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Abstract: The surge of diabetes poses a significant global health challenge, particularly in Oman and
the Middle East. Early detection of diabetes is crucial for proactive intervention and improved patient
outcomes. This research leverages the power of machine learning, specifically Convolutional Neural
Networks (CNNs), to develop an innovative 4D CNN model dedicated to early diabetes prediction.
A region-specific dataset from Oman is utilized to enhance health outcomes for individuals at risk
of developing diabetes. The proposed model showcases remarkable accuracy, achieving an average
accuracy of 98.49% to 99.17% across various epochs. Additionally, it demonstrates excellent F1 scores,
recall, and sensitivity, highlighting its ability to identify true positive cases. The findings contribute
to the ongoing effort to combat diabetes and pave the way for future research in using deep learning
for early disease detection and proactive healthcare.

Keywords: deep learning; convolutional neural networks (CNNs); k-nearest neighbours (KNN);
diabetes type II

1. Introduction

Diabetes, a chronic metabolic condition characterised by persistent hyperglycaemia, is
becoming a major global health concern. This condition profoundly impacts societies and
healthcare systems around the globe, causing both economic and societal disruptions [1,2].
The situation is particularly critical in Oman and the Middle East at large, where the preva-
lence of diabetes has shown an alarming increase, leading to significant socioeconomic
burdens [3]. The importance of early diabetes detection is well established, as this condition
often goes unnoticed until complications develop, underscoring the need for proactive de-
tection and early intervention. Traditional diagnostic methods for diabetes, such as fasting
plasma glucose, oral glucose tolerance tests, and haemoglobin A1c tests, are reliant on the
symptomatic manifestation, typically presenting in the disease’s more severe stages [1].

The recent breakthroughs in machine learning and deep learning offer a transforma-
tive approach to medical prognosis and diagnosis, unlocking unprecedented prospects
for disease prediction, including diabetes. Among the novel technologies, Convolutional
Neural Network (CNN), a subset of deep learning algorithms, have displayed significant ef-
ficacy. CNNs, along with other machine learning models, can process and analyse extensive
medical data, identifying intricate patterns and correlations that can be challenging for hu-
man clinicians to perceive. These models can potentially anticipate early signs of diabetes,
possibly leading to earlier diagnosis, treatment, and enhanced patient outcomes [1–3].

With the promising potential of machine learning in diagnosing diabetes, this research
aims to put forth an innovative Convolutional Neural Network model architecture dedi-
cated to early diabetes prediction. The model will make use of a newly collected clinical
dataset from Oman, aspiring to achieve high accuracy in predicting type 2 diabetes. By
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focusing on a region-specific dataset, the study intends to enhance health outcomes for
those at risk of developing diabetes in Oman and the wider Middle East [4–6].

This research aims to contribute significantly to the worldwide effort to fight diabetes
through thorough model development, validation, and performance optimisation. The
findings can potentially affect healthcare providers, policymakers, and researchers, with the
goal of strengthening early detection strategies and reducing the severe health implications
of late-stage diabetes. In the end, the newly proposed CNN model can be a promising tool
for diagnosing diabetes, offering critical insights for personalised and proactive diabetes
management.

2. Related Study Overview: CNNs in Disease Prediction

Convolutional Neural Networks (CNNs) have become a pivotal tool in disease predic-
tion, especially in the realm of diabetes, propelled by the advancements in machine learning
and deep learning technologies. Primarily recognised for their prowess in image recogni-
tion, CNNs’ application in health informatics has witnessed exponential growth [7,8].

Studies indicate their promising efficacy. For instance, one study demonstrated CNNs’
superior capability in forecasting diabetes remission post-gastric bypass surgery compared
to conventional indices [9]. Another used ResNet CNN models in conjunction with numer-
ical data and images, registering prediction accuracies ranging from 77.37% to 90.04% on
the PIMA Indian dataset [10]. In another intriguing approach, a hybrid of CNNs and Long
Short-Term Memory (LSTM) models showcased high accuracy in diabetes prediction [11],
though the suggestion was to further integrate diverse classifiers for enhanced outcomes.

Beyond sheer prediction, CNNs also exhibited proficiency in forecasting blood glucose
levels [12]. In a comparative analysis, a CNN model outshone LSTM models in this
regard [13]. Yet, challenges arise in long-term predictions, emphasizing the necessity for
expansive datasets and effective missing data management strategies. Ongoing studies are
focusing on harnessing different activation functions with CNNs for potential optimisation
in diabetes predictions [14].

In broader epidemiological scenarios, CNNs have demonstrated aptitude in predicting
diseases like influenza-like illness (ILI) [15] and even in classifications within imbalanced
datasets with missing values, as observed in a diabetes mellitus study that utilized a
Deep 1D-Convolutional Neural Network (DCNN) [16]. Their versatility is further evinced
in applications such as heart disease predictions [17,18] and in diagnostic processes for
ailments like COVID-19 using medical imaging [18].

Their relevance is not just confined to disease diagnosis. Remarkably, CNNs have
ventured into environmental health sectors, exhibiting promise in water quality monitoring
by interpreting 2D fluorescence spectra [19].

In sum, CNNs have undeniably marked their presence across diverse applications
ranging from computer vision to medical image analysis [20]. Their promise in disease
prediction, most notably diabetes, is evident. Yet, the journey towards harnessing their full
potential mandates further rigorous research, aiming for refinement and adaptability to
ensure maximal contributions to the healthcare sector.

3. Materials and Methods

The methodology followed in this study is a systematic sequence of events designed to
predict diabetes using Convolutional Neural Network (CNN). A specific dataset from Oman
has been utilized to train, validate, and test the model. The methodology includes steps such
as loading and pre-processing the dataset and designing a custom 4D CNN architecture.

3.1. Dataset

The dataset pivotal to this research was meticulously assembled, validated, and
prepared using diabetes-related data in Oman, in adherence to strict ethical guidelines [21].
The process of diabetes screening system workflow is vividly illustrated in Figure 1.
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3.1.1. Data Collection Process

Our data collection procedure involved an extensive collaboration with local diabetes
experts and securing necessary approvals from the Ministry of Health, specific health
departments, and participating Regional Directorates of Health [21]. The data, drawn
from 41 healthcare institutions—including 34 primary healthcare centres, 3 secondary care
Extended Health Centres, and 4 local hospitals—highlights the expansive and in-depth
nature of our research [22,23].

3.1.2. Inclusion and Exclusion Criteria

The initial pool consisted of potential subjects, all above the age of 20, as per the recent
inclusion criteria, even though standard screenings are more prevalent in individuals over
the age of 40. The subjects underwent a detailed screening process based on predetermined
inclusion and exclusion criteria, ensuring the dataset’s integrity and relevance for our study.

a. Inclusion Criteria:

• Aged 20 years and above.
• No prior diabetes diagnosis.
• Unscreened for diabetes in the past 3 years

b. Exclusion Criteria:

• Individuals with certain pre-existing conditions (as detailed in Table 1).
• Those already screened for diabetes at other health centres within the last 3 years.

These stringent criteria ensured the dataset’s robustness, accuracy, and relevance in
exploring influential factors affecting diabetes outcomes in the Omani population [21,22].
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Table 1. Diabetes Screening Eligibility Criteria.

Section Category/Sub-Category Details or Criteria

Eligibility for Screening Diseases Present If “Yes” to D.M, HTN, CKD: Not eligible
for screening.

Screened in Last 3 Years
If “Yes” to screening at any other health
centre in the last 3 years: Not eligible for
screening.

Outcome of Screening -
If “Yes” to any of the above criteria:
Excluded from screening. If “No” to both
criteria: Proceed to screening.

Family and Personal History Family History
Obesity, Hypertension, Dyslipidemia, DM,
CKD, Premature Cardiovascular Death (M:
< 55, F: <65)

Personal History

Physical inactivity, Ethanol, Tobacco
(Cigarettes, Sheesha, Non-smoked
tobacco), Nephrotoxic Drugs (NSAIDs,
Analgesics, Diuretics, Antibiotics, Herbal)

Reason for Referral to GP

1. Lifestyle Risk Factors Physical inactivity, smoking, ethanol

2. Obesity Metrics BMI ≥ 25 Kg/m2 and/or Waist
Circumference (M: ≥ 94cm, F: ≥ 80cm)

3. Blood Pressure Mean B.P. > 130 mmHg systolic and/or
Mean B.P. ≥ 85 mmHg diastolic

4. Impaired Blood Sugar FPG (5.6 to < 7.0 mmol/L) or RPG
(5.5 to < 11.1 mmol/L)

5. Diabetes Diagnosis FPG ≥ 7.0 mmol/L or RPG ≥
11.1 mmol/L

6. Cholesterol Level Serum Cholesterol > 5.2 mmol/L

3.1.3. Data Validation Process

The Al Shifa System, a healthcare information system prevalent in Oman, was critical
in our data validation process [23]. Accessible across over 200 healthcare institutions [24],
it played a vital role in the rigorous validation of our manually collected data. The system
served as a crucial reference point, validating each patient’s clinical results, and filled
potential data gaps, enhancing the dataset’s comprehensiveness [23,25].

3.1.4. Dataset Composition and Feature Selection

Our final dataset encompassed 13,224 records, spanning 13 pivotal variables such as
age, weight, height, BMI, and more, as illustrated in Table 1. These records were digitally
formatted and loaded into MATLAB version 2023b software. The feature selection process
was particularly stringent, guided by the criteria defined by Oman’s Ministry of Health for
diabetes diagnosis. These features, selected under the supervision of an expert diabetes
physician, included factors crucial to diagnosing and managing diabetes [26].

3.1.5. Dataset Utilization and Analysis

For detailed analysis, we converted categorical data into numeric form, which proved
essential for various types of analyses, as shown in Table 2. The selected features and
subsequent analyses provide an exhaustive insight into the determinants influencing
diabetes outcomes, enabling a deeper understanding of the patient demographic and
highlighting gaps in existing research [21,26].
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Table 2. Feature selection.

Feature Description Data Type

Age Age of the patient (20–65
years) Double

Weight Weight of the patient Double
Height Height of the patient Double
BMI Body Mass Index Double
WC Waist Circumference Double
T_Cholesterol Total Cholesterol Double
BP Blood Pressure Double
RPG Random Plasma Glucose Double
FPG Fasting Plasma Glucose Double
FH Family History of Diabetes Double
PH Personal History of Diabetes Double
Gender Encoded Encoded Gender of the patient Double
Outcome Diabetic or not Double

Figure 2 provides a visual summary of our dataset distribution by gender, which is
crucial for understanding the gender-wise prevalence of diabetes in the studied population.
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The dataset, curated and finalized after a rigorous process of validation and screening,
is comprehensive and reliable for the study’s objectives. The careful selection of participants,
adherence to the inclusion and exclusion criteria, and the utilization of a robust data
validation system ensure the dataset’s accuracy and relevance. This approach not only
contributes to the current research on diabetes in Oman but also sets a methodological
standard for future studies in similar contexts. The comprehensive nature of these data,
starting from individuals aged 20, highlights the study’s thoroughness and its potential to
guide future preventive and clinical strategies for diabetes management [21,26].

3.2. Exploratory Data Analysis (EDA)

Visualizing data is paramount in exploratory data analysis. It gives insights into data
distribution, relationships between variables, and any potential anomalies. Below, we delve
into different visualization techniques applied to our dataset.
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3.2.1. Statistical Summary

A statistical summary provides an insight into the key characteristics of each variable in the
dataset. This summary encompasses range, central tendencies (like median), and any potential
missing values. The dataset under examination, as summarized in Figures 3 and 4, offers a
comprehensive collection of health metrics.
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This spans from general health indicators like age (with a range from 4 to 113 years
and a median of 43) and weight (ranging between 0 and 186 with a median at 74) to BMI,
which has a median of 29, albeit with 137 missing values. Further diving into specialized
health markers, we have measurements like random plasma glucose, which interestingly
has 3793 missing data points, and a median value of 5.47.

Waist circumference and total cholesterol also contribute to the dataset’s breadth, with
respective medians of 95.354 and 5.01. Furthermore, the dataset comprises data on blood
pressure, with values spanning from 2 to 199 and a median of 80. However, it is essential to
note that 12 values in this variable are missing.

The dataset also integrates personal and family medical histories, each with its own
set of missing data (84 and 102 missing values, respectively), suggesting that some patients
might not have disclosed or had access to this information. In terms of gender distribution,
the dataset employs an encoding mechanism, with 0 representing males and 1 representing
females. Finally, the ‘Outcome’ variable, presumably indicating the result or diagnosis,
categorizes data into either 0 or 1, though the specifics of these categories were not provided
in the summary [27].

One key observation from Figure 4 is the presence of missing data across various
variables. This can potentially impact the accuracy and reliability of any predictive mod-
elling drawn from this dataset. Handling such gaps, through techniques like imputation,
becomes pivotal to ensure robust data analysis. The extensive range observed in variables
such as ‘Age’ and ‘Blood Pressure’ underscores the diverse patient cohort represented
in this dataset, which is advantageous for establishing a comprehensive and inclusive
predictive model.

3.2.2. Histograms

Histograms divide data into bins and visualize the frequency of observations within
each bin, helping identify the shape of the data distribution. For example, a histogram for
‘Age’ might reveal a larger number of younger patients compared to older ones, which
could be important for the subsequent modelling phase. As presented in Figure 5, we
visualize the distribution of each variable to understand their spread and identify any
potential outliers.
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3.2.3. Scatter Plots

Scatter plots are foundational in visualising relationships between variables. In cases
where we want to examine the relationship across three metrics, a 3D scatter plot is
employed. By plotting ‘Age’, ‘Weight’, and ‘Height’ on a 3D plane, we can uncover the
clusters of data points that share similar characteristics, the potential outliers that deviate
from expected trends, and the interactions between the variables that might not be evident
in two-dimensional plots.

Rotating and examining this plot from multiple perspectives allows for a more com-
prehensive understanding of the variables’ relationships. See Figure 6.
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3.2.4. Correlation Matrix

Correlation offers insights into the relationship between variables. We computed a
correlation matrix for our dataset to understand the pairwise association of columns. This
matrix, visualized using a color-coded grid, indicates the correlation strength and direction
between pairs of variables. Highly correlated features may be indicative of redundant
information, vital when choosing features for model building. See Figure 7. Each cell in the
grid corresponds to a pair of variables, and the colour of the cell represents the strength
and direction of the correlation between those variables. The x and y axes are labelled with
the variable names for clarity. By examining the colour of each cell, we can quickly identify
pairs of variables that are strongly correlated.
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3.2.5. Bar Charts

Bar charts effectively visualize categorical data by using rectangular bars to depict
category frequency. To understand the prevalence of various health conditions, we em-
ployed a bar chart in Figure 8. By aggregating the count of conditions like ‘RiskFactor’,
‘BMI_Condition’, and ‘WC_Condition’, the resulting chart offers a concise visual depiction
of condition distribution. This helps in recognizing dominant conditions in the dataset.

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 22 
 

 
Figure 7. Correlation matrix. 

3.2.5. Bar Charts 
Bar charts effectively visualize categorical data by using rectangular bars to depict 

category frequency. To understand the prevalence of various health conditions, we em-
ployed a bar chart in Figure 8. By aggregating the count of conditions like ‘RiskFactor’, 
‘BMI_Condition’, and ‘WC_Condition’, the resulting chart offers a concise visual depic-
tion of condition distribution. This helps in recognizing dominant conditions in the da-
taset. 

 
Figure 8. Bar chart of conditions. 

3.3. Pre-Processing the Dataset for CNN Model Training 
3.3.1. Data Cleaning and Limit Application 

Our pre-processing commenced by focusing on key metrics such as “Age”, “Weight”, 
and “Height”. We established upper thresholds for each of these, grounded in domain 

Figure 8. Bar chart of conditions.

3.3. Pre-Processing the Dataset for CNN Model Training
3.3.1. Data Cleaning and Limit Application

Our pre-processing commenced by focusing on key metrics such as “Age”, “Weight”,
and “Height”. We established upper thresholds for each of these, grounded in domain
knowledge. For instance, an age beyond 120 years would be regarded as an outlier. Data
exceeding these set limits were flagged and effectively labelled as unavailable or ‘NaN’.
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3.3.2. Addressing Missing Data

Missing data are a persistent challenge in real-world datasets, and our collection was
no exception. We used the ‘ismissing’ function to detect these absences, yielding a logical
map pinpointing the gaps. Each column’s data voids were subsequently summarized and
logged for reference (See Table 2). A systematic examination allowed us to identify and
index these absences, with a comprehensive summary of our findings presented in Table 2.

To tackle this issue, the K-Nearest Neighbours (KNN) method was chosen. The MATLAB’s
‘fillmissing’ function, paired with the ‘KNN’ parameter, served our purpose, fortifying the
data’s internal structure and ensuring analytical veracity. The KNN algorithm estimates missing
values by comparing them to similar records in the dataset. This is especially effective when
data exhibit strong patterns or correlations between variables [28,29]. For example, if one were
missing the weight data for a particular entry but knew the height and age, the KNN method
would find other records with similar height and age and use their weight data to estimate the
missing value [30,31].

Take, for instance, a missing value in the “Weight” column for an individual aged
25. Leveraging KNN, the system would reference weights of other 25-year-olds within
the dataset, determining a plausible estimate grounded in this comparative context. This
methodology truly shines when data are characterized by discernible patterns or notable
correlations between variables [32]. It not only preserves, but enhances, the inherent
structure and relationships within the dataset, ensuring analyses and predictive modelling
are both accurate and reliable [32,33].

3.3.3. Removing Outliers with the Z-Score Method

Outliers can distort analyses, leading to potentially misleading conclusions. We turned
to the Z-score method for the effective identification and removal of these anomalies [34]. Z-
scores represent how many standard deviations a data point is from the mean. For instance,
a Z-score of 2 indicates the data point is two standard deviations above the average.

We decided that data points with an absolute Z-score greater than 3 were outliers.
This threshold is standard in many domains, ensuring data within a reasonable range of
deviation are retained. Once outliers were identified, they were flagged and then addressed
using the previously mentioned KNN method to preserve the integrity of the dataset.

3.3.4. Feature Processing

Following data pre-processing, specific clinical features are processed to generate new
binary features that aid in predictive accuracy. The following feature processing operations
were performed:

• Risk Factor (PH): The attribute “PH” (personal history) was converted into a binary
variable indicating whether the value is greater than or equal to 3.

• BMI and Waist Circumference: The attributes “BMI” and “WC” (waist circumference)
were converted into binary variables indicating whether the values are above certain
thresholds (BMI ≥ 25 kg/m2, WC (M) ≥ 94cm, WC (F) ≥ 80cm).

• Mean Blood Pressure: The attribute “BP” (blood pressure) was converted into a binary
variable indicating whether the value is greater than or equal to 85 mmHg diastolic.

• Abnormal Blood Sugar: The attributes “FPG” (fasting plasma glucose) and “RPG”
(random plasma glucose) were converted into a binary variable indicating whether
the values fall within specific ranges (5.6 ≤ FPG < 7 or 5.5 ≤ RPG < 11.1).

• Cholesterol: The attribute “T_Cholesterol” (total cholesterol) was converted into a
binary variable indicating whether the value is greater than or equal to 5.2 mmol/L.

3.3.5. Target Variable Encoding

The target variable “Outcome” was initially categorical. To enable training the CNN
model, it was converted into numeric labels using the grp2idx function.
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3.3.6. Post-Processing Remarks

Through adept application pre-processing approaches, our dataset emerged more
realistic and ready for model training. The KNN method ensured missing values were
handled judiciously, retaining the inherent relationships in the data. Concurrently, the
Z-score method was instrumental in identifying and mitigating anomalies. The trans-
formed dataset can be visualized in Figure 9, depicting its distribution following these
pre-processing efforts.
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3.4. Novel 4D CNN Model for Diabetes Prediction

The advent of our 4D Convolutional Neural Network (CNN) model for diabetes
prediction marks a significant leap forward in the fusion of machine learning with health-
care analytics. This model diverges from traditional CNN applications by adopting a
four-dimensional (4D) input structure, a design that is succinctly illustrated in Figure 10.
The “4D” designation refers to an input array with dimensions of [height, width, depth,
num_samples], where height and width are minimized to 1, thereby accentuating the
depth, indicative of the number of features in the dataset, and num_samples, denoting the
dataset’s instance count.
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The architectural rationale of our 4D CNN model, as visually depicted in Figure 10, is
carefully crafted to balance computational efficiency with the ability to process complex
data patterns. The model’s convolutional layers, equipped with [1,1] kernels and 16 filters,
perform point-wise convolutions—a technique that is crucial for extracting intricate patterns
and interactions within the dataset, vital for discerning signs indicative of diabetes. The
fully connected layers, arranged in a descending neuron count (128, 64, 32, 16, 8, 4, 2),
simplify the data into a more abstract yet informative representation, crucial for effective
diabetes prediction [35,35].

Integral to the model’s design are the Rectified Linear Unit (ReLU) activation functions.
These layers introduce necessary non-linearity, enabling the model to adapt to the complex,
non-linear relationships found within medical datasets, thus enhancing its predictive
accuracy [36]. The architecture culminates with a softmax layer, which computes the
probability of each class, followed by a classification layer that assigns each input to the
class with the highest probability. This final step is crucial for transforming the processed
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data into tangible predictions, categorizing each instance into diabetic or non-diabetic
classifications [37].

In contrast to other existing models for diabetes prediction that typically employ
traditional machine learning approaches [38], utilize Lasso regularization for feature se-
lection [39], or combine CNN with other deep learning models such as Bi-LSTM [34],
our model stands out. It utilizes a 4D CNN with a novel architectural design, providing
an efficient, effective, and straightforward method for predicting diabetes from complex,
multivariate data.

The 4D CNN model’s commitment to CNN methodologies, despite its innovative
adaptation to a 4D input structure, is crucial to its capability to handle complex datasets,
a common occurrence in medical analytics. Each feature in the input data is treated as a
distinct dimension, akin to how an image-based CNN interprets colour channels. This
approach enables a comprehensive analysis of the data and an effective extraction of
pertinent features, underlining the model’s alignment with traditional CNN principles, yet
tailored for non-image data applications like diabetes prediction [40].

The 4D CNN model exemplifies a significant development in diabetes prediction.
Leveraging advanced neural network architecture to effectively process intricate multivari-
ate data, its strategic design choices, encompassing both the number and types of layers,
are aptly aligned with the complexities inherent in diabetes-related data. This model not
only demonstrates the versatility of CNNs in handling diverse data formats but also opens
new pathways in predictive analytics for diabetes, highlighting the expansive potential of
deep learning technologies in healthcare.

3.5. Training and Validation of the Proposed 4D CNN Model

The training and validation phases for the proposed 4D Convolutional Neural Net-
work (CNN) model involved splitting the dataset into discrete subsets for training, valida-
tion, and testing. We employed MATLAB’s inbuilt capabilities to carry out this division,
thereby ensuring consistency in results across various runs [41].

For this division, we utilised the ‘cvpartition’ function with a ‘Holdout’ parameter
value set at 0.2. This partitioning strategy allows for 20% of the data to be held back
for validation and testing purposes, whereas the remaining 80% is utilized for training.
This Holdout validation method, originally established by Kohavi in 1995, is a frequently
adopted approach in machine learning for model development [42]

The training data (XTrain, YTrain) incorporates features and labels from the primary
data (X, Y), respectively. The residual 20% of data is then evenly divided into validation
(XValidation, YValidation) and testing (XTest, YTest) sets. It is critical to note that the
labels for the validation and testing sets were converted to a categorical format to ensure
compatibility with the CNN.

The next step involved reshaping the feature data to match the format required by the
CNN model, thereby creating a 4D matrix. This restructuring procedure guarantees that
each sample in the training, validation, and testing datasets is perceived as an independent
channel.

Our proposed CNN model comprises multiple layers such as 2D convolutional layers,
rectified linear unit (ReLU) layers, fully connected layers, a softmax layer, and a final
classification layer. The model was constructed using MATLAB’s ‘trainNetwork’ func-
tion, which specifies Stochastic Gradient Descent with momentum (‘sgdm’) for model
optimization [36].

To determine the optimal number of epochs for model training, we tested a range of
values—10, 20, 30, 50, 100, 150, and 200. For each epoch value, the CNN was trained, and
the performance was visualized with MATLAB’s built-in plotting functionality. To avoid
overfitting and ascertain the best epoch for the model, we employed the validation data
(XValidation, YValidation) during the training phase [37].

After the models were trained, they were tested using unseen testing data, which
enabled an unbiased evaluation of their performance. This procedure led to the computa-
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tion of several performance metrics such as accuracy, F1 score, recall, and sensitivity, thus
offering a comprehensive understanding of the model’s classification abilities.

The 4D CNN model outlined was trained and validated using a sequence of defined
steps. The procedures involved in this process were thorough, ensuring data integrity and
reliable outcomes.

4. Results of the 4D CNN Model Evaluation

Within the realm of deep learning, our introduced 4D Convolutional Neural Network
(4D CNN) model emerges as a sophisticated computational construct tailored specifically
for the predictive diagnosis of Type 2 diabetes mellitus (DM). The model was trained,
validated, and tested on samples consisting of 10,580, 1322, and 1322 subjects, respectively.
One of the primary challenges in the field of medical prediction lies in the careful selection
of evaluation metrics. In a typical screening scenario, accuracy might not adequately
capture a model’s diagnostic efficacy, especially when a large proportion of the screened
population is non-diabetic. A model could, in theory, attain high accuracy merely by
predicting most negative outcomes. Recognizing this potential pitfall, our assessment
framework pivots on more informative metrics like sensitivity and false referral rates to
provide a nuanced understanding of the model’s performance.

4.1. Probing the Confusion Matrix

Table 3 offers a granular view of our model’s predictions against actual classifications
on the test data.

Table 3. Confusion Matrix for the Test Data.

Predicted Non-Diabetic Predicted Diabetic

Actual: Non-diabetic 1220 0
Actual: Diabetic 10 92

From the confusion matrix, we extract crucial diagnostic metrics. Sensitivity, which
is of paramount importance in a pre-screening context, stands at approximately 90.2%,
calculated as:

Sensitivity =
True Positives

True Positives + False Negatives
=

92
92 + 10

≈ 90.2%

This high sensitivity indicates that out of all of the diabetic subjects, our model
successfully identified about 90.2%. Remarkably, the false referral rate was 0%, computed
as

False Referral Rate =
False Positives

True Negative + False Positives
=

0
1220 + 10

= 0%

This implies that there were no instances where non-diabetic subjects were incorrectly
classified as diabetic, thereby eliminating the risk of unnecessary medical follow-ups and
associated expenditures.

4.2. Epoch-Driven Performance Analysis

The effectiveness of a Convolutional Neural Network (CNN), specifically our novel 4D
CNN model, is deeply rooted in the number of its training epochs. Each epoch represents a
full cycle through the entire training dataset. This section delves into the nuanced impact of
epoch variations on the model’s performance, elucidating its learning trajectory and diag-
nostic precision in the context of Type 2 diabetes mellitus (T2DM). Table 4 below illustrates
the performance metrics across diverse epochs, offering a quantitative perspective on the
model’s evolving capability.
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Table 4. Epoch-wise Performance Metrics of the 4D CNN Model.

Epochs Accuracy (%) F1 Score (%) Recall (%) Sensitivity (%)

10 98.487 89.13 80.392 100
20 99.168 94.359 90.196 98.925
30 98.638 90.323 82.353 100
50 98.941 92.929 90.196 95.833
100 99.168 94.359 90.196 98.925
150 99.092 93.878 90.196 97.872
200 98.638 91.000 89.216 92.857

Accuracy, a ubiquitous metric, measures the proportion of total predictions that the
model gets right, considering both positive and negative classifications. While accuracy is
undeniably essential, its potential pitfalls, especially in imbalanced datasets, necessitate
complementary metrics. Our model’s accuracy showcases consistency across epochs,
denoting its consistent performance.

Sensitivity, also termed as the true positive rate, measures the proportion of actual
positives (in this case, T2DM diagnoses) correctly identified by the model. This metric is
vital, especially when the cost of false negatives (missing an actual positive case) is high,
as in disease diagnosis scenarios. Remarkably, our model displays high sensitivity values,
underscoring its prowess in timely and correct T2DM detection.

Recall, akin to sensitivity in this binary classification context, emphasizes the impor-
tance of capturing as many positive T2DM cases as possible. The model’s impressive recall
values further cement its role in T2DM detection.

The F1 score, a harmonized measure of the model’s precision and recall, provides
a balance between the two. Consistently high F1 scores across the epochs highlight the
model’s sustained efficiency in offering a balanced performance.

Epochs were discerningly selected to represent various stages of model maturation as
detailed in Appendix A. Figures 11 and 12 portray the performance trajectory at the 30th
and 100th epochs, respectively. These figures, when interpreted alongside Table 2, visualize
the model’s learning evolution.
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Conclusively, among the 1322 subjects who were screened, our model demonstrated
its efficacy by correctly predicting approximately 90.2% (92 out of 102) of the patients
diagnosed with T2DM. Furthermore, the model maintained a false referral rate of about 0%
(0 out of 1220), showcasing its reliability and precision in identifying T2DM cases without
burdening the healthcare system with false positives.

5. Discussion

The performance of our proposed 4D CNN model is comparable, if not superior, to
that of other state-of-the-art methods for predicting diabetes.

A recent study applied various machine learning algorithms to the Pima Indian
Diabetes dataset and achieved an accuracy of 88.6% using a neural network model with
two hidden layers [40]. Our CNN model, in contrast, achieved an accuracy well above 98%
across all tested epochs, signifying a considerable improvement.

Furthermore, another study developed a convolutional LSTM model for diabetes
detection and found it outperformed other models, demonstrating the effectiveness of deep
learning techniques in diabetes prediction [43]. While the precise performance metrics were
not explicitly reported, our model’s high accuracy and robust F1 score, recall, and sensitivity
metrics suggest that it can hold its ground against other high-performing models.

Interestingly, a study comparing different deep learning architectures, including
AlexNet, VGG Net, ResNet, DenseNet, and EfficientNet for diabetic retinopathy detection,
showed that these models could achieve remarkable results [44]. Although our study
differs in the target condition and input data (we focused on general diabetes prediction
rather than diabetic retinopathy), our CNN model’s performance is in line with these
high-performing architectures, further reinforcing the effectiveness of CNNs in medical
prediction tasks.

Finally, our study further confirms the value of machine learning and deep learning
techniques for early disease detection, as emphasized in numerous other studies [40,43–46].
By accurately predicting the presence of diabetes, our proposed model could aid in the early
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detection and treatment of this prevalent condition, potentially saving lives and reducing
the burden on healthcare systems.

6. Conclusions

In conclusion, our research presents a ground-breaking approach to diabetes prediction
through the development of a novel 4D CNN model. The model’s architecture, specifically
designed for multivariate data, demonstrates superior accuracy in early diabetes detection
compared to traditional methods. The high performance of the model, as evidenced by
impressive metrics such as accuracy, F1 score, recall, and sensitivity, validates its potential
as an effective tool for personalized and proactive diabetes management. This research con-
tributes to the global effort in fighting diabetes and holds promise for broader applications
of CNNs in disease prediction and healthcare analytics. Implementing our proposed CNN
model could have a profound impact on healthcare providers and policymakers.
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Appendix A

Model Training and Testing: The dataset was split into training, validation, and testing
sets using the Holdout method. The CNN model was trained using different numbers of
epochs (10, 20, 30, 50, 100, 150, 200). For each epoch value, the model was trained and
tested, and the performance metrics were evaluated.
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