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Abstract: Background and Objective: 2D and 3D tumor features are widely used in a variety of
medical image analysis tasks. However, for chemotherapy response prediction, the effectiveness
between different kinds of 2D and 3D features are not comprehensively assessed, especially in
ovarian-cancer-related applications. This investigation aims to accomplish such a comprehensive
evaluation. Methods: For this purpose, CT images were collected retrospectively from 188 advanced-
stage ovarian cancer patients. All the metastatic tumors that occurred in each patient were segmented
and then processed by a set of six filters. Next, three categories of features, namely geometric, density,
and texture features, were calculated from both the filtered results and the original segmented
tumors, generating a total of 1403 and 1595 features for the 2D and 3D tumors, respectively. In
addition to the conventional single-slice 2D and full-volume 3D tumor features, we also computed
the incomplete-3D tumor features, which were achieved by sequentially adding one individual CT
slice and calculating the corresponding features. Support vector machine (SVM)-based prediction
models were developed and optimized for each feature set. Five-fold cross-validation was used to
assess the performance of each individual model. Results: The results show that the 2D feature-
based model achieved an AUC (area under the ROC curve (receiver operating characteristic)) of
0.84 ± 0.02. When adding more slices, the AUC first increased to reach the maximum and then
gradually decreased to 0.86 ± 0.02. The maximum AUC was yielded when adding two adjacent
slices, with a value of 0.91 ± 0.01. Conclusions: This initial result provides meaningful information
for optimizing machine learning-based decision-making support tools in the future.

Keywords: radiomics; ovarian cancer; 2D and 3D features; incomplete 3D features; chemotherapy
response prediction; precision medicine

1. Introduction

Ovarian cancer is the most aggressive malignancy in gynecologic oncology [1]. Given
the difficulty in the early stage diagnosis of ovarian carcinoma, most patients are diagnosed
with ovarian cancer at advanced stages [2], which can lead to the formation of metastatic
tumors on various organs. To control these metastatic tumors, chemotherapy is the only
effective treatment after the primary cytoreduction [3]. However, due to the nature of
metastasis heterogeneity, the patients’ response to treatment varies largely. Thus, one
challenge in current clinical practice is to select the appropriate chemotherapy before
administrating the treatment. To address this, many studies have been conducted to
identify biomarkers from either histologic or/and imaging data that might be associated
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with patient response to chemotherapy [4–7]. Among different technologies, imaging
approaches have the advantage of evaluating the organ/tissue noninvasively with adequate
spatial resolution. Moreover, being a widely available imaging modality with relatively
operating low cost, CT is one of the most popular diagnostic tools in therapy response
assessment [8]. However, the current criteria requires both pre-therapy and 6–8 week
follow-up examinations, and the diameter-based evaluation causes low association with
the clinical outcome [9].

Meanwhile, radiomics is an emerging technology that extracts a large amount of
features from tumors segmented from various medical images [10–12]. These radiomics
features are able to quantify the complex textures, shapes, as well as other tumor charac-
teristics that are highly associated with carcinogenesis [13]. Therefore, this information
can be beneficial in determining treatment options and predicting the tumor’s response
to therapy [14]. For this technique, identifying effective radiomics features is critically
important: 2D features are easier and faster to calculate but provide less information,
while the 3D features use the entire 3D tumor volume and intuitively contain more com-
prehensive information. To this end, many studies have been conducted to explore the
effectiveness of 2D and 3D features in different applications. The prognostic performance
of 2D and 3D radiomics features in CT images of non-small cell lung cancer (NSCLC) was
investigated in [15], which demonstrated that 2D features exhibited better performance,
although both feature types had strong prognostic capability. One study compared the
2D and 3D radiomics features in characterizing gastric cancer [16], which revealed that
models constructed with 2D radiomics features had comparable performance with those
constructed with 3D features. In another study, Xu et al. [17] evaluated the prediction per-
formance of 2D and 3D radiomics features in a multi-organ, multi-modality cancer study,
and the authors concluded that 3D radiomics features were more effective. Lee et al. [18]
compared the 2D and 3D texture features for discriminating between gastric cancer and
normal gastric mucosa on CT images, and they revealed that 3D texture features were more
effective than 2D features. Despite their clinical usefulness, these studies only compare
features from the single-slice-based 2D tumor and the full-volume 3D tumor. Very few
studies have been focused on the effectiveness of incomplete 3D tumors features, which
contain only a portion of the image slices.

In this investigation, we hypothesized that the inclusion of multiple tumor slices
would lead to a substantial enhancement in the predictive accuracy of our model, but it
may also introduce more uncertainties that may adversely impact model accuracy. To
verify this hypothesis, we extracted 2D radiomics features from a single slice of the tu-
mors and then generated incomplete 3D features by sequentially adding the adjacent CT
slices. Based on each individual feature pool, we optimized the same kind of predictive
model and evaluated their performance, respectively. The details are presented in the
following sections.

2. Materials and Methods
2.1. Database

In our study, we utilized a dataset of CT images involving 188 ovarian cancer patients.
The CT images in the dataset were retrospectively collected from the University of Ok-
lahoma Health Science Center (OUHSC). Subjects for this study included the following
criteria: (1) they had recurrent ovarian/peritoneal/tubal carcinoma of high-grade histology
(e.g., serous, endometrioid, and undifferentiated); (2) they received systemic chemotherapy
treatment after primary cytoreduction. For each patient in the dataset, there were up to
5 metastatic tumors occurred in different organs, which were marked on the pre-therapy CT
images. All these images were acquired under a routing clinical protocol. CT examinations
were captured utilizing either a GE Light Speed VCT 64 or a GE Discovery 600 16-row
detector machine with a tube voltage of 120 kVp. The currents were adjusted from 100
to 600 mA, depending on patient body size. The clinical outcome was also collected for
model assessment. In this study, 6-month progression-free survival (PFS) was utilized,
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which a common index for assessing the efficacy of new cancer chemotherapies in clinical
trials [19]. Accordingly, among all the collected 188 patients, 130 patients are responders
with a 6-month PFS of ‘Yes’, whereas 58 patients are non-responders with little response
to the treatments. The detailed demographic characteristics of our patients cohort can be
found in Table 1. The entire study protocol was approved by the Institutional Review Board
in the University (IRB13649).

Table 1. Information of the patients in our dataset.

Patients’ Characteristics
6-Month PFS

p-Value
Responders Non-Responders

Number of patients 130 58

Age 63 ± 10 61 ± 10 0.24

Number of tumors 272 133

Average tumor diameter (mm) 31.3 ± 19.3 31.5 ± 16.4 0.94

2.2. Radiomics Feature Extraction

In this study, the tumor features were obtained from 2D and 3D pre-therapy CT slices.
Each segmented tumor is depicted on a number of CT slices. The central slice has the
largest 2D area, which was identified by radiologists. Accordingly, we first extracted
the quantitative features only from the central slice to generate a 2D feature pool. We
sequentially added the adjacent slices above and below the central slice until the tumor
disappears. After adding one adjacent slice, we will create the corresponding incomplete 3D
tumor feature pool (Table 2). We continued the generation of the corresponding incomplete
3D feature pool until the tumor disappears.

Table 2. Number of features calculated from original image and other processed versions of the
image.

Image Type 2D 3D

Original 104 110

Exponential 93 93

Gradient Magnitude 93 93

Local binary pattern 93 279

Logarithm 93 93

Square 93 93

Square root 93 93

Wavelet 741 741

Total 1403 1595

Before the feature computation, we developed a computer-aided image analysis
scheme to segment each individual tumor from the CT images. The tumor segmenta-
tion procedure started at the central slice where the tumor was marked by a radiologist
according to RECIST criteria [20]. The method then sequentially segmented the tumors
on the adjacent slices until the tumor disappeared. For each slice, the tumor was seg-
mented by a hybrid algorithm, which consists of two core algorithms: a region growth
approach with adaptive thresholds [21] and a dynamic contour-seeker method [22]. The
performance of this algorithm was assessed and validated by a number of our previous
studies [23–26]. Given that metastatic tumors occurred on a number of human organs
with high heterogeneity, the automated segmentation may not be able to generate the
tumor contour with satisfactory accuracy. Thus, these segmentation results were visually
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evaluated by experienced researchers and were manually corrected if needed. The entire
scheme was developed as an ImageJ plugin [27], which was equipped with a user friendly
graphical user interface (GUI) to visualize the 2D and 3D tumors.

Based on the segmented tumors, we generated the 2D and 3D feature pool using the
following methods [11,12]. The feature computation scheme is based on pyradiomics [11],
an open source platform that calculates features in accordance with the definitions in
the imaging biomarker standardization initiative (IBSI) [12]. The general flowchart of
the calculation is described in Figure 1. In this module, the segmented tumor was first
processed by a number of operations including exponential, gradient magnitude, local
binary pattern (LBP), logarithm (Log), square, square root, and wavelet (Coif1) filters. Next,
the radiomics features were then calculated on the processed images as well as the original
image. The features can be divided into 3 categories, i.e., geometric, density, and texture
features (the details can be found in Supplementary Materials), which describe the tumor
in various aspects [28]. Table 2 shows a breakdown of the number of features calculated
for each image class, with the number of features per class ranging from 93 to 741. We
calculated a total of 1595 and 1403 features for the 3D and 2D feature pools, respectively.
Given that a total of up to five tumors were segmented by the scheme and the features
were extracted on each individual tumor, the case-based value of each feature is generated
by calculating the minimum Fmin = min{F1, F2, F3, . . . , FN} of all the tumor-based values.
The minimum value was selected on the basis of our empirical analysis, as it consistently
demonstrates its effectiveness in providing a stable and conservative feature representation
across the segmented tumors for each patient.
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2.3. Develop Machine Learning-Based Models to Predict Tumor Response to Chemotherapy

Pearson correlation coefficient (PCC) and LASSO (Least Absolute Shrinkage and
Selection Operator) approaches were used to reduce the dimensionality of our feature space.
First, the PCC was calculated, and a heatmap was generated to investigate the feature
dependency. After the computation, feature pairs with a Pearson correlation coefficient
(PCC) exceeding the pre-set threshold were identified, and one of the correlated features was
removed [29] to reduce the redundant information. Next, LASSO was applied on the rest
of the feature pool to create an optimal feature cluster [30], as it has the capability to handle
high-dimensional data with a limited number of observations [31]. Essentially, this method
employs a variation of the least squares regression method that employs L1 regularization
to produce sparse variable coefficients. Accordingly, LASSO constrains the sum of the
absolute values of the regression weights to be smaller than a fixed threshold. Therefore, it
improves model interpretability by removing variables irrelevant to the response variable
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and reduces the possibility of overfitting [32]. The LASSO objective function is defined
in Equation (1).

∑n
i=1 (yi −∑j xijβ j)

2
+ λ ∑p

j=1

∣∣β j
∣∣, subject to ∑p

j=1

∣∣β j
∣∣ < t (1)

In the above error function, t is the upper-bound threshold for the sum of the absolute
values of feature weights β, and λ is a non-negative tuning parameter that regulates the
degree of the penalty. We employed the LASSO-cross validation (LASSO-CV) approach to
tune the LASSO parameters [33]. After applying LASSO, features with non-zero weights
were chosen to be included in the model. Finally, we adopted the synthetic minority over-
sampling technique (SMOTE) to add more non-responder samples and balance the dataset,
which generates samples by interpolating between one selected minority sample with its
nearest neighbors, which was performed using scikit-learn library [34].

Next, a support vector machine (SVM) was used to predict the tumor responses
(i.e., 6-month PFS). SVM has been widely validated as an effective classifier in various
medical imaging tasks [35–38]. The method constructs one or more hyperplanes to clas-
sify the feature vectors into two classes with minimal generalization error [39]. Mathe-
matically, the SVM model is established by solving the following optimization problem:
min 1

2‖ w ‖2 + C
2 ‖ ξ ‖2

2 with the constraint yi(wΦ(xi) + bi) ≥ 1− ξi, ξi ≥ 0, ∀i or its dual
form maxW(α) = eTα− 1

2 αTyiyjK
(
xi, xj

)
α, 0 ≤ αi ≤ C, yTα = 0. In the above formulae,(

xi, yj
)

is one pair of feature vector and output value, w and b are the normal vector and
intercept of the discrimination hyperplane, ξi is the slack variable, C is the adjusting co-
efficients for optimization errors, e is the unit vector, α is the Lagrange coefficient, and

K represents kernel function K
(

xi, xj
)
= exp

(
− ‖xi−xj‖2

σ2

)
[40]. The model’s parameters

(i.e., C and σ) will be tuned to achieve optimal values during the training process. The SVM
parameter tuning was executed using grid search [41], which varies the parameters system-
atically to search through a predefined range of values and find the set that produced the
most desirable performance metrics (e.g., accuracy). This process was conducted to ensure
the robustness and reliability of our proposed approach, resulting in the selection of the
most suitable parameters for the SVM model. Finally, each classifier was then trained and
tested using a 5-fold cross-validation approach [42]. To evaluate the model performance,
the receiver operating characteristic (ROC) curve was used [43], and the area under the
ROC curve (AUC) was estimated for each model.

3. Results

Figure 2a,b illustrates tumor images from a representative non-responder and a repre-
sentative responder, respectively. Although there are no visible feature differences between
the responder and non-responder, the computed radiomics feature can classify them into
different groups. Figure 3 shows an example of metastatic tumor segmentation. The
tumor has the largest area in the central slice, and its area gradually decreases until the
tumor eventually disappears on the fourth neighboring slices of both sides (Figure 3a).
Accordingly, the segmentation procedure starts with the central slice, where the tumor was
identified by a radiologist or oncologist. Then, the segmentation continues on the adjacent
slices until the tumor disappears (Figure 3b,c).
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Figure 3. One example of the tumor segmentation process, in which the central slice is outlined
with red color. (a) Identified tumor on the CT slices. (b) Tumors outlined using our developed CAD
software. (c) Segmented tumor masks.

Figure 4a–c represents the heatmap of all the features extracted from 2D, incomplete 3D,
and 3D tumor, respectively. The maps were produced by a total of 188 observations. Each
entry in the map indicates the colorized Pearson correlation coefficient ranging from 0 (Blue)
to 1 (red). The maps illustrate that most of the features extracted from 2D tumor masks
have relatively low correlation. The similar pattern can be observed in the features obtained
from incomplete 3D tumor masks. However, the correlation structure of the features
extracted from whole 3D tumor masks was notably different, particularly in logarithm-
based, exponential, square, and square root-based features, exhibiting higher correlation
among different classes. The high correlation may be attributed to the enhancement of
certain 3D structures when applying these filters, which leads to consistent value changes on
some categories of the features. Furthermore, Figure 4d–f demonstrates the histograms of
all feature categories for 2D, incomplete 3D, and 3D features. According to the histograms,
more than 80% of correlation coefficient values for 2D and incomplete 3D features are
less than 0.5, whereas a higher percentage of 3D features have correlation coefficients
greater than 0.5. These results imply that 2D and incomplete-3D tumor features cover
comprehensive tumor characteristics with low information redundancy.
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After applying the PCC and LASSO feature selection methods, we identified
115 two-dimensional features as the most effective feature cluster for further analysis.
Similarly, 56–126 features were identified for different incomplete 3D tumor features pools,
and 73 features were identified from the full 3D feature pool. As illustrated in Table 3,
a minimum of 78% of the selected features can be categorized into texture-based features,
while the remainder fall into the categories of shape or density features. When dividing the
features based on the filters, we observe that the largest group of features is extracted from
the wavelet transform-based filtered images, with the features calculated from LBP-filtered
images forming the second most prominent group. Our models used these features as
inputs to generate the prediction score. Figure 5 illustrates the ROC curve achieved by the
models trained with one to nine number of slices of tumor mask and whole slices, while
Table 4 summarizes the corresponding values of AUC and overall accuracy values. The
results demonstrate that adding more slices to the central slice can increase the prediction
performance, but only for a certain range of additional slices. The highest performance was
achieved when the model was constructed with one central slice and two adjacent slices,
with the model yielding an AUC of 0.91 ± 0.01 (95% confidence interval [0.88, 0.94]) and
an overall predicting accuracy of 0.84 ± 0.03 (95% confidence interval [0.78, 0.88]). The 3D
model with three and 5 adjacent slices were the second and third best performing models,
which achieved an AUC values of 0.89 ± 0.01 and 0.86 ± 0.02, respectively. Model_3D,
with an AUC of 0.86 ± 0.02 (95% confidence interval [0.82, 0.89]), performed better than
Model_2D, with AUC of 0.84 ± 0.02 (95% confidence interval [0.78, 0.88]). All these trends
are also illustrated in Figure 5b.
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[0.78, 0.87] 

0.73 ± 0.02 
[0.69, 0.78] 

Figure 5. Performance comparison of the models for six-month PFS prediction (a) ROC curves of the
prediction models. (b) The corresponding AUC values of ten prediction models (with 95% CI).

Table 3. Summary of selected features by radiomics class type and filtering method.

Features
Radiomics Category Filter

Total
Shape Density Texture Wavelet LBP Other

2D 0 23 92 71 21 23 115

3D2 Slices 4 18 104 77 19 30 126

3D3 Slices 0 16 75 51 9 31 91

3D4 Slices 1 20 75 52 13 31 96

3D5 Slices 1 17 64 44 12 26 82

3D6 Slices 1 16 72 51 14 24 89

3D7 Slices 1 15 61 37 16 24 77

3D8 Slices 0 11 51 27 7 28 62

3D9 Slices 1 8 47 30 4 22 56

3D 1 8 64 34 13 26 73

Table 4. Performance comparison of the prediction models.

Model AUC ± STD
95% CI

ACC ± STD
95% CI

2D 0.84 ± 0.02
[0.78, 0.88]

0.75 ± 0.03
[0.69, 0.80]

3D2 Slices
0.89 ± 0.01
[0.85, 0.92]

0.83 ± 0.02
[0.77, 0.87]

3D3 Slices
0.91 ± 0.01
[0.88, 0.94]

0.84 ± 0.02
[0.78, 0.88]

3D4 Slices
0.85 ± 0.02
[0.80, 0.89]

0.76 ± 0.02
[0.71, 0.82]

3D5 Slices
0.86 ± 0.02
[0.82, 0.90]

0.78 ± 0.02
[0.72, 0.83]

3D6 Slices
0.84 ± 0.02
[0.79, 0.88]

0.74 ± 0.03
[0.69, 0.79]

3D7 Slices
0.86 ± 0.02
[0.80, 0.88]

0.76 ± 0.03
[0.70, 0.80]
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Table 4. Cont.

Model AUC ± STD
95% CI

ACC ± STD
95% CI

3D8 Slices
0.84 ± 0.02
[0.78, 0.86]

0.75 ± 0.03
[0.70, 0.80]

3D9 Slices
0.83 ± 0.01
[0.78, 0.87]

0.73 ± 0.02
[0.69, 0.78]

3D 0.86 ± 0.02
[0.82, 0.89]

0.77 ± 0.02
[0.72, 0.83]

4. Discussion

In this study, we conducted a comprehensive evaluation of various radiomic fea-
ture extraction methods for predicting early response of ovarian cancer to chemotherapy.
Our investigation focused on 2D, incomplete 3D, and 3D radiomic features and their
ability to represent and discriminate the underlying tumor characteristics. Our findings
demonstrate that the incomplete 3D features extracted from the central tumor slice and its
two adjacent slices yielded better prediction accuracy and might be recommended as the
preferred approach.

As compared to the previous studies, the most unique characteristic of our investiga-
tion is that we explored the performance of the features computed from incomplete 3D
tumors, which contain a portion of the tumor slices. The comparison between the 2D or 3D
features has been investigated by many research groups. In general, the 2D features are
calculated from a single slice containing the maximal projection within the entire tumor.
Accordingly, tumor segmentation and annotation are relatively easier, but some useful
information is lost. For instance, it is difficult to accurately extract tumor volume, surface
area, spherical disproportion, and other features that reflect geometric irregularities from a
2D tumor. On the other end, despite the comprehensive information, the 3D feature suffers
from more information uncertainties. Given that it is very difficult to clearly define the
boundary between the tumor region and its surround healthy tissues, there is no segmen-
tation algorithm which is able to perfectly extract the tumor contour [44]. Moreover, the
tumor heterogeneity may only be inside several central slices. The marginal slices may only
contain suspicious surrounding tissue, and they may not have any information associated
with the needed treatment responses. As a result, more uncertainties will be added on the
segmented 3D tumors, which may adversely affect the performance of prediction models.
Therefore, there is a trade-off between adding more useful information and uncertainties
when sequentially increasing the adjacent slices. In this study, we first demonstrated that
using the central and its two neighboring slices may achieve better performance than other
situations. To the best of our knowledge, no similar studies have been performed on this
topic before.

Moreover, our study highlights the importance of texture-based features and wavelet
filtering for predicting treatment response. We observe that texture-based features were
more informative, especially when they are computed from the wavelet transform-processed
images. This could be attributed by the fact that texture-based features are able to capture
the heterogeneity and complexity of the tumor microenvironment, which can provide
insights into tumor biology and response to treatment. Wavelet transform is able to initially
concentrate the tumor edge and texture information, while the other irrelevant information
is discarded. Meanwhile, our study suggests that the number of slices used for CT image
analysis can have an impact on the correlation structure of extracted radiomics features.
The high correlation only occurs on the complete 3D tumor features from the tumor images
processed by certain kinds of filters (e.g., logarithm, exponential, and square), which may
be explained by the fact that such filters can enhance certain 3D structures, and these
structures could lead to consistent value changes on some categories of the features.
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Despite the promising results of our study, this study has the following limitations.
First, the dataset used in our study only consisted of 188 patients, which were collected
from a single institute. This single institute dataset may not be able to comprehensively
represent the diversified population within the entire country, therefore the robustness of
the results in this investigation should be further verified by a larger multi-institute patient
cohort. Second, although the segmentation scheme was validated in our previous studies,
the tumor segmentation accuracy was not considered. The segmentation error may also
potentially introduce noise into our 3D features and consequently reduce the predictive
performance [45]. Third, only radiomics features were used in the feature performance
comparison. Other types of features, such as deep learning features, were not investigated.
It would be worthwhile to explore the combination of deep learning features and radiomics
features in future studies. In conclusion, our study may provide valuable information for
the development of radiomics-based prediction models in the future.
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