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Abstract: Background: Accurate preoperative planning for total knee arthroplasty (TKA) is crucial.
Computed tomography (CT)-based preoperative planning offers more comprehensive information
and can also be used to design patient-specific instrumentation (PSI), but it requires well-reconstructed
and segmented images, and the process is complex and time-consuming. This study aimed to develop
an artificial intelligence (AI) preoperative planning and PSI system for TKA and to validate its time
savings and accuracy in clinical applications. Methods: The 3D-UNet and modified HRNet neural
network structures were used to develop the AI preoperative planning and PSI system (AIJOINT).
Forty-two patients who were scheduled for TKA underwent both AI and manual CT processing and
planning for component sizing, 20 of whom had their PSIs designed and applied intraoperatively.
The time consumed and the size and orientation of the postoperative component were recorded.
Results: The Dice similarity coefficient (DSC) and loss function indicated excellent performance of the
neural network structure in CT image segmentation. AIJOINT was faster than conventional methods
for CT segmentation (3.74 ± 0.82 vs. 128.88 ± 17.31 min, p < 0.05) and PSI design (35.10 ± 3.98 vs.
159.52 ± 17.14 min, p < 0.05) without increasing the time for size planning. The accuracy of AIJOINT
in planning the size of both femoral and tibial components was 92.9%, while the accuracy of the
conventional method in planning the size of the femoral and tibial components was 42.9% and 47.6%,
respectively (p < 0.05). In addition, AI-based PSI improved the accuracy of the hip–knee–ankle angle
and reduced postoperative blood loss (p < 0.05). Conclusion: AIJOINT significantly reduces the time
needed for CT processing and PSI design without increasing the time for size planning, accurately
predicts the component size, and improves the accuracy of lower limb alignment in TKA patients,
providing a meaningful supplement to the application of AI in orthopaedics.

Keywords: knee arthroplasty; artificial intelligence; machine learning; patient-specific instrumentation

1. Introduction

Total knee arthroplasty (TKA) is an effective treatment for end-stage knee osteoarthritis,
rheumatoid arthritis, and osteonecrosis, and its demand is increasing every year [1,2].
Despite the good results achieved with TKA, approximately 20% of patients still report
dissatisfaction postoperatively [3,4]. The size and orientation of the component have been
shown to be related to postoperative clinical outcomes and longevity; therefore, precise
preoperative planning to determine the size and position of the component is essential [5,6].
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Precise preoperative planning avoids unpredictable intraoperative challenges and reduces
component and instrumentation stock and sterilization costs [7].

Traditional two-dimensional (2D) templating is less accurate in assessing the compo-
nent size and does not consider factors such as the thickness of the resected bone [8,9]. This
is due to inconsistencies in magnification, difficulty in obtaining standard radiographs,
complex anatomies in patients, and the two-dimensionality of the X-ray image [10,11].
Computed tomography (CT)-based three-dimensional (3D) preoperative planning can bet-
ter take these factors into account and has been shown to provide more accurate component
size prediction for TKA patients, in addition to providing information on the thickness
of resected bone, component orientation, etc. [11,12]. However, it requires good image
reconstruction and segmentation, and the whole process is complex and time-consuming,
which limits its application [13].

With a basis in CT-based preoperative planning, digital technologies, such as naviga-
tion, robot-assisted techniques, and patient-specific instrumentation (PSI), are being used in
arthroplasty [14–16]. All these techniques have been reported to improve surgical accuracy,
but navigation and robotic technologies require costly purchases and maintenance, increase
the operating time, and require additional, sufficiently large spaces for application and
storage. The PSI is less expensive, requires less space for storage, and has become an at-
tractive tool among surgeons because it does not increase the operating time [7]. However,
the traditional PSI design process is complex and requires checking the fit of the PSI to the
bone surface at multiple levels, thereby increasing its preparation time, resulting in the
entire production process taking 4–8 weeks [17,18].

Artificial intelligence (AI) and machine learning (ML) aim to achieve some form of
intelligence, enabling computer systems to perform tasks that typically require human
intelligence. They both rely on learning and analysis of data to improve performance. Both
are being increasingly used in various fields of clinical medicine [19–21]. Because of its
effectiveness in image segmentation and handling massive amounts of data, it has been
applied in the identification and prediction processes of a wide range of imaging modalities,
thus saving time and costs and increasing procedural accuracy [22,23]. In addition, machine
learning has been widely applied in 3D printing, encompassing areas such as process
optimization and material design [24]. AI and machine learning are well suited for lower
extremity arthroplasty due to their elective nature, capacity to meet the needs of centres
with high patient volumes, and suitability for shifting payment models. Most applications
are currently focused on disease diagnosis [25,26]. There has been previous application
of AI preoperative planning combined with PSI in the hip arthroplasty [19], but there has
been limited application in TKA to date.

It is necessary to develop a rapid and accurate TKA planning system with the assis-
tance of artificial intelligence that allows image segmentation and reconstruction, identifi-
cation of feature anatomic landmarks, and planning of component size and orientation as
well as PSI design. The objectives of this study were to develop and construct an artificial
intelligence-based TKA planning system; compare the time needed for CT processing, com-
ponent size planning, and PSI design between artificial intelligence and manual methods;
and clinically validate its accuracy in planning component size and designing the PSI.

2. Materials and Methods

This study was approved by the institutional review board (IRB) of Peking Union
Medical College Hospital (I-23PJ842), and an informed consent waiver was approved
by the IRB. All procedures performed in this study involving human participants were
in accordance with the ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki Declaration and its later amendments or comparable
ethical standards.
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2.1. Development and Construction of the Artificial Intelligence Preoperative Planning and
Patient-Specific Instrumentation System for Total Knee Arthroplasty (AIJOINT)

AIJOINT (Version 2.0, Longwood Valley Technology, Beijing, China) consists of three
modules: CT image processing, component planning, and PSI designing. The CT images
are first segmented to identify the femur and tibia, and feature anatomical landmark points
are automatically identified to determine the anatomical and mechanical axes of the femur
and tibia. The component planning module can be used to plan the size of the component
and the thickness of the resected bone, adjust the position of the component in a three-
dimensional view, determine the post-osteotomy status, and visualize the coverage after
placement of the component. The position and fitting surface of the PSI can also be designed
automatically according to the component planning in the PSI design module.

2.1.1. CT Data Acquisition

Over 600 thousand eligible CT images of the lower limbs from 300 anonymous pa-
tients were included in this study. All patients were scheduled to undergo TKA. The
primary diagnoses included osteoarthritis, rheumatoid arthritis, posttraumatic osteoarthri-
tis, and osteonecrosis. A preoperative standardized CT examination of both lower limbs
was performed, and the patient was placed in the supine position with their lower limbs
extended as far as possible and their patella directed upwards. The range of each CT
scan began from the highest point of the pelvis to the ankle joint at 1 mm intervals
(512 × 512 matrix; 120–140 kV; 200–250 mA). All data were stored in DICOM format in a
cloud-based database.

2.1.2. Image Segmentation

The complete dataset was randomly assigned to a training set, validation set, and
testing set at a ratio of 7:2:1. All images were resized to 512 × 512 pixels. The neural network
structure was developed based on the 3D-UNet. The 3D-UNet includes an encoding section
and a decoding section. The CT images of the entire sequence are input, and the encoding
part contains two 3 × 3 × 3 convolutions per layer, followed by a BN + ReLU, and then
2 × 2 × 2 max pooling with a stride of two. For the decoding part, each layer has a 2 × 2 × 2
up-convolution operation with a stride of two, followed by two 3 × 3 × 3 convolutions
and a BN + ReLU. A shortcut connection, similar to a two-dimensional UNet, provides
high-resolution features for the decoding layer. In the final layer, a 1 × 1 × 1 convolution
reduces the number of output channels to the number of labels and uses softmax as the
loss function (Figure 1).

A comparison of the time taken to segment CT images by 3D-UNet versus manual
segmentation was performed. CT data from 42 patients who underwent TKA at one
hospital between September 2020 and March 2023 were used for both automatic and
manual segmentation. Manual segmentation was performed by one orthopaedic attending
physician and two trained engineers. The results were reviewed by a chief physician.
Cases that did not pass the review were sent back for resegmentation. The time taken for
resegmentation was recorded.

2.1.3. Identification of Feature Anatomic Landmarks

The modified HRNet neural network structure was used to identify anatomical feature
points, including the centres of the femoral head and intercondylar fossa and the medullary
midpoint of the femur and tibia (Figure 1D). These anatomical feature points allow the
anatomical and mechanical axes of the femur and tibia, as well as their angulation, to be
identified. The modified HRNet began with high-resolution feature images as the first
stage, progressively adding high- to low-resolution feature images and transferring the
multiresolution feature images in parallel connections. The parallel feature image of the
latter stage consisted of the feature image of the previous stage and an additional, lower-
resolution feature image, thus enabling the fusion of three different resolution feature
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layers for output. Compared to the original HRNet, this modification minimizes the loss of
features and improves recognition accuracy.

Figure 1. Development of artificial intelligence preoperative planning and patient-specific instrumen-
tation system for total knee arthroplasty (AIJOINT). (A) Network structure for image segmentation.
(B) Segmentation of the femur and tibia. From left to right: images of original computed tomography
(CT), manual segmentation, and automatic segmentation with AIJOINT in osteoarthritis. (C) Perfor-
mance of AIJOINT in automatic segmentation. Dice similarity coefficient (DSC) of the training set
and validation set. Loss of the training set and validation set. (D) Modified HRNet neural network
structure used to identify featured anatomic landmarks. The red points represent the following
automatic identification: the centres of the femoral head and intercondylar fossa and the medullary
midpoints of the femur and tibia.

2.1.4. Preoperative Planning Module

After CT segmentation and identification, a 3D model of the patient’s bone was gener-
ated. The rotation (minimum 0.5◦) and translation (minimum 0.5 mm) of the component
could be adjusted in the coronal, sagittal, and transverse planes to select the largest compo-
nent without anteroposterior or mediolateral overhang and to maximize bone coverage
while avoiding the notch, posterior cruciate ligament attachment, and osteophyte (Figure 2).
Each adjustment allowed real-time observation of the change in thickness of the resected
bone and alignment, as well as a three-dimensional simulation of the postoperative ef-
fect to select the optimum component size and determine the position of the component
depending on the surgeon’s preference for alignment philosophy.

2.1.5. PSI Design Module

After the preoperative plan has been determined, the PSI module can be automatically
matched to the osteotomy plane, and the unique fit and shape can be determined (Figure 3).
The PSI enables osteotomy of both the distal femur and proximal tibia and determines the
rotation of the femoral component. The position of the PSI can also be adjusted (medial and
lateral adjustment of the femur and medial and lateral, anterior and posterior, and rotational
adjustment of the tibia in the horizontal plane) according to the estimated intraoperative
exposure without changing the thickness and rotation of the resected bone. The shape of
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the PSI fitting area can be determined automatically after each adjustment. Thereafter, the
engineer could directly post-process the PSI to meet the requirements of printing.

Figure 2. Prosthesis planning module for artificial intelligence preoperative planning and patient-
specific instrumentation system for total knee arthroplasty (AIJOINT). (A) 3D reconstructed femur,
tibia, and fibula. (B) Preoperative planning of the femoral component. (C) Preoperative planning of
the tibial component. (D) 3D reconstruction for postoperative implantation.

Figure 3. Patient-specific instrumentation design module for artificial intelligence preoperative planning
and patient-specific instrumentation system for total knee arthroplasty (AIJOINT). (A) Design of the
femoral patient-specific instrumentation. The patient-specific instrumentation-guided groove is
automatically parallel to the planned osteotomy plane (yellow planes and lines), and the unique fit
and shape can be automatically determined. (B) Design of the tibial patient-specific instrumentation.
The patient-specific instrumentation-guided groove is automatically parallel to the planned osteotomy
plane (yellow planes and lines), and the unique fit and shape can be automatically determined.

2.2. Clinical Validation of the AIJOINT

From September 2020 to March 2023, a total of 42 patients undergoing TKA for
osteoarthritis underwent AI preoperative component size planning, and 20 of these patients
underwent PSI-guided surgery using AIJOINT. Twenty patients who underwent manual
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TKA were matched according to age, sex, date of surgery, and surgeon; these matched
patients were the conventional group, and there were no significant differences between
the two groups in terms of demographic characteristics. See Table 1 for details.

Table 1. Demographic characteristics.

AIJOINT Group
(n = 20)

Conventional Group
(n = 20) p Value

Age (years) 67.95 ± 5.65 69.90 ± 4.71 0.643
Sex (men/women) 6/14 6/14 1.000
BMI (kg/m2) 25.11 ± 3.53 25.06 ± 3.09 0.630
Side (left/right) 9/11 9/11 1.000
ASA score 2.10 ± 0.72 2.05 ± 0.61 0.618

BMI: body mass index; ASA: American Society of Anaesthesiologists.

2.2.1. Component Size Planning

Three-dimensional planning was performed preoperatively by an engineer and the
surgeon together in accordance with the method mentioned above. The sizes of the AI-
planned femoral component and tibial component for 42 patients were recorded. Two
attending physicians, who were blinded to the final TKA components retrospectively,
templated preoperative anteroposterior and lateral radiographs using acetate templating.
The radiographs were first calibrated for magnification using the ball bearings that were
visible on the radiographs before templating. All the results were reviewed by a chief
physician. The time taken for both methods was recorded.

2.2.2. PSI Design

For the patients in the AIJOINT group, the position of the component and the thickness
of the resected bone were planned using a restricted kinematic alignment (rKA) philosophy,
which was performed by an engineer and the surgeon. Twenty patients had their PSIs
printed preoperatively according to the 3D preoperative plan, along with their femoral
and tibial models, so that the area to be fitted could be determined for intraoperative
reference. All models were made of polymer polyamides and printed in approximately
8 h using rapid prototyping. They were then sent to our hospital to be sterilized and
applied during the operation. The design time, including post-processing of the artificial
intelligence PSI, and the time from CT processing to completion of PSI printing were
recorded prospectively. Mimics-based PSI planning was retrospectively performed for
these patients by an experienced engineer who had not been involved in the design of the
artificial intelligence-based PSI. The timing of the mimics-based PSI design process was
also recorded.

2.2.3. Surgical Technique

All operations were performed by a surgeon with many years of experience in perform-
ing knee arthroplasty. After general anaesthesia, a tourniquet was applied to the affected
limb. A medial parapatellar approach was used. The synovial membrane, remaining
anterior cruciate ligament, menisci, and part of the fat pad were removed. The CT-based
PSI did not account for the thickness of the articular cartilage, and a special curette was
used to remove articular cartilage before the PSI was fixed to its unique position (Figure 4).
The AIJOINT group underwent osteotomy of the distal femur and proximal tibia under the
PSI-guided groove, and the two distal pinholes used to fix the femoral PSI allowed the rota-
tion of the femoral component to be determined. A 4-in-1 cutting block was then inserted
into the distal pinholes for resection of the anterior and posterior condyle and chamfer. In
the conventional group, the osteotomy was completed using conventional instrumentation
in accordance with the principle of mechanical alignment (MA). The appropriate size of the
component was selected intraoperatively with reference to the coverage, cortical contact,
and flexion/extension gap. All the components were cemented cruciate-retaining types.
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The tourniquet was released after the bone cement had solidified. Standard analgesia,
anticoagulant therapy, infection prevention measures, and rehabilitation strategies were
applied to all patients postoperatively. Full-length weight-bearing radiographs of both
lower limbs were taken once the patient was able to straighten the knee.

Figure 4. Surgical procedure of artificial intelligence preoperative planning and patient-specific
instrumentation system for total knee arthroplasty (AIJOINT). (A) Identification of the fitting zones
of the custom cutting guides on the femoral bone model. (B) Identification of fitting zones of the
custom cutting guides on the tibial bone model. (C) Intraoperative view of the application of the
patient-specific instrumentation on the femoral side. (D) Intraoperative view of the application of the
patient-specific instrumentation on the tibial side.

2.2.4. Radiographic and Clinical Outcomes

The medial proximal tibial angle (MPTA), lateral distal femoral angle (LDFA), and
hip–knee–ankle angle (HKA) were measured postoperatively as previously described
and compared to the planned values [12,27]. Measurements were taken and recorded
by two observers who were not involved in the surgery, and patient information was
anonymized. The mean of the two measurements was used for statistical analysis. The
absolute differences between the planned and actual LDFA, MPTA, and HKA were defined
as the outline value. The two observers assessed the final TKA component position as
described by Peek et al.: tibial components were evaluated to determine the presence of
lateral overhang. Femoral components were evaluated according to <50% cortical contact,
anterior femoral notching, anterior femoral gap > 2 mm, and posterior condylar contour not
restored [28]. The duration of tourniquet use, length of stay, and decrease in haemoglobin
values were also recorded. Adverse events included anaemia, deep venous thrombosis
(DVT), incision complications, infection, and complications related to pins.
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2.3. Data Analyses

Statistical analysis was performed with SPSS version 25 (IBM, New York, NY, USA)
and GraphPad Prism version 8 (GraphPad Software, San Diego, CA, USA). The Dice sim-
ilarity coefficient (DSC) and loss function were used to assess the model performance
of AIJOINT in the segmentation of CT images. DSC and loss were calculated every
1000 iterations. All data are reported using standard descriptive statistics, including the
mean ± standard deviation for continuous variables and count for categorical variables.
The outlier of the axis was defined as the difference between the planned component posi-
tion and the postoperative component position. Continuous variables were compared by
the two-sample t test or the Wilcoxon rank-sum test. Categorical variables were compared
using the chi-squared test or Fisher’s exact test. The interobserver reliability of the mea-
surements by 2 independent investigators was measured using the intraclass correlation
coefficient (ICC). A p value < 0.05 was considered statistically significant.

3. Results
3.1. Validation of Artificial Intelligence Algorithms

The DSC and loss curves from the training set and validation set are shown in
Figure 1C. The DSC curves for the training and validation reached convergence in 28,500
and 29,500 iterations, respectively. At 28,500 iterations, the DSC of the training set was 0.901,
and the DSC of the validation set was 0.913 at 29,500 iterations. Both loss curves reached
convergence by 15,800 iterations, and the losses were 0.226 and 0.225 for the training set
and validation set, respectively (Figure 1C).

The average time to segmentation with artificial intelligence was 3.74 ± 0.82 min and
128.88 ± 17.31 min for manual segmentation (p < 0.001). The time needed for AI-based
component size planning was 5.98 ± 1.30 min compared to 5.42 ± 1.27 min for acetate
templating (p > 0.05). In addition, the time needed to design the PSI was 35.10 ± 3.98 min
for the AIJOINT and 159.52 ± 17.14 min for the conventional group (p < 0.001). The
time comparison between AIJOINT processing and conventional processing are shown in
Figure 5. The time from CT processing to the completion of PSI printing was 19.86 ± 2.44 h.

Figure 5. Time comparison between artificial intelligence (AI) processing and manual processing.
AI was faster than conventional methods for CT segmentation and PSI design (p < 0.05) without
increasing the time for size planning. * p < 0.001.

3.2. Accuracy of 3D and Acetate Templating Compared with the Final Component

No femoral or tibial component met the criteria for poor component positioning. There
was no observed lateral overhang of the tibial component or reported femoral components
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< 50% cortical contact, anterior femoral notching, anterior femoral gap > 2 mm, or posterior
condylar contour that was not restored. The size of the actual component can therefore
be used as the gold standard. The accuracies of AIJOINT and acetate templating for the
femoral component were 92.9% and 42.9%, respectively (p < 0.001). The accuracies of AI-
JOINT and acetate templating for the tibial component were 92.9% and 47.6%, respectively
(p < 0.001). For the AIJOINT group, in cases where the template did not correctly predict
the final component size, the margin of error was never more than one size up or down.
See Table 2 for details.

Table 2. Comparison of predicted prosthesis size and implanted prosthesis size.

AIJOINT Group
(n = 42)

Conventional Group
(n = 42) p Value

Femoral Component Size Between Preoperative Planning and Postoperative Results (n,%)
Same 39 (92.9%) 18 (42.9%) 0.001
±1 size 42 (100%) 27 (64.3%) 0.001
±2 sizes 42 (100%) 37 (88.1%) 0.055
Tibial Component Size Between Preoperative Planning and Postoperative Results (n,%)
Same 39 (92.9%) 20 (47.6%) 0.001
±1 size 42 (100%) 28 (66.7%) 0.001
±2 sizes 42 (100%) 36 (85.7%) 0.026

3.3. Accuracy of PSI-Assisted Component Positioning

The outlier for the LDFA in the AIJOINT group and conventional group were 1.45 ± 1.70◦

versus 2.20 ± 1.96◦, with 18 and 16 patients, respectively, having outliers within ±3◦

(p > 0.05). The outlier of the MPTA in the AIJOINT group was 1.60 ± 1.82◦, with 17 patients
having a variance within ±3◦. The mean outlier of the MPTA in the conventional group
was 2.65 ± 1.84◦, with 15 patients having a variance within ±3◦. However, the differences
were not statistically significant (p > 0.05). The mean outlier of the HKA in the AIJOINT
group and conventional group was 1.55 ± 1.43◦ versus 3.35 ± 2.56◦ (p < 0.01), with 18 and
10 patients (90%), respectively, having outliers within ±3◦. See Table 3 for details. The ICCs
of the LDFA (0.93; 95% confidence interval (CI), 0.86–0.96), MPTA (0.82; 95% CI, 0.69–0.90),
and HKA (0.82; 95% CI, 0.67–0.90) were satisfactory (ICC > 0.75).

Table 3. Comparison of planned prosthesis position and implanted prosthesis position.

AIJOINT Group
(n = 20)

Conventional Group
(n = 20) p Value

Outlier of LDFA (◦) 1.45 ± 1.70 2.20 ± 1.96 0.204
Outlier of MPTA (◦) 1.60 ± 1.82 2.65 ± 1.84 0.078
Outlier of HKA (◦) 1.55 ± 1.43 3.35 ± 2.56 0.010
Outlier of LDFA ≤ 3◦(n, %) 18(90.0%) 16(80.0%) 0.661
Outlier of MPTA ≤ 3◦(n, %) 17(85.0%) 15(75.0%) 0.695
Outlier of HKA ≤ 3◦(n, %) 18(90.0%) 10(50.0%) 0.014

LDFA: lateral distal femoral angle; MPTA: medial proximal tibial angle; HKA: hip–knee–ankle angle.

3.4. Perioperative Outcomes

There was no significant difference between the two groups in terms of tourniquet
time (65.10 ± 6.77 min vs. 74.55 ± 5.86 min, p > 0.05) or length of stay (8.15 ± 1.35 days
vs. 7.60 ± 2.06 days, p > 0.05). The Hb decrease was 13.50 ± 5.78 g/L in the AIJOINT
group and 18.85 ± 10.32 g/l in the manual group (p < 0.05). There were no pin-related
complications in the AIJOINT group, but delayed incision healing was observed in one
patient in the manual group. No thrombosis or infectious complications occurred in either
group (p > 0.05). See Table 4 for details.
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Table 4. Surgical-related parameters.

AIJOINT Group
(n = 20)

Conventional Group
(n = 20) p Value

Tourniquet time (min) 65.10 ± 6.77 74.55 ± 5.86 0.719
Length of stay (days) 8.15 ± 1.35 7.60 ± 2.06 0.491
Hb decreased (g/L) 13.50 ± 5.78 18.85 ± 10.32 0.029
DVT (n) 0 0 1.000
Incision complications (n) 0 1 0.999
Infection (n) 0 0 1.000
Pin-related complications(n) 0 - -

Hb: haemoglobin; DVT: deep vein thrombosis.

4. Discussion

We developed an artificial intelligence preoperative planning and PSI system for TKA
(AIJOINT) that can accurately predict component size, and in addition, its designed PSI
can improve the accuracy of component orientation and reduce blood loss. AIJOINT was
significantly faster than the manual methods in terms of CT processing, component size
planning, and PSI design. The overall time from CT processing to PSI printing was less
than 24 h.

Accurate segmentation of CT data is essential for the preoperative planning of TKA,
which can provide references for the anatomical landmarks and axes of the knee. In addi-
tion, manual processing of CT image data is time-consuming and laborious, which affects
the efficiency of CT-based preoperative planning. With the development of artificial intelli-
gence and machine learning for the automatic segmentation of medical images, various
algorithms have effectively improved segmentation efficiency [22,29], and a convolutional
neural network of 3D-UNet was applied in this study. A 3D-UNet performs well for
medical image segmentation because it retains better detail and edge information when
processing large medical images. The convolutional neural network segmentation model
treats each patient’s CT image as an array unit, utilizing GPU acceleration to simultaneously
process multiple layers of data. In contrast, manual segmentation requires layer-by-layer
segmentation, resulting in lower efficiency [30,31]. Unlike traditional 2D convolutional
neural networks, the 3D convolutional neural network employed in this study accounts for
spatial and contextual information between CT slices. This enables the model to capture
three-dimensional feature information more accurately, leading to more precise segmenta-
tion results. In this study, the 3D-UNet-based algorithm significantly improves the speed
and accuracy of segmentation. For the identification of feature anatomic landmarks, the
modified HRNet enables the output of multiple feature layers with different resolutions to
be fused. The loss of features can be reduced to a greater extent, and recognition accuracy
can be improved.

The appropriate component size for patients undergoing total knee arthroplasty is
critical to postoperative function and long-term survival. An oversized femoral component
can cause overstuffing of the patellofemoral joint, affecting knee flexion and patellar track-
ing and causing anterior knee pain [32,33]. Undersizing the femur may result in femoral
notching, which will increase the risk of periprosthetic fracture [34]. An oversized tibial
component could cause irritation of the knee tendons and ligaments, causing postoperative
pain, while an undersized tibial component could cause subsidence of the tibial tray [35].
Thus, precise preoperative planning is essential for a safe and effective outcome and has
been shown to reduce the operative time and sterilization cost [36]. However, preop-
erative planning can also be challenging. Conventional two-dimensional preoperative
planning has accuracy rates as low as 28 to 48% for femoral components and 37 to 55%
for tibial components [8,9]. The reason for this may be related to magnification incon-
sistencies, difficulty in obtaining standard radiographs, complex anatomies in patients,
and the two-dimensionality of X-ray images. CT-based 3D planning provides an arbitrary
viewing perspective, allowing the position of the component to be viewed dynamically
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and adjusted in multiple dimensions. Information such as the thickness of the resected
bone and the angle of the components can also be provided. Pietrzak et al. found that
preoperative three-dimensional templating for robot-assisted TKA was more accurate than
two-dimensional digital templating [11]. Preoperative femoral component 3D templating
and retrospective blinded two-dimensional templating accuracies were 96.6% and 52.9%,
respectively. The tibial component 3D and two-dimensional templating accuracies were
93.1% and 28.7%, respectively. The results of our study were similar to these results. In our
study, the accuracy of the AI-based femoral and tibial components was 92.9%, which was
significantly better than that of acetate templating. In the AIJOINT software, the simulation
of the size and orientation of the component and its relationship to the surrounding bone
can be visualized in the coronal, sagittal, and axial planes, allowing the surgeon to adjust
the plan in more dimensions.

Accurate lower limb alignment reduces uneven wear of polyethylene bearings and
aseptic loosening of the component, prolongs component survival, and positively affects
postoperative clinical outcomes [37,38]. The incidence of misalignment of the component
after manual TKA has been reported to be as high as 20–30% [39,40]. Various digital tech-
nologies for orthopaedic surgeries, such as navigation, robot-assisted surgery, and PSI, have
been used to improve the accuracy of component placement. Navigation and robot-assisted
surgery can significantly improve surgical accuracy, but they are also disadvantageous
in that they are expensive and prolong the operation time, so their generalizability is
somewhat limited [14,15]. There is still controversy regarding the use of PSI in improv-
ing the accuracy of component alignment. Vide and Huijbregts et al. have shown that
a PSI significantly improved osteotomy accuracy when compared to conventional TKA
techniques [41,42]. It has also been suggested that PSI-TKA does not differ significantly
from conventional TKA in terms of coronal and sagittal alignment, particularly on the
tibial side [17,43,44]. We also found that a PSI was only advantageous for the overall lower
limb alignment but not on the femoral or tibial side. The reasons for this may be related
to the small sample size of the study and that the PSI was not perfectly matched due to
the influence of soft tissue and residual cartilage, so further improvement of the design of
the PSI is still needed in the future. However, compared to conventional surgery, surgery
with a PSI can reduce the operative time and blood loss [45,46]. In addition, complex CT
processing and PSI design have long processing times, even requiring 4–8 weeks of preop-
erative preparation [17,18]. However, in our study, with the help of artificial intelligence
and machine learning for CT segmentation and preoperative planning, this process can be
reduced to less than 24 h.

The limitations of this study are as follows: 1. First, despite our use of cohort matching,
potential bias remains due to the inherent limitations of a retrospective study. 2. The sample
size is small, which limits our ability to find discrepancies in some indicators, such as the
accuracy of the femoral or tibial component orientation. 3. The alignment philosophy
that was used differed between the two groups. However, MA is the gold standard for
alignment and is easier to achieve the target alignment manually. 4. We only evaluated
the alignment on the coronal plane, and alignment was not evaluated on the sagittal and
transverse planes due to the incompleteness of the data. 5. Due to the limitations of the
retrospective study, the functional outcomes of the patients were not recorded.

5. Conclusions

The artificial intelligence-based AIJOINT addresses the long-standing issue of exces-
sive design time for 3D-printed patient-specific instrumentation in knee arthroplasty, with
an overall time from CT processing to 3D-printed patient-specific instrumentation of less
than 24 h. AIJOINT accurately predicts the component size and improves the accuracy
of lower limb alignment in TKA patients. As artificial intelligence has been increasingly
used in the field of medicine, there is an increasing demand for precision, intelligence,
and individualization in arthroplasty, and AIJOINT is a significant complement. In addi-



Bioengineering 2023, 10, 1417 12 of 14

tion, 3D-printed metal implants or biodegradable implants might also benefit from this
technique in the future.
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