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Abstract: Bone segmentation and 3D reconstruction are crucial for total knee arthroplasty (TKA)
surgical planning with Personalized Surgical Instruments (PSIs). Traditional semi-automatic ap-
proaches are time-consuming and operator-dependent, although they provide reliable outcomes.
Moreover, the recent expansion of artificial intelligence (AI) tools towards various medical domains is
transforming modern healthcare. Accordingly, this study introduces an automated AI-based pipeline
to replace the current operator-based tibia and femur 3D reconstruction procedure enhancing TKA
preoperative planning. Leveraging an 822 CT image dataset, a novel patch-based method and an
improved segmentation label generation algorithm were coupled to a Combined Edge Loss UNet
(CEL-UNet), a novel CNN architecture featuring an additional decoding branch to boost the bone
boundary segmentation. Root Mean Squared Errors and Hausdorff distances compared the predicted
surfaces to the reference bones showing median and interquartile values of 0.26 (0.19–0.36) mm and
0.24 (0.18–0.32) mm, and of 1.06 (0.73–2.15) mm and 1.43 (0.82–2.86) mm for the tibia and femur,
respectively, outperforming previous results of our group, state-of-the-art, and UNet models. A feasi-
bility analysis for a PSI-based surgical plan revealed sub-millimetric distance errors and sub-angular
alignment uncertainties in the PSI contact areas and the two cutting planes. Finally, operational
environment testing underscored the pipeline’s efficiency. More than half of the processed cases
complied with the PSI prototyping requirements, reducing the overall time from 35 min to 13.1 s,
while the remaining ones underwent a manual refinement step to achieve such PSI requirements,
performing the procedure four to eleven times faster than the manufacturer standards. To conclude,
this research advocates the need for real-world applicability and optimization of AI solutions in
orthopedic surgical practice.

Keywords: total knee arthroplasty; orthopedic surgery; preoperative planning; artificial intelligence;
automatic segmentation; UNet; CT segmentation; 3D bone reconstruction; clinical translation

1. Introduction

Total knee arthroplasty (TKA) is a surgical procedure designed to address advanced
degenerative knee diseases, such as osteoarthritis, rheumatoid arthritis, or post-traumatic
arthritis by replacing or reconstructing the joint [1]. Considering the steady increase in the
elderly population, primary and therefore revision TKAs are expected to increase over the
next decades [2–4]. Since an accurate alignment in primary TKAs is related to a reduced
need for revision procedures, enhancing the accuracy of TKA techniques is essential [3].
Accordingly, recent attention was given to Personalized Surgery Instruments (PSIs), whose
deployment resulted in a more repeatable neutral postoperative alignment and reduced
surgical time, with no further intra-operative complications [5–7]. PSIs, designed for TKA
intervention, are patient-specific cutting jigs replicating the contours of a patient’s distal
femur and proximal tibia. They enable surgeons to execute precise bone cuts, aligning
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the knee implant according to computer-based planning for optimal placement [8]. PSI
manufacture and deployment require the availability of the digital three-dimensional (3D)
surfaces of the tibia and femur [9,10]. These volumes are needed to produce the disposable
instrumentation, assess the ideal femoral and tibial resection planes, select the prosthesis
dimensions, and optimize its placement to reduce the risk of inadequate fitting and related
loosening of the implants [11]. Bony surfaces are obtained from the segmentation and
3D reconstruction of preoperative volumetric imaging, including Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI). However, the variability in bone shape and
dimensions, the presence of severe pathological conditions narrowing the intra-articular
spaces, and the development of osteophytes, result in highly irregular profiles, making the
delineation of surface boundaries challenging even for expert radiologists [12,13]. Further-
more, achieving sub-millimetric alignment between the patient’s bone surface and the jig
footprint is a requirement for a successful knee surgery guided by PSIs [14,15]. Therefore,
tibia and femur 3D reconstructions are of paramount importance in ensuring accurate
matching of the instrumentation to the patient’s anatomy, and consequently, the reliability
of the entire surgical planning. To meet the strict accuracy requirements, bone segmentation
is still performed by expert radiologists supported by clinical image management and
visualization software such as Mimics, version 2.0.99.7 (Materialise NV, Leuven, Belgium)
and 3D Slicer, version 5.2.2 (by Slicer Community) [11]. Semi-automated approaches
provide more control over the segmentation process, enabling a visual inspection and
correction of critical areas. Nevertheless, dealing with complex anatomical structures is
time-consuming and the quality of segmentation may vary between operators, introducing
interobserver variability [16,17]. Recent years have seen the rise in artificial intelligence (AI)
algorithms, transforming modern patient care across various branches of medicine [18–20].
Specifically, Convolutional Neural Networks (CNNs) play a pivotal role in the realm of
AI, being devoted to image analysis and automated segmentation. They learn specific
information patterns at different resolutions, enhancing the network’s ability to extract
both localized and contextual information. Their performances have been tested in various
medical areas with different imaging equipment. However, most studies have lacked
translational analysis towards the clinical world, posing a limit to the application of these
innovative technologies in the healthcare domain. In this work, we proposed a pipeline
procedure based on a multi-task CNN devoted to bone segmentation in CT scans. The
network was trained on a large dataset, and its performances were tested in an operational
TKA environment (Technology Readiness Level, TRL-5).

1.1. State of the Art

Following the introduction of the UNet [21], a symmetric encoding–decoding CNN,
and its derived architectural variations, including the nnUNet [22], biomedical image seg-
mentation experienced an unprecedented push forward, with these networks being scalable
to a wide range of clinical applications, including orthopedics [23,24]. Fully automated
algorithms built upon CNNs can rapidly process large input images offering consistency
in segmentation results. However, since each outcome completely relies on the network
output, 3D reconstruction errors larger than 1 mm might lead to the withdrawal of the PSI
technique in favor of the traditional more invasive surgery [14]. In recent years, several
studies have addressed bone segmentation tasks enhancing state-of-the-art performances
through architectural or methodological innovations. Two novel data augmentation meth-
ods were introduced in [25] to overcome the limited data availability, boosting the overall
results. In [26] different segmentation performances were compared by training a standard
UNet architecture following three different pipelines. A new architectural variant was intro-
duced in [27], where an automatic segmentation algorithm based on the VNet-C network
was examined. In [28], a pure dilated residual UNet was proposed for the tibia and femur
segmentation employing dilated convolution to increase the receptive field. Nonetheless,
the impacts of osteophyte formation and bone deformation on local segmentation errors
were not addressed in these studies, underestimating their impact on surgical planning.
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As a result, the clinical translation of these solutions was significantly hindered. In [29],
our group presented a 3D-UNet architecture adapted to knee bone segmentation in CT
images, with the clinical aim of preoperative planning in TKA surgery based on PSI. In [30],
we proposed a novel multi-task UNet architecture, called CEL-UNet, tailored to tackle
bone segmentation uncertainties in very irregular shapes and large deformities. CEL-UNet
outperformed the benchmark networks, setting the basis for it to be integrated into an
automated preoperative pipeline. However, both prior studies leveraged downsampled
CT scans to fit GPU memory requirements, reducing both input and output resolution.
For this reason, a particular focus should also be provided to non-architectural factors
such as image preprocessing and label generation since they play a substantial role in
performance improvement [31]. Dealing with large input images, such as CT and MRI,
might preclude network training with less powerful hardware. Downsampling the original
voxel size reduces volume dimensions and guarantees training while sacrificing resolution
and output accuracy. Alternatively, patch-based methods provide patches of the input
image at the original resolution. Larger patches give more contextual information but
lead to smaller batch sizes, which increase the variance in stochastic gradient and decrease
optimization [32]. Finally, bone boundary annotations must be consistent with the anatomy
contours, otherwise, redundant inaccuracies might bias the segmentation model towards
predicting the same uncertainties on new data [33].

1.2. Work Contribution

The advancements proposed in this work address both methodological and transla-
tional aspects, aiming to integrate a robust and reliable AI-based tool into a TKA preop-
erative planning workflow tackling the time-consuming and labor-intensive operations
of manual segmentation. The main contributions are: (1) the assessment of how tailored
handling of non-architectural factors, including a patch-based method and an improved
segmentation label generation algorithm, could affect segmentation and 3D reconstruc-
tion outcomes when dealing with highly irregular boundary profiles; (2) a quantitative
morphological matching quality analysis between the reconstructed anatomy and the PSIs
on true contact areas; (3) a quality evaluation test of the reconstructed surfaces in a real
TKA preoperative operational environment to assess the clinical translation potential of
our project; and (4) a time evaluation for each step of the proposed automated pipeline,
highlighting the drastic time reduction with this innovative approach compared to the
traditional manual bone reconstruction.

This paper is structured as follows: In Section 2, we describe the dataset, training set
preparation, network architecture, and test design. In Section 3, we report the results, while
in Section 4, we discuss the main findings, compare them with published literature, and
present the technical challenges and work limitations. The conclusions are reported in
Section 5.

2. Materials and Methods
2.1. Dataset Description

A dataset of 876 axial CT images was provided by MEDACTA International SA (Castel
San Pietro, Switzerland) in Digital Imaging and Communications in Medicine (DICOM)
standard format, acquired in the context of preoperative planning for TKA intervention
from 2017 to 2022. Upon diagnosis, patients indicated localized knee pain and instability.
Clinical observations revealed varying degrees of cartilage defects, femoral osteophytes,
and shape abnormalities primarily located in the tibial plateau and condylar regions of
the distal femur. Out of the 876 cases, 54 were excluded due to inner metal parts, namely
screws, implants, and plaques, with their segmentation being out of the scope of this work.
The remaining 822 images (397 males and 425 females, 409 right against 413 left knees) were
considered in the present study. CT scans were acquired with various imaging devices,
mostly at 512 × 512 pixels and 430 slices on average, with variable voxel size, ranging
from 0.24 to 0.94 mm, and axial slicing from 0.3 to 1.0 mm. Alongside CT images, proximal
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tibia and distal femur corresponding reconstructed surfaces were provided in STL format.
Reference bony surfaces were manually generated by expert radiological operators from
semi-automatic segmentation performed using Mimics software, version 2.0.99.7. These
STL data were exploited to produce the segmentation labels for the training procedure and
to assess both segmentation and volume reconstruction performances. For this study, 75%
of the dataset, corresponding to 622 cases (301 males and 321 females, 312 right against
310 left) were randomly selected for training, while the remaining 25%, 200 images, de-
fined the test set. This split percentage allowed for a broader evaluation of the model’s
performance on unseen data, enhancing the reliability of the findings.

2.2. Training Set Preparation

Three separate training sets (T1, T2, T3) were generated from the same original dataset,
as summarized in Figure 1. Different data preparation and label generation strategies
were implemented to determine whether non-architectural factors might play a substantial
role in performance improvement [31]. Since CT scans originated from different scanning
machinery, a voxel intensity normalization was applied to produce a consistent distribu-
tion. First, each voxel intensity value was scaled to the Hounsfield Unit (HU) range [34]
according to the rescale slope and rescale intercept parameters gathered in the DICOM
header. Voxel values were then clipped between -1024, HU notation for air, and 2500,
high-density cortical bone [35]. Finally, intensities were shifted to positive numbers (from
0 to 3524) and normalized between 0 and 1, providing a consistent distribution. Original
scans were automatically cropped in the axial, coronal, and sagittal view, removing all the
slices where reference segmentation of the proximal tibia and distal femur was not avail-
able, to reduce the computational overhead. T1 was generated following the description
presented in [30]. Therefore, all the cropped volumes were resampled to a fixed dimension
of 192 × 192 × 192, reducing the volume size to cope with hardware limitations, at the cost
of losing voxel resolution. For T2, a patch-based method was implemented. Each cropped
CT was patched into a different number of 160 × 160 × 160 sub-volumes, depending
on their initial dimension, preserving the original voxel resolution while ensuring the
training procedure.

Figure 1. Training sets generation summary: normalization and cropping were applied to all CTs.
T1 is generated by resampling the cropped volumes to 192 × 192 × 192 and with custom Python-
generated segmentation labels. For T2, the same labels were produced, while CTs were patched to
160 × 160 × 160. Finally, T3 features patched volumes and segmentation labels obtained through the
3D Slicer procedure.

Patch size was heuristically determined as a trade-off between the contextual informa-
tion represented in a single patch and the resulting training batch size. Patch overlapping
allowed the information loss on the CT boundaries resulting from the mismatch between
CT and patch size to be reduced. The total number of training patches was 3686. For both
T1 and T2, the generation of segmentation labels from the reference surfaces followed a
custom automated algorithm written in Python (version 3.9.16) leveraging on the trimesh
and scipy libraries, consistent with the procedure applied in [29,30], and summed up in
Figure 2. The intersection points between the hollow 3D volume and the corresponding
CT were computed for each axial slice, saved in a binary mask, and stacked (A). A f ill
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holes method, to fill the closed perimeter, was applied to each slice of the generated binary
volume where a contiguity condition was met by all the identified points. Otherwise,
consecutive morphological operations, including dilation (B), closing (C), and erosion (D)
were applied to comply with the previous requirement. Nevertheless, the application of
these morphological operations might smooth and enlarge the original bone boundary
perimeter, particularly where the intra-articular spaces are narrow, biasing a trained model
to oversegment these critical areas.

Figure 2. Python label generation algorithm sequence. (A): Intersection points between 3D reference
femur and orthogonal plane; (B): dilation operation to make all points contiguous; (C): closing and
filling to fill the polygonal; (D): erosion operation to shrink label boundaries.

Consequently, T3 was generated with the same patch-based method as T2, while the
segmentation label algorithm was modified. This time, a different automated approach was
implemented in a medical image processing and visualization software: 3D Slicer. CT scans
and the corresponding reference surfaces were loaded in the software as VolumeNode and
LabelMapVolumeNode data, respectively. Using a sequence of built-in 3D Slicer functions,
including ExportVisibleSegmentsToLabelmapNode, to map the 3D volumes of the tibia and
femur into a binary segmentation volume, and arrayFromVolume, to convert it to a NumPy
array, a data structure handled by our custom Python algorithm, the volume segmentation
map was generated, mapped to the original CT resolution, and exported in the Nifti (.nii)
format. Following this pipeline, labels trace the exact bone boundaries, even close to thin
and narrow joint spaces, without applying morphological operators; therefore, there was
no distortion to the reference surfaces while producing segmentation masks. The outcome
comparison between the two algorithms is shown in Figure 3, where four CT slices, the
corresponding femur reference surface, and the generated labels are shown. Circled areas A,
B, and C point out some critical regions where implementing the Python algorithm resulted
in superabundant labels near the narrowness of the lateral and medial femoral condyles.

Figure 3. Label generation comparison. (First row): Custom algorithm; (Second row): 3D Slicer-
based algorithm. For each slice of the CT, its corresponding bone reference surface and the segmenta-
tion labels (in white over the CT) are shown. A, B, and C circled areas highlight major differences in
critical regions for the two approaches.
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2.3. Network Trainings and Architectures

T1, T2, and T3 were used to train a CEL-UNet architecture, built as described in [30].
This network embeds a UNet-like [21] encoder to extract features at decreasing spatial
resolutions ending with the so-called bottleneck. Its peculiarity lies in the decoding path,
which is split into two parallel branches, one dedicated to semantic segmentation and
the other tackling bone boundary identification. The edge information acquired from this
branch is aggregated to the feature maps of the main one through vertical unidirectional
skip connections allowing the robustness of narrow border detection to be increased. The
dataset showing the best performances with the CEL-UNet was also used to train a state-
of-the-art UNet following the best architecture setup found by [29]. Two trainings were
performed deploying different loss functions, namely, Distance Cross-Entropy (DCE) and
Focal (FOC) loss. All training procedures and predictions were performed on a 32-core
CPU and NVIDIA A100-PCIE GPU with 40 GB RAM.

2.4. Segmentation and 3D Reconstruction Result Analysis

Tibia and femur segmentation quality assessment was carried out by computing
precision and recall, responsive for both over- and undersegmentation errors, respectively.
Additionally, a measurement of intersection over union was performed by extracting Dice
and Jaccard indexes. The 3D surfaces of each segmented volume were automatically built
exploiting a custom algorithm based on marching cubes [9]. Reconstruction accuracy
was evaluated in terms of Hausdorff distance and Root Mean Squared Error (RMSE),
considering the maximum and average distance between the predicted and reference
surfaces. Time evaluation performances were carried out for each step of the automated
pipeline, including preprocessing, segmentation, postprocessing, and 3D reconstruction of
the tibia and femur, to define the median and interquartile range (IQR) times to achieve the
overall task on the same hardware exploited for the training process. Statistical tests were
run deploying the non-parametric Kruskal–Wallis technique, including the Tukey–Kramer
post-hoc comparison. A p-value less than 0.05 was considered statistically significant.

2.5. Quantification of PSI-Based Surgical Planning Feasibility

Tibia and femur automated reconstruction quality were also quantified with regard
to the clinical impact on the TKA surgical planning built upon the MyKnee technol-
ogy developed by MEDACTA International SA. This quantification was performed over
20 surgical cases, randomly extracted from the test set, and processed with the CEL-UNet
architecture trained with the dataset that showed the best segmentation and 3D recon-
struction performances. The feasibility of the PSI-based surgical planning was assessed
by matching the predicted bones to their corresponding planning surfaces provided by
the company. Distance errors between the PSI contact areas on the reference and on the
reconstructed volumes as well as angular alignment errors of the distal femoral and proxi-
mal tibial cutting planes were computed. Specifically, three contact areas were considered
for the tibia, on its medial and lateral condylar regions (A, C), and on the frontal area next
to the tuberosity (B), while two regions (D, E) were considered in the frontal distal femur
(Figure 4). Each one was defined on the planning surfaces by selecting either three or four
landmark points at its vertices. Contact area A, for instance, is defined by landmarks L1,
L2, L3, and L4. Every landmark was translated into the reconstructed volume by minimal
distance criteria, and spatial distances between the reference and predicted landmarks
were computed to assess the errors for each area. Furthermore, the angular alignment
errors for the proximal tibia and distal femur cutting planes were computed. This time,
four landmarks were picked on each planning volume following the resection sulcus, two
frontally and two posteriorly. The normal direction of the plane fitting to the points was
calculated for both reconstructed and planning volumes. Their angular deviation was
projected on the sagittal and frontal anatomical planes, obtaining two clinically relevant
measures [8,36,37].
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Figure 4. (Left): Femoral and tibial PSI of MyKnee system (courtesy of MEDACTA International SA)
with the contact areas on the tibia (A–C) and on the femur (D,E) highlighted in light blue. (Right):
Planning surfaces highlighting femoral distance and tibial proximal cutting planes, in light blue, and
the landmark points (L1–L8 for femur and L1–L11 for tibia) defining the contact areas.

2.6. Test in Operational Environment

The automated segmentation and 3D bone reconstruction pipeline performances were
also assessed in the My Knee department of MEDACTA, committed to the production of
bone surfaces from preoperative CT scans complying with their internal protocol require-
ments. Three operators examined a set of 30 different tibia and femur 3D models to assess
their reconstruction quality. However, since they could have been biased by knowing that
volumes were generated by AI-based algorithms, only 15 out of the 30 were produced
through the automated pipeline from the test set data. The remaining were manually
obtained by the consolidated MyKnee internal process. During the test, operators had to
open the tibia and femur volumes on Mimics software, alongside the corresponding CT
scan, to assess whether the reconstruction quality met the standards for the PSI guide’
production by analyzing the generated colormaps. If not, they had to manually refine the
provided volume to match such requirements, and quantify the time needed to perform
this operation and the required amount of time to perform the segmentation starting from
scratches with their internal pipeline. The prior hypothesis is that all the manually recon-
structed volumes will match the restrictive standards. This protocol was carried out in
collaboration with the quality department of MEDACTA.

3. Results
3.1. Impact of Non-Architectural Factors on the CEL-UNet

The analysis of how different non-architectural factors can impact the same CNN’s
prediction ability is shown in Figure 5. It compares the 3D reconstruction errors between
reference and predicted bone surfaces rather than semantic segmentation scores since
segmentation labels were different across the three datasets. Statistically significant dif-
ferences (p < 0.05) were assessed for both RMSEs and Hausdorff distances. The results,
expressed in terms of the median and interquartile range (IQR), show how discrepancies
fall from 0.62 (0.58–0.68) mm and 0.77 (0.72–0.81) mm for T1 for the tibia and femur, to 0.42
(0.38–0.49) mm and 0.45 (0.31–0.63) mm for T2, showing how the resolution lost due to the
CT fixed resizing applied in [30] strongly affects the output accuracy. Additional improve-
ments are registered from T2 and T3, where the RMSE dropped to 0.26 (0.19–0.36) mm and
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0.24 (0.18–0.32) mm for the tibia and femur, respectively. These outcomes show how a care-
ful label generation, accurately defining the narrow bone boundaries and thin joint spaces,
directly transfers this knowledge to the network during training, bringing down both
average and maximum reconstruction errors. Accordingly, the Hausdorff distance more
than halved with T3, reaching 1.06 (0.73–2.15) mm for the tibia and 1.43 (0.82–2.86) mm for
the femur, while T1 and T2 had distances of 3.46 (2.97–4.26) mm and 2.07 (1.50–3.77) mm
for the tibia, and 3.75 (3.31–4.27) mm and 1.90 (1.43–3.06) mm for the femur, respectively.

T1 T2 T3 T1 T2 T3
0

0.5

1
Tibia Femur

R
M
S
E

(m
m
)

T1 T2 T3 T1 T2 T3
0

2

4

6
Tibia Femur

H
a
u
sd
or
ff
(m

m
)

Figure 5. Tibia and femur 3D reconstruction error comparison in terms of RMSE (left) and Hausdorff
distance (right). Boxes depict the outcomes of a CEL-UNet architecture alternatively trained with
datasets T1 (blue), T2 (red), and T3 (green).

3.2. CNN Architecture Comparison for Segmentation and 3D Reconstruction

The results of the CEL-UNet architecture were compared to a 3D UNet, configured as
in [29], alternatively compiled with two different loss functions, Distance Cross-Entropy
(DCE-UNet) and Focal loss (FOC-UNet). All three networks were trained with dataset T3
since it proved its superiority against the others. Segmentation scores for the tibia and femur
are plotted in Figure 6, while median and IQR values are reported in Table 1. Statistically
significant differences were found between CEL-UNet and the two UNet networks for
each metric computed, while p > 0.05 was assessed among the DCE- and FOC-UNet,
meaning that the deployment of two different loss functions did not statistically change the
output metric distribution. A qualitative comparison of the tibia (green) and femur (red)
segmentation predictions between the three networks is shown in Figure 7 for case code
0782, belonging to the test set. The network outputs are compared to the reference label.
Two axial slices showing tibia and femur cross-sections (first and second row, respectively)
and one coronal slice (third row) are presented. These images display how the CEL-UNet
architecture, tailored to tackle bone boundary segmentation even with damaged anatomies
and narrow joint spaces, achieves its goal, while standard UNet networks fail at segmenting
areas in both tibial lateral (A) and femoral medial (B, C) condyles.

Table 1. Dice, Jaccard, Recall, and Precision median and IQR scores for tibia (above) and femur (below
comparing the performances of the three networks (CEL-, DCE-, and FOC-UNet). The * defines a
statistically significant difference between the outcome distributions.

Tibia

Dice Jaccard Precision Recall

DCE-UNet 0.986 (0.982–0.989) 0.972 (0.965–0.978) 0.995 (0.992–0.997) 0.977 (0.970–0.985)
FOC-UNet 0.987 (0.983–0.989) 0.974 (0.966–0.979) 0.995 (0.992–0.998) 0.979 (0.971–0.985)
CEL-UNet 0.991 * (0.988–0.993) 0.982 * (0.977–0.987) 0.997 * (0.993–0.999) 0.986 * (0.980–0.994)

Femur

Dice Jaccard Precision Recall

DCE-UNet 0.987 (0.982–0.990) 0.974 (0.965–0.980) 0.994 (0.989–0.997) 0.980 (0.971–0.987)
FOC-UNet 0.988 (0.985–0.991) 0.976 (0.970–0.982) 0.995 (0.990–0.997) 0.982 (0.976–0.989)
CEL-UNet 0.992 * (0.990–0.994) 0.985 * (0.980–0.989) 0.996 * (0.993–0.998) 0.988 * (0.983–0.996)
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DCE FOCCEL DCE FOCCEL DCE FOCCEL DCE FOCCEL
0.92

0.94

0.96

0.98

1

Dice Jaccard Precision Recall
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Figure 6. Boxplots of Dice, Jaccard, Recall, and Precision for tibia (above) and femur (below). Blue
boxes depict the CEL-UNet results, while light red and dark red boxes show the UNet architecture
outcomes after training with Distance Cross-Entropy (DCE) and Focal (FOC) loss, respectively.

Figure 8 compares the 3D reconstruction errors for the whole test set. Again, p < 0.05
was assessed for both RMSE and Hausdorff distance proving the CEL-UNet advan-
tage against the two UNet models. Median and IQR values for the RMSE were 0.46
(0.32–0.71) mm and 0.45 (0.31–0.63) mm with DCE-UNet, while they were 0.45
(0.31–0.63) mm and 0.40 (0.28–0.60) mm with FOC-UNet, for the tibia and femur, re-
spectively. The Hausdorff score was 1.95 (1.09–3.76) mm and 2.30 (1.41–3.99) mm with
DCE-UNet, and 2.19 (1.06–4.70) mm and 2.52 (1.47–4.33) mm with FOC-UNet. A visual
inspection of the tibia and femur 3D surface reconstruction for case code 0782 is illustrated
in Figure 9. The segmentation errors (A, B, and C) depicted in Figure 7 for the DCE- and
FOC-UNet are now visible in the meshes.

Table 2 shows the time spent to complete each operation in the inference prediction
pipeline for a CEL-UNet network trained with dataset T3. CT segmentation is the longest
step, with a median time of 4.4 s, while proximal tibia 3D reconstruction is generally
quicker than that for the distal femur, 1.8 (1.5–2.2) s against 2.5 (2.1–2.95) s, because of
the smaller dimensions of the bone portion. An overall median time of 13.1 s proves
how this automated pipeline couples sub-millimetric surface reconstruction errors with a
high-speed throughput.
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Figure 7. Qualitative comparison of the tibia (green) and femur (red) segmentation for case code 0782
against the reference label. CEL-UNet outputs are shown in the second column, while DCE- and
FOC-UNet segmentations are in the third and fourth columns, respectively. Circled areas display
segmentation errors of the UNet models in both tibial lateral (A) and femoral medial (B, C) condyles.
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Figure 8. Tibia and femur 3D reconstruction error comparison in terms of RMSE (left) and Hausdorff
distance (right). Blue boxes depict the CEL-UNet architecture metric distributions, while light and
dark red boxes display DCE- and FOC-UNet scores, respectively.

Table 2. Time spent for each step in the pipeline, including preprocessing, segmentation, postprocess-
ing, and 3D reconstruction of the tibia and femur. Tests were run on a 32-core CPU, and NVIDIA
A100-PCIE GPU with 40 GB RAM.

Preprocessing Segmentation Postprocessing 3D Reconstruction Overall

Time (s) 1.1 (0.7–1.3) 4.4 (3.6–5.5) 3.8 (3.0–5.1) 4.2 (3.7–5.1) 13.1 (10.7–15.8)
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Figure 9. Qualitative 3D predicted reconstruction of the tibia and femur for case code 0782 against
the reference label, in anterior (above) and posterior (below) view. CEL-UNet outputs are shown in
the second column, while DCE- and FOC-UNet segmentations are in the third and fourth columns,
respectively. Circled areas display reconstruction errors of the UNet models in both tibial lateral (A)
and femoral medial (B, C) condyles.

3.3. Quantification of PSI-Based Surgical Planning Feasibility

The error distance distributions between the landmarks picked on the reference surface
and the ones identified on the predicted volume are shown in Figure 10. The group of
landmarks defining the same contact area share the same color (e.g., boxes for L1, L2, L3,
and L4 points defining tibial contact area A are light red). Even though tibial condylar
regions (A and C on Figure 4) tend to suffer wider pathological deformations making the
segmentation more challenging, all median error values reported for both the tibia and
femur were below 0.5 mm, ranging between 0.31 and 0.48 mm. Such outcomes enhance the
robustness of the whole pipeline by assessing the algorithm performances in local areas
crucial for clinical surgery. Finally, the median and IQR ranges of the angular alignment
errors projected on the frontal and sagittal planes for both the tibia and femur are indicated
in Table 3.

Figure 10. Boxplots of the error distance distributions between the landmarks picked on the reference
surface and the ones identified on the predicted volume. The boxplots sharing the same color refer to
the landmark points of a single contact area.(Left): Tibia contact areas A, B, and C. (Right): Femur
contact areas D and E.
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Table 3. Angular alignment errors of the distal femur and proximal tibia cutting planes between the
planning and predicted surfaces.

Tibia Femur

Frontal Sagittal Frontal Sagittal

Error (°) 0.33 (0.24–0.46) 0.19 (0.13–0.35) 0.21 (0.13–0.38) 0.26 (0.12–0.36)

3.4. Test in Operational Environment

MEDACTA MyKnee operators analyzed 30 3D reconstructed volumes to assess whether
they were compliant with the company standard requirements for the PSI guide production.
Among them, all 15 manually generated surfaces were acceptable, confirming the prior
hypothesis. For the 15 remaining ones, outputs of the AI-enhanced pipeline, the operators
evenly established the same eight out of 15 tibia and femur models as compliant. The
leftover reconstructed models underwent a refinement process on Mimics. The interop-
erator time variability to complete the procedure with the same volumes is illustrated
in Figure 11. The highest value registered was 7.5 min (5–11.25) from operator B, while
the lowest was 3 min (2.75–6.25) from operator C, four to 11 times faster than the actual
company’s internal operations performing a manual segmentation of the same surgical
cases from scratches, which is 35 min (28.8–40). Statistically significant differences were
observed between operator C and the others (p < 0.05), revealing how the manual operation
time depends on the operator’s ability.

A B C
0

20

40

Manual Refinement

T
im

e
(m

in
)

Figure 11. Comparison between the time needed to generate the 3D volumes of tibia and femur
starting from scratches with a manual approach (blue) and the refinement time spent by three
different operators, A, B, and C (red), to fit the automatically reconstructed model to the company’s
requirements.

4. Discussion
4.1. Main Findings

Automatic CT bone segmentation poses fewer obstacles with respect to the segmenta-
tion of other anatomical regions. Bones are dense structures with a high density and sharp
edges, making them easier to identify compared to other soft tissues and organs. However,
several pathological conditions impact their mineral density, causing bone deformations,
osteophytes development, and cartilage damage, raising the segmentation complexity and
driving automated algorithms to both under- and oversegmentation [38,39]. In such cases,
an extensive manual refinement, performed by expert radiologists, is required to correct
the outcomes and achieve the desired standards. Therefore, the robustness and reliability
of these automated tools towards various types of degenerated anatomies are crucial to
integrate them into operational pipelines. Specifically, in the context of preoperative plan-
ning for TKA intervention, it is fundamental to guarantee a high degree of accuracy for the
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segmentation and 3D reconstruction, especially for specific regions, including tibial and
femoral condyles. In these areas, often featured by the largest deformation and osteophytes,
several contact points (Figure 4) are defined between the two bones and the PSI. Their
potential mismatch might lead to the withdrawal of this innovative technique in favor
of the traditional more invasive and time-consuming surgery [14]. This paper presented
methodological improvements and a test in a real operational environment to address
the limitations towards a true clinical translation of the previous related studies of our
group [29,30]. A new data preparation pipeline, addressing a large dataset of 822 surgical
cases, and featuring a patch-based method and a novel algorithm for the segmentation label
generation, tackled both resolution and generalized oversegmentation problems previously
observed. Patching the original CTs preserves their voxel size and retains fine-grained bone
spatial details, whose identification is critical in this task. Moreover, accurate segmentation
labels, tracing the bone boundaries even in the narrowest areas, boost the trained network
in the localization of bone deformities and degraded shapes. Merging these approaches
with the deployment of a novel CNN architecture tailored for bone boundary identification
(CEL-UNet [30]) showed a strong improvement in segmentation and 3D reconstruction
outcomes against our previous findings and traditional UNet models, leading to a drop in
median RMSE values of 0.26 mm and 0.24 mm for the tibia and femur, respectively. These
results were obtained on an independent set of 200 cases, considered adequate to assess
the performances over the large variability in bone anatomies. In addition, sub-millimetric
distance errors between crucial PSI contact areas on the reference and the reconstructed
volumes as well as sub-angular alignment errors of the femoral and tibial cutting planes
enhanced the applicability of this procedure in a real clinical context. Finally, the imple-
mentation of this automated technology within the My Knee department of MEDACTA
proved its advantages over a standard manual segmentation process in terms of time saved
for the overall process. Quality outcomes revealed that more than half of the processed
cases already complied with the strict company requirement for PSI prototyping, reducing
substantially the 3D reconstruction time to a median value of 13.1 s. For the remaining ones,
the manual refinement process led to a drop in the elaboration times from four to 11 times,
depending on the operator’s ability, compared to the original median value of 35 min.

4.2. Literature Comparison

Recent years have seen a rise in AI-based segmentation algorithms trying to re-
place the manual bone delineation process over different imaging acquisition techniques
and anatomical regions. Deep CNNs were evaluated for skull surface segmentation in
20 CT scans to assist the surgical planning. Outcomes reported a sensitivity score of 0.92
and a 3D reconstruction error in the range of 1.5 mm [40]. To diagnose the severity of
osteoarthritis in the shoulder joint, a UNet architecture was implemented to perform the
humerus segmentation in shoulder CT images achieving a Dice coefficient of 0.946 [41].
However, the test set was composed of just 19 male subjects. Therefore, an actual vali-
dation or clinical translation of this study is controversial. A similar consideration can
be provided for [42], where a fully automatic modified UNet model was proposed to
detect and segment the tibia, femur, and patella, this time on knee osteoarthritic MRIs
consisting of 160 2D slices for a single scan. Its performances were compared to traditional
UNet and SegNet architectures. Results were tested over a 15-subject test set showing an
overall Dice coefficient of 0.969 for their modified UNet, outperforming the other networks.
Pelvic bone segmentation in 30 dual-energy CT scans was addressed by a traditional 3D-
UNet achieving a Dice coefficient of about 0.958. In this study, the high memory demand of
the 3D UNet architecture on the GPU was overcome by downsampling the input data to
128 × 128 × 128 voxels [43]. Finally, a 2D UNet designed to process the three anatomical
planes in craniofacial CT was introduced to perform the mandibular bone segmentation.
Outcomes reported a Dice index of 0.93 and reconstruction errors of 1.4 mm [44]. Despite
some of the presented segmentation outcomes being numerically close to our achievements,
the validation proposed in our study addresses a larger and more heterogeneous dataset
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including different degrees of several pathological conditions of the knee joint. In addition,
the presented pipeline fully replaced manual operations in a relevant operational environ-
ment with promising results, proving once more the goodness of the procedure. Finally, the
recorded median period to complete the whole pipeline is 13.1 s, considered compatible
with the company’s requirements.

4.3. Technical Challenges and Work Limitations

The implementation of a robust and reliable AI-based automated algorithm for the
segmentation and 3D reconstruction of the tibia and femur in the context of preoperative
planning for TKA intervention poses several technical challenges. The perfect matching
between the tibial and femoral PSI resection component to the bones during surgery
strictly relies on the outcomes of this pipeline, which must perform even for severely
degenerated and abnormal conditions. However, different sources of errors, at different
steps of the procedure, might come together making this automated technology unfeasible
for the current application. The first source of uncertainty is the scanning resolution,
different for each acquisition machinery, and, in our dataset, with a median value of
0.43 mm. The bone segmentation introduces an additional error, a variable dependent
on the goodness of the algorithm performances over each case. Moreover, the surface
reconstruction step introduces greater uncertainties with larger slicing thicknesses. Finally,
the surface smoothing further increases the difference between the true and generated
patient bones. Nevertheless, an additional step should be considered in the overall pipeline.
In particular, the PSI prototyping can decrease the matching accuracy due to manufacturing
precision since modern 3D printers work with a 0.1 mm resolution. It was documented
that a 1 mm uncertainty can lead to rotational disparities of approximately 2° in the coronal
and sagittal planes when comparing the planned alignment to the one achieved during
surgery [45,46]. For this reason, delivering 3D surfaces with sub-millimetric average
reconstruction error is fundamental to ensure the most accurate match between bones
and surgical instrumentation. Furthermore, bone structure, density, and size can exhibit
variations across different ethnic groups, as demonstrated between Asian and Western
populations [47]. Therefore, the predominance of specific groups in the dataset might bias
the model towards unique bone morphologies and characteristics during the training phase.
For this reason, a deeper study of the dataset composition could enhance the generalizability
and results of a deep learning algorithm. To conclude, some important considerations
should be provided to the computational feasibility of this procedure. The deployment
of large CNN architectures, featuring hundreds of thousands of parameters, for large
medical image segmentation tasks, can be successfully handled by dedicated machines
characterized by considerable RAM and fast processors, as described in this work. However,
general-purpose computers might lack the hardware required to perform such tasks, and
extending these technologies to standard calculators can broaden their applications and
usability. Reducing the computational overhead and memory allocation can overcome
these limitations. Concerning the knee joint, performing separate segmentations of the
tibia and femur, and further cropping the CT to focus on each bone alternatively, might
overcome the memory allocation problem since smaller input volumes are provided to
the network. Nevertheless, the overall computational time increases and this solution
may not be generalizable for each domain. Accordingly, several studies showed how
these challenges can be overcome through optimization techniques allowing network
compression, including pruning and quantization [48–50]. Pruning reduces the number
of parameters in the network, which directly decreases memory requirements during
inference, while quantization reduces the memory footprint by representing values with
fewer bits. In [49], the deep compression applied reduced the storage required by AlexNet
by 35x, from 240MB to 6.9MB, and by VGG-16 by 49x, from 552MB to 11.3MB, both with no
loss of accuracy. AlexNet was compressed by 51x, also in [50], while preserving the accuracy
of the uncompressed network on ImageNet. These compression methods facilitate the use
of complex neural networks in mobile applications where application size and download
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bandwidth are constrained. Their deployment in our work will make faster inference
processes and a network most suitable for real-time applications, such as personalized
preoperative planning performed by surgeons before the intervention.

5. Conclusions

The translation of AI-based tools into clinical practice recently emerged as a transfor-
mative avenue, enhancing traditional workflows in various medical domains. In this study,
an AI-based pipeline built upon a multi-task CNN was investigated to replace the current
semi-automatic segmentation and 3D reconstruction of the tibia and femur, in the context
of preoperative planning for TKA intervention. Methodological progress, compared to the
previous works of our group, significantly reduced the maximum and average bone recon-
struction errors, with the latter being constantly below half a millimeter. The feasibility
analyses of this approach for a PSI-based surgical plan revealed sub-millimetric distance
errors and sub-angular alignment uncertainties in crucial surgical regions, such as the PSI
contact areas and the two major cutting planes. Finally, the quality of the generated bone
volumes was measured in a real operational environment, replacing manual operators in
the processing of a set of surgical cases. A drastic time reduction to complete the whole
procedure with comparable outcome accuracy was assessed proving the advantages and
reliability of this approach compared to traditional semi-automatic methods. To conclude,
the increasing collaboration between healthcare professionals and technology innovators is
crucial to harnessing the full potential of these advancements, and a successful integration
of AI into clinical practice is still an open challenge for the evolution of modern healthcare.
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