcomes. Euclidean distances between parameter
three-dimensional coordinates are measured collectively via the ‘MeshLab’ program, a
commercial software.

Manual measurement results for the same model by clinical experts are shown in
Figure 12. The outcomes are visually depicted in Figure 12. The assessments, performed by
three distinct specialists across the same ten cases, are presented in the form of a box plot.
The ultimate findings portray the average measurements obtained from these evaluations.
The potential clinical applicability of the research methodology was gauged via the insights
gleaned from the specialists’ evaluations.
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5. Discussion

In the field of dentistry, the progression of CAD/CAM technologies has transformed
the clinical landscape by replacing traditional alginate and rubber impression materials
with intraoral scanners. Moreover, the adoption of low-dose CBCT imaging has enabled
a cost-effective visualization of bone and teeth. The integration of computer simulation
techniques has revolutionized treatment planning and the fabrication of dental appliances
and prostheses, ushering in a digital era marked by the replacement of manual laboratory
procedures with digital milling and 3D printing.

Despite the rapid technological advancements, certain limitations persist in terms of
accuracy. Analogous to conventional diagnostic and treatment methods, errors have been
reported in the use of digital tools. These errors may occur throughout the clinical pathway,
including data acquisition, curation, and appliance fabrication. These limitations are
particularly apparent when attempting to utilize various types of digital data to construct a
comprehensive 3D model of a patient’s dental and craniofacial structures.

While CBCT provides images of bones and teeth, the resolution falls short for utilizing
images of tooth crowns in appliance fabrication. Although efforts have been made to seg-
ment teeth from CBCT, the accuracy remains insufficient for clinical applications [10,28,29].
As a result, a critical necessity emerges for the registration of intraoral scan data and high-
precision surface data with CBCT in clinical applications like the development of surgical
guides and orthodontic clear aligners. This integration process, known as registration,
relies on a common reference point established using the respective instruments. While
the manual alignment of these two data types is possible [4–7], it presents challenges in
terms of being labor-intensive and time-consuming. Furthermore, its accuracy depends on
the operator’s proficiency [8,9], leading to low inter-examiner reliability. Hence, the quest
for automated registration of Intraoral Scan (IOS) and CBCT data becomes of paramount
importance. The unique characteristics of IOS and CBCT data call for customized data
acquisition strategies that align with the restricted Region of Interest (ROI) defined by IOS.

Noh et al. [30] introduced a method for dental registration utilizing the iterative
closest point algorithm, encompassing the matching of three distinct registration areas:
buccal surfaces, lingual surfaces, and a combination of both. However, their approach
lacked a procedure for the extraction of teeth models from the cone beam computed
tomography (CBCT) data. Additionally, the research omitted details regarding the removal
of gingival margin areas, leaving room for improvement in this aspect of the methodology.
In contrast, Park et al. [31] presented a study employing a manual registration function
and a point-based registration function to align CBCT and intraoral scanning (IOS) data.
Their method required user interaction to select point pairs for matching. It is worth noting
that the data used in their research were derived from an artificial skull model, which
may not perfectly represent real patient data due to inherent differences. An intriguing
approach was proposed by Deferm et al. [32], who introduced a novel soft tissue-based
method for registering intraoral scans with CBCT scans. Their study commenced with the
alignment of dentate jaws via the registration of the palatal mucosal surface, which was
followed by a meticulous evaluation of accuracy at the individual tooth level. Subsequently,
their unique methodology extended to the registration of fully edentulous jaws, which
incorporated both the palatal and alveolar crest mucosal surfaces. However, the specifics
of the iterative closest point (ICP) algorithm utilized in their research were drawn from
commercial software, and the technical intricacies were not thoroughly elucidated. Piao
et al. [8] contributed to the field by comparing multiple registration methods, including
deep-learning-based registration, manual registration, surface-based registration, and point-
based registration. These methods were integrated into commercial software packages
employed in their research. As a result, this study emphasizes the utilization of these
techniques, but detailed insights into their methodologies were not the central focus.
Yang et al. [33] use a digital approach based on a single CBCT scan to transfer virtual
intraoral scans to a physical mechanical articulator. This eliminates traditional procedures,
streamlines workflows, and reduces chairside adjustments. The technique enables accurate
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intraoral scan mounting and virtual articulator parameter setting in prosthetic dentistry.
However, it will require an external physical mechanical articulator, compared to the other
computational techniques. Hamilton et al. [34] compare the registrations between IOS and
the multiple-sized FOV of CBCT datasets. In their research, there is an observed increase in
precision errors during intra-oral scan registration. Nevertheless, it is noteworthy that when
an adequate number of well-distributed teeth are discernible within the small FoV CBCT,
the precision of digital intra-oral scan registration seems to fall within clinically acceptable
limits. However, the registration process was performed manually by a trained investigator.
For applying deep-learning methods to integrate the CBCT and IOS, Lee et al. [35] introduce
a study aiming to assess the precision of integrated tooth models (ITMs) generated through
deep learning, which involves the fusion of intraoral scans and cone-beam computed
tomography (CBCT) scans. The primary focus was on the three-dimensional (3D) analysis
of root position in the context of orthodontic treatment. Additionally, this study aimed
to juxtapose the fabrication process of ITMs using deep learning against the conventional
manual method. However, the 3D segmentation mentioned in this research was performed
using a commercial software package.

In this study, we leverage a retrained Mask-RCNN model on sagittal CBCT slices
within the NHP posture, addressing limitations identified in previous investigations, partic-
ularly concerning the challenge of missing teeth [10,11]. Our method distinctly segregates
upper and lower teeth via customized ROIs. Furthermore, we determine the sagittal po-
sition of the dental arch by concurrently employing a tooth arch extraction technique in
conjunction with axial views [21]. On the other hand, for IOS data, we effectively separate
it from the gingiva using a color-based KNN algorithm. Subsequently, our alignment
strategy focuses on the tooth crown, capitalizing on the unique attributes derived from
the extracted CBCT and IOS data. Notably, during the initial alignment phase, we opted
for the RANSAC algorithm over PCA [12–16]. This choice was grounded in RANSAC’s
resilience against outliers and missing data, resulting in a more reliable alignment process.

It is important to note that the careful use of this loop strategy contributes to the
precision of the alignment process, enhancing the accuracy of the matched data. However,
it is acknowledged that the matching time may be comparatively extended due to the
iterative nature of the loop. Despite the inherent trade-off between precision and efficiency,
our approach prioritizes achieving accurate alignment outcomes. The deliberate trade-off
of increased processing time for accuracy is strategically balanced to yield results that
align with the stringent demands of clinical applications, establishing the basis for practical
integration of the method within the realm of dental practice.

6. Conclusions

This paper introduces an AI-driven dental system that integrates automated data
extraction and matching techniques for IOS and CBCT data, thereby enhancing the di-
agnosis and treatment planning processes in dentistry. In CBCT data, a method for the
precise segmentation of tooth-contact slices is proposed. This involves applying a retrained
Mask-RCNN to sagittal images in NHP posture to isolate teeth. Dental arch positioning is
achieved via axial-view tooth projections, while panoramic views are extracted from dental
arches. The Mask-RCNN is further employed to distinguish upper and lower jaws via
panoramic views and masks. For IOS data, conversion to point cloud format is followed by
HSV color model utilization. A color-based KNN approach is applied to segregate teeth and
gingiva. Addressing differing dataset scopes, sequential RANSAC and ICP algorithms are
employed for matching and prioritizing tooth crown alignment. For validation purposes, a
comparative assessment was conducted between the performance of the proposed method
and expert-driven procedures. The discerned deviation between the proposed method and
manual measurements was determined to be within acceptable bounds, thereby endorsing
the potential viability of this method for practical deployment in clinical settings.



Bioengineering 2023, 10, 1326 14 of 15

Author Contributions: Conceptualization, Y.-J.K. and A.K.; Validation, Y.-J.K., J.-H.A., N.J. and A.K.;
Investigation, J.-H.A.; Resources, J.-H.A.; Writing—original draft, H.-K.L. and T.P.N.; Writing—review
& editing, J.Y.; Visualization, H.-K.L. and T.P.N.; Supervision, J.Y.; Project administration, J.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by the Ministry of Trade, Industry, and Energy
(MOTIE), Korea, under the “170k closed section roll forming and free curvature bending technology
development for electric vehicle body” (reference number 20022814) supervised by the Korea Institute
for Advancement of Technology (KIAT). This work was also supported by the Industrial Strategic
Technology Development Program-A program for win-win type innovation leap between middle
market enterprise and small & medium sized enterprise (P0024516, Development and commer-
cialization of a customized dental solution with intelligent automated diagnosis technology based
on virtual patient data) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea) and
the Korea Institute for Advancement of Technology (KIAT). Finally, this research was financially
supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Innovative
Digital Manufacturing Platform” (reference number P00223311) supervised by the Korea Institute for
Advancement of Technology (KIAT).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Hallym University (2022-04-018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data sharing is unavailable due to ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davidowitz, G.; Kotick, P.G. The use of CAD/CAM in dentistry. Dent. Clin. 2011, 55, 559–570. [CrossRef] [PubMed]
2. Moörmann, W.H. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137, 7S–13S. [CrossRef] [PubMed]
3. Alkhayer, A.; Piffkó, J.; Lippold, C.; Segatto, E. Accuracy of virtual planning in orthognathic surgery: A systematic review. Head

Face Med. 2020, 16, 34. [CrossRef] [PubMed]
4. Amorim, P.; Moraes, T.; Silva, J.; Pedrini, H. In Vesalius: An interactive rendering framework for health care support. In

Proceedings of the Advances in Visual Computing: 11th International Symposium, ISVC 2015, Las Vegas, NV, USA, 14–16
December 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 45–54.

5. Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of
anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [CrossRef]

6. Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.;
et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341.
[CrossRef]

7. Lim, S.W.; Hwang, H.S.; Cho, I.S.; Baek, S.H.; Cho, J.H. Registration accuracy between intraoral-scanned and cone-beam computed
tomography–scanned crowns in various registration methods. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 348–356. [CrossRef]

8. Piao, X.Y.; Park, J.M.; Kim, H.; Kim, Y.; Shim, J.S. Evaluation of different registration methods and dental restorations on the
registration duration and accuracy of cone beam computed tomography data and intraoral scans: A retrospective clinical study.
Clin. Oral Investig. 2022, 26, 5763–5771. [CrossRef]

9. Flügge, T.; Derksen, W.; Te Poel, J.; Hassan, B.; Nelson, K.; Wismeijer, D. Registration of cone beam computed tomography data
and intraoral surface scans–A prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin. Oral Implant. Res.
2017, 28, 1113–1118. [CrossRef]

10. Jang, T.J.; Kim, K.C.; Cho, H.C.; Seo, J.K. A fully automated method for 3D individual tooth identification and segmentation in
dental CBCT. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6562–6568. [CrossRef]

11. Hyun, C.M.; Bayaraa, T.; Yun, H.S.; Jang, T.J.; Park, H.S.; Seo, J.K. Deep learning method for reducing metal artifacts in dental
cone-beam CT using supplementary information from intra-oral scan. Phys. Med. Biol. 2022, 67, 175007. [CrossRef]

12. Jolliffe, I. Principal Component Analysis; Springer: New York, NY, USA, 1986.
13. Wikipedia. Principal Component Analysis. Available online: https://en.wikipedia.org/wiki/Principal_component_analysis

(accessed on 5 May 2023).
14. Mitra, N.J.; Nguyen, A. Estimating surface normals in noisy point cloud data. In Proceedings of the Nineteenth Annual

Symposium on Computational Geometry, San Diego, CA, USA, 8–10 June 2003; pp. 322–328.
15. Bailey, S. Principal component analysis with noisy and/or missing data. Publ. Astron. Soc. Pac. 2012, 124, 1015. [CrossRef]
16. Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. In Computer Graphics Forum; Blackwell

Publishing Ltd.: Oxford, UK, 2007; pp. 214–226.

https://doi.org/10.1016/j.cden.2011.02.011
https://www.ncbi.nlm.nih.gov/pubmed/21726690
https://doi.org/10.14219/jada.archive.2006.0398
https://www.ncbi.nlm.nih.gov/pubmed/16950932
https://doi.org/10.1186/s13005-020-00250-2
https://www.ncbi.nlm.nih.gov/pubmed/33272289
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.ajodo.2019.04.031
https://doi.org/10.1007/s00784-022-04533-7
https://doi.org/10.1111/clr.12925
https://doi.org/10.1109/TPAMI.2021.3086072
https://doi.org/10.1088/1361-6560/ac8852
https://en.wikipedia.org/wiki/Principal_component_analysis
https://doi.org/10.1086/668105


Bioengineering 2023, 10, 1326 15 of 15

17. Wikipedia. Random Sample Consensus. Available online: https://en.wikipedia.org/wiki/Random_sample_consensus (accessed
on 5 May 2023).

18. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870v3.
19. Ahn, J.; Nguyen, T.P.; Kim, Y.J.; Kim, T.; Yoon, J. Automated analysis of three-dimensional CBCT images taken in natural head

position that combines facial profile processing and multiple deep-learning models. Comput. Methods Programs Biomed. 2022, 226,
107123. [CrossRef] [PubMed]

20. Li, P.; Wang, R.; Wang, Y.; Tao, W. Evaluation of the ICP algorithm in 3D point cloud registration. IEEE Access 2020, 8, 68030–68048.
[CrossRef]

21. Giavarina, D. Understanding bland altman analysis. Biochem. Medica 2015, 25, 141–151. [CrossRef]
22. Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986,

327, 307–310. [CrossRef]
23. Bunce, C. Correlation, agreement, and Bland–Altman analysis: Statistical analysis of method comparison studies. Am. J.

Ophthalmol. 2009, 148, 4–6. [CrossRef]
24. Liu, M.; Sheng, L.; Yang, S.; Shao, J.; Hu, S.M. Morphing and sampling network for dense point cloud completion. Proc. AAAI

Conf. Artif. Intell. 2020, 34, 11596–11603. [CrossRef]
25. Cignoni, P.; Rocchini, C.; Scopigno, R. Metro: Measuring error on simplified surfaces. In Computer Graphics Forum; Blackwell

Publishers: Oxford, UK; Blackwell Publishers: Boston, MA, USA, 1998; pp. 167–174.
26. Solow, B.; Tallgren, A. Natural head position in standing subjects. Acta Odontol. Scand. 1971, 29, 591–607. [CrossRef]
27. Imandoust, S.B.; Bolandraftar, M. Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical

background. Int. J. Eng. Res. Appl. 2013, 3, 605–610.
28. Shaheen, E.; Leite, A.; Alqahtani, K.A.; Smolders, A.; Van Gerven, A.; Willems, H.; Jacobs, R. A novel deep learning system for

multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. J. Dent. 2021, 115,
103865. [CrossRef] [PubMed]

29. Cui, Z.; Li, C.; Wang, W. ToothNet: Automatic tooth instance segmentation and identification from cone beam CT images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2019, Long Beach, CA, USA,
15–20 June 2019; pp. 6368–6377.

30. Noh, H.; Nabha, W.; Cho, J.H.; Hwang, H.S. Registration accuracy in the integration of laser-scanned dental images into
maxillofacial cone-beam computed tomography images. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 585–591. [CrossRef] [PubMed]

31. Park, J.H.; Hwang, C.J.; Choi, Y.J.; Houschyar, K.S.; Yu, J.H.; Bae, S.Y.; Cha, J.Y. Registration of digital dental models and
cone-beam computed tomography images using 3-dimensional planning software: Comparison of the accuracy according to
scanning methods and software. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 843–851. [CrossRef] [PubMed]

32. Deferm, J.T.; Nijsink, J.; Baan, F.; Verhamme, L.; Meijer, G.; Maal, T. Soft tissue-based registration of intraoral scan with cone beam
computed tomography scan. Int. J. Oral Maxillofac. Surg. 2022, 51, 263–268. [CrossRef] [PubMed]

33. Yang, S.; Dong, B.; Zhang, Q.; Li, J.; Yuan, Q.; Yue, L. An Indirect Digital Technique to Transfer 3D Printed Casts to a Mechanical
Articulator with Individual Sagittal Condylar Inclination Settings Using CBCT and Intraoral Scans. J. Prosthodont. 2022, 31,
822–827. [CrossRef] [PubMed]

34. Hamilton, A.; Singh, A.; Friedland, B.; Jamjoom, F.Z.; Griseto, N.; Gallucci, G.O. The impact of cone beam computer tomography
field of view on the precision of digital intra-oral scan registration for static computer-assisted implant surgery: A CBCT analysis.
Clin. Oral Implant. Res. 2022, 33, 1273–1281. [CrossRef]

35. Lee, S.C.; Hwang, H.S.; Lee, K.C. Accuracy of deep learning-based integrated tooth models by merging intraoral scans and CBCT
scans for 3D evaluation of root position during orthodontic treatment. Prog. Orthod. 2022, 23, 15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://en.wikipedia.org/wiki/Random_sample_consensus
https://doi.org/10.1016/j.cmpb.2022.107123
https://www.ncbi.nlm.nih.gov/pubmed/36156440
https://doi.org/10.1109/ACCESS.2020.2986470
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1016/j.ajo.2008.09.032
https://doi.org/10.1609/aaai.v34i07.6827
https://doi.org/10.3109/00016357109026337
https://doi.org/10.1016/j.jdent.2021.103865
https://www.ncbi.nlm.nih.gov/pubmed/34710545
https://doi.org/10.1016/j.ajodo.2011.04.018
https://www.ncbi.nlm.nih.gov/pubmed/21967948
https://doi.org/10.1016/j.ajodo.2019.12.013
https://www.ncbi.nlm.nih.gov/pubmed/32487314
https://doi.org/10.1016/j.ijom.2021.04.004
https://www.ncbi.nlm.nih.gov/pubmed/33933335
https://doi.org/10.1111/jopr.13570
https://www.ncbi.nlm.nih.gov/pubmed/35864801
https://doi.org/10.1111/clr.14009
https://doi.org/10.1186/s40510-022-00410-x

	Introduction 
	Data Preparation 
	3D Dental Data 
	ROI Extraction 

	Registration Algorithm 
	Validation 
	Statistical Validation 
	Quantitative Validation 
	Clinical Validation 

	Discussion 
	Conclusions 
	References

