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Abstract: The integration of artificial intelligence (AI) into medical imaging has guided in an era of
transformation in healthcare. This literature review explores the latest innovations and applications of
AI in the field, highlighting its profound impact on medical diagnosis and patient care. The innovation
segment explores cutting-edge developments in AI, such as deep learning algorithms, convolutional
neural networks, and generative adversarial networks, which have significantly improved the
accuracy and efficiency of medical image analysis. These innovations have enabled rapid and
accurate detection of abnormalities, from identifying tumors during radiological examinations to
detecting early signs of eye disease in retinal images. The article also highlights various applications
of AI in medical imaging, including radiology, pathology, cardiology, and more. AI-based diagnostic
tools not only speed up the interpretation of complex images but also improve early detection of
disease, ultimately delivering better outcomes for patients. Additionally, AI-based image processing
facilitates personalized treatment plans, thereby optimizing healthcare delivery. This literature
review highlights the paradigm shift that AI has brought to medical imaging, highlighting its role
in revolutionizing diagnosis and patient care. By combining cutting-edge AI techniques and their
practical applications, it is clear that AI will continue shaping the future of healthcare in profound
and positive ways.
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1. Introduction

Advancements in medical imaging and artificial intelligence (AI) have ushered in a
new era of possibilities in the field of healthcare. The fusion of these two domains has
revolutionized various aspects of medical practice, ranging from early disease detection
and accurate diagnosis to personalized treatment planning and improved patient outcomes.

Medical imaging techniques such as computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET) play a pivotal role in providing
clinicians with detailed and comprehensive visual information about the human body.
These imaging modalities generate vast amounts of data that require efficient analysis and
interpretation, and this is where AI steps in.

AI, particularly deep learning algorithms, has demonstrated remarkable capabilities
in extracting valuable insights from medical images [1]. Deep learning models, trained
on large datasets, are capable of recognizing complex patterns and features that may not
be readily discernible to the human eye [2,3]. These algorithms can even provide a new
perspective about what image features should be valued to support decisions [4]. One
of the key advantages of AI in medical imaging is its ability to enhance the accuracy
and efficiency of disease diagnosis [1,5]. Through this process, AI can assist healthcare
professionals in detecting abnormalities, identifying specific structures, and predicting
disease outcomes [5,6].

By leveraging machine learning algorithms, AI systems can analyze medical images
with speed and precision, aiding in the identification of early-stage diseases that may be
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difficult to detect through traditional methods. This early detection is crucial as it can lead
to timely interventions, potentially saving lives and improving treatment outcomes [1–3].

Furthermore, AI has opened up new possibilities in image segmentation and quantifi-
cation. By employing sophisticated algorithms, AI can accurately delineate structures of
interest within medical images, such as tumors, blood vessels, or cells [7–9]. This segmenta-
tion capability is invaluable in treatment planning, as it enables clinicians to precisely target
areas for intervention, optimize surgical procedures, and deliver targeted therapies [10].

The integration of AI and medical imaging has also facilitated the development of
personalized medicine. Through the analysis of medical images and patient data, AI
algorithms can generate patient-specific insights, enabling tailored treatment plans that
consider individual variations in anatomy, physiology, and disease characteristics. This
personalized approach to healthcare enhances treatment efficacy and minimizes the risk of
adverse effects, leading to improved patient outcomes and quality of life [1,11,12].

Additionally, AI has paved the way for advancements in image-guided interventions
and surgical procedures. By combining preoperative imaging data with real-time imaging
during surgery, AI algorithms can provide surgeons with augmented visualization, nav-
igation assistance, and decision support. These tools enhance surgical precision, reduce
procedural risks, and enable minimally invasive techniques, ultimately improving patient
safety and surgical outcomes [13].

Recently several cutting-edge articles have been published covering a wide variety of
topics within the scope of medical imaging and AI. Many of these outstanding advance-
ments are directed to cancer, a major cause of severe disease and mortality. The main
contributions and fields will be addressed in the next sections.

2. Methodology

The primary aim of this review is to present a comprehensive overview of the influen-
tial artificial intelligence (AI) technological advancements that are shaping the landscape
of medical imaging in recent years. The construction of the article dataset followed a
two-stage methodology. Initially, to identify the most pertinent AI-supported clinical imag-
ing application, searches were conducted on major scientific article repositories. In July
2023, queries were made on PubMed, IEEE, Scopus, ScienceDirect, Web of Science, and
ACM, focusing on the Title and Abstract of articles. Filters for language (English only)
and year of publication (2017 and onwards) were applied. Search terms encompassed key
machine learning words and expressions (e.g., “machine learning”, “artificial intelligence”,
“classification”, “segmentation”) combined with clinical image-related keywords (e.g., “im-
age”, “pixel”, “resolution”, “MRI”, “PET”, “CT”). After article retrieval, duplicates were
eliminated. It is also important to mention that preprint articles, such as arXiv, bioRxiv,
medRxiv, among others, were also queried as part of the Scopus indexing system. These
are major open-access article archives holding highly relevant manuscripts (considering
the number of citations and widespread usage) but whose content was not peer reviewed.

In the second stage, the previously identified papers and their references were utilized
as seeds to construct connection maps, employing the LitMaps [14] web tool to identify
the most relevant technologies. The Iramuteq software [15] was also used to generate
and explore word and concept networks using some of the included natural language
processing tools [16]. The selection of technologies was based on manual observation of
connection maps, with a focus on identifying healthcare-related keyword groups. The use of
this methodology implied some ad hoc criteria since the mentioned tools are agnostic to the
underlying clinical processes and not always are able to correctly group medical areas. With
the described methodology, the ultimate aim was to encompass a broad spectrum of disease
handling processes and support activities, emphasizing the most promising technological
approaches to date while acknowledging identified limitations. Additionally, emphasis has
been given to review articles that were specifically referenced when available for specific
domains, as they offer an enhanced overview within a confined area of knowledge. The
final article corpus showed a distribution by year of publication as depicted in Figure 1. It
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can be observed that 2023 has the highest number of review/survey articles, which can
evidence the interest in the area but can also be an indicator of the diversity of involved
technologies, demanding for an overview article.
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3. Technological Innovations

Mathematical models and algorithms stand at the forefront of scientific exploration,
serving as powerful tools that enable us to unravel complex phenomena, make predictions,
and uncover hidden patterns in vast datasets. These essential components of modern
research have not only revolutionized our understanding of the natural world but have
also played a pivotal role in driving technological breakthroughs that open up numerous
application possibilities across various domains. The synergy between mathematical
models and algorithms has not only enhanced our understanding of the world but has
also been a driving force behind technological advancements that have transformed our
daily lives.

The earliest multilayer perceptron networks, while representing a crucial step in the
evolution of neural networks, had notable limitations. One of the primary constraints was
their shallow architecture, which consisted of only a few layers, limiting their ability to
model complex patterns. Besides the model expansion restrictions imposed by the limited
computing power, training these networks with multiple layers was also challenging. In
particular, the earliest activation functions used in neural networks, including the sigmoid
and hyperbolic tangent (tanh), led to the vanishing gradient problem [17] as their gradients
became exceedingly small as inputs moved away from zero. This issue impeded the
efficient propagation of gradients during training, resulting in slow convergence or training
failures. Furthermore, the limited output range of these functions and their symmetric
nature constrained the network’s ability to represent complex, high-dimensional data.
Additionally, the computational complexity of these functions, particularly the exponential
calculations, hindered training and inference in large networks. These shortcomings led to
the development and widespread adoption of more suitable activation functions, such as
the rectified linear unit (ReLU) [18] and its variants, which successfully addressed these
issues and became integral components of modern deep learning architectures [19]. For
these reasons, early multilayer perceptron networks struggled to capture complex patterns
in data, making them unsuitable for tasks requiring the modeling of intricate relationships,
ultimately leading to the necessity of exploration of more advanced architectures and
training techniques.

Improvements in the artificial neurons’ functionality, more advanced architectures,
and improved training algorithms supported by graphical computational units (GPU) came
to open promising possibilities. The LeNet-5 architecture, developed for the recognition
of handwritten digits [20], is a fundamental milestone for convolutional neural networks
(CNNs) [21,22].

CNNs, inspired by the biological operation of animals’ vision system, assume that the
input is the representation of image data. Current architectures follow a structured sequence
of layers, each with specific functions to process and extract features from the input
data [23]. The journey begins with the input layer, which receives raw image data, typically
represented as a grid of pixel values, often with three color channels (red, green, blue) for
color images. Following the input layer, the network employs convolutional layers, which
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are responsible for feature extraction. These layers use convolutional operations (of several
types [22]) to detect local patterns and features in the input data. Early convolutional layers
focus on detecting basic features like edges, corners, and textures. After each convolution
operation, activation layers with rectified linear unit (ReLU) activation functions are applied
to introduce nonlinearity. ReLU units help the network learn more complex patterns and
enhance its ability to model the data effectively. Pooling (Subsampling) layers come
next, reducing the spatial dimensions of the feature maps while preserving important
information. Max pooling and average pooling are common operations that help make the
network more robust to variations in scale and position. The sequence of convolutional
layers continues, with additional layers stacked to capture increasingly complex and
abstract features. These deeper layers are adept at detecting higher-level patterns, shapes,
and objects in the data. Similar to the earlier convolutional layers, activation layers with
ReLU functions are applied after each convolution operation, maintaining nonlinearity
and enhancing feature learning. Pooling (subsampling) layers may be used again, further
decreasing the spatial dimensions of the feature maps and retaining essential information.
At the end of this sequence, after the network has extracted the most relevant information
from the input data, a special set of vectors are obtained, designated by deep features [24].
These, located deep in the network, distill data into compact, meaningful forms that are
highly discriminative. Or, in other words, after the progressive extraction of information,
layer after layer, raw input data is refined into more condensed and abstract representations
that are imbued with semantic meaning, encapsulating essential characteristics of the
input. They are highly discriminative and have lower dimensionality than the raw input
data, which not only conserves computational resources but also simplifies subsequent
processing, making it especially beneficial in the analysis of high-dimensional data, such as
images. This process also eliminates the tedious and error-prone process of handcrafted
feature selection, leading to optimized feature sets and to the possibility of building the
so-called “end-to-end” systems. Deep features can also help mitigate overfitting, a common
challenge in machine learning, since by learning relevant representations, they prevent
models from memorizing the training data and encourage more robust generalization.

Another great advantage of deep feature extraction pipelines is the possibility of using
transfer learning techniques. In this case, a deep feature extraction network previously
successfully developed on one task or dataset can be transferred and fine-tuned to another
related task, significantly reducing the need for large, labeled datasets and speeding up
model training. This versatility is a game changer in many applications.

After this extraction front end, continuing with the processing pipeline and moving
towards the end of the network, fully connected layers are introduced. These layers come
after the convolutional and pooling layers and play a pivotal role in feature aggregation
and classification. The deep features extracted by the previous layers are flattened and
processed through one or more fully connected layers.

Finally, the output layer emerges as the last layer of the network. The number of
neurons in this layer corresponds to the number of classes in a classification task or the
number of output units in a regression task. For classification tasks, a sigmoid or a softmax
activation function is typically used to calculate class probabilities, providing the final out-
put of the CNN [25,26]. A sigmoid function is commonly employed in binary classification,
producing a single probability score indicating the likelihood of belonging to the positive
class. The softmax function is favored for its ability to transform raw output scores into
probability distributions across multiple classes. This conversion ensures that the computed
probabilities represent the likelihood of the input belonging to each class, with the sum of
probabilities equating to one, thereby constituting a valid probability distribution. Beyond
this interpretability, both functions are differentiable, a critical attribute for the application
of gradient-based optimization algorithms like backpropagation during training.

The described structured sequence of layers, from the input layer to the output layer,
captures the hierarchical feature learning process in a CNN, allowing it to excel in im-
age classification tasks (among others). Specific CNN architectures may introduce varia-
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tions, additional components, or specialized layers based on the network’s design goals
and requirements.

3.1. Transformers

CNNs are well suited for grid-like data, such as images, where local patterns can
be captured efficiently. However, they struggle with sequential data because they lack a
mechanism for modeling dependencies between distant elements (for example, in distinct
time instants or far in the image). Also, CNNs do not inherently model the position or
order of elements within the data. They rely on shared weight filters, which makes them
translation invariant but can be problematic when absolute spatial relationships are impor-
tant [27]. To overcome these limitations (handling sequential data, modeling long-range
dependencies, incorporating positional information, and addressing tasks involving multi-
modal data, among others), transformers were introduced [28]. In the context of machine
learning applied to images, transformers are a type of neural network architecture that
extends the transformer model, originally designed for natural language processing [28], to
handle computer vision tasks. These models are often referred to as vision transformers
(ViTs) or image transformers [29] and come to introduce performance benefits, especially
in noisy conditions [30,31]. In clinical settings, applications cover diagnosis and progno-
sis [32], encompassing classification, segmentation, and reconstruction tasks in distinct
stages [31,33].

In vision transformers (ViT), the initial image undergoes a transformation process,
wherein it is divided into a sequence of patches, as can be observed in Figure 2. Each
of these patches is associated with a positional encoding technique, which captures and
encodes the spatial positions of the patches, thus preserving spatial information. These
patches, together with a class token, are then input into a transformer model to perform
multi-head self-attention (MHSA) and generate embeddings that represent the learned
characteristics of the patches. The class token’s state in the ViT’s output underscores a
pivotal aspect of the model’s architecture since it acts as a global aggregator of informa-
tion from all patches, offering a comprehensive representation of the entire image. The
token’s state is dynamically updated during processing, reflecting a holistic understanding
that encapsulates both local details and also the broader context of the image. Finally, a
multilayer perceptron (MLP) is employed for the purpose of classifying the learned image
representation. Notably, in addition to using raw images, it is also possible to supply
feature maps generated by convolutional neural networks (CNNs) as input into a vision
transformer for the purpose of establishing relational mappings [34]. It is also possible to
use the transformer’s encoding technique to explore the model’s explainability [35].
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The attention mechanism is a fundamental component in transformers. It plays a
pivotal role in enabling the model to selectively focus on different parts of the input data
with varying degrees of attention. At its core, the attention mechanism allows the model to
assign varying levels of importance to different elements within the input data. This means
the model can “pay attention” to specific elements while processing the data, prioritizing
those that are most relevant to the task at hand. This selective attention enhances the
model’s ability to capture essential information and relationships within the input. The
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mechanism operates as follows: First, the input data is organized into a sequence of
elements, such as tokens in a sentence for NLP or patches in an image for computer vision.
Then, the mechanism introduces three sets of learnable parameters: query (Q), key (K), and
value (V). The query represents the element of interest, while the key and value pairs are
associated with each element in the input sequence. For each element in the input sequence,
the attention mechanism calculates an attention score, reflecting the similarity between the
query and the key for that element. The method used to measure this similarity can vary,
with techniques like dot product and scaled dot product being common choices. These
attention scores represent how relevant each element is to the query. The next step involves
applying the softmax function to the attention scores. This converts them into weights that
sum to one, effectively determining the importance of each input element concerning the
query. The higher the weight, the more attention the model allocates to that specific element
in the input data. Finally, the attention mechanism computes a weighted sum of the values,
using the attention weights. The resulting output is a combination of information from all
input elements, with elements more relevant to the query receiving higher weight in the
final representation [36,37].

The attention mechanism can be used in various ways (attention gate [38], mixed
attention [39], among others in the medical field), with one prominent variant being self-
attention. In self-attention, the query, key, and value all originate from the same input
sequence. This allows the architecture to model relationships and dependencies between
elements within the same sequence, making it particularly useful for tasks that involve
capturing long-range dependencies and context [7,40,41].

The original ViT architecture, as in Figure 3a, was enhanced with the hierarchical
vision transformer using shifted windows (SWIN transformer) [42] where a hierarchical
partitioning of the image into patches is used. This means that the image is first divided
into smaller patches, and then these patches are merged together as the network goes
deeper, as in Figure 3b. This hierarchical approach allows SWIN to capture both local and
global features in the image, which can improve its performance on a variety of tasks. In
the SWIN transformer, images of different resolutions belonging to outputs of different
stages can be used to facilitate segmentation tasks.
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Another key difference between SWIN and ViT is that SWIN uses a shifted window
self-attention mechanism, as depicted in Figure 4. This means that the self-attention
operation is only applied to a local window of patches, or in other words, to a limited
number of neighbor patches (as represented in green in Figure 4) rather than the entire
image. Then, in a second stage, the attention window focus location is shifted to a different
location (by patch cyclic shifting). This shifted window approach comes to reduce the
computational load and complexity of the self-attention operation, which can improve the
efficiency of the SWIN architecture. These differences, when compared with the original ViT,
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allow a more efficient and scalable architecture, which were further refined in SWIN v2 [43].
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The transformer-based approach has received a lot of attention due to its effectiveness,
still with improvement opportunities [44]. The described innovations have been crucial
in advancing the state of the art in medical image processing, covering machine learning
tasks, such as classification, segmentation, synthesis (image or video), detection, and
captioning [34,45]. By enhancing the model’s ability to focus on relevant information and
understand complex relationships within the data, the attention mechanism represents
a significant step in the improvement of the quality and effectiveness of various deep
learning applications in the medical field.

Within the broad category of computer vision and artificial intelligence, the YOLO
algorithm [46], which stands for “you only look once”, has gained a lot of popularity due
to its performance in real-time object detection tasks. In the medical imaging field, the
term “YOLO” is sometimes used more broadly to refer to implementations or systems
that use one of the versions of the YOLO algorithm. It approaches object detection as a
regression problem, predicting bounding box coordinates and class probabilities directly
from the input image in a single pass through its underlying neural network (composed of
backbone, neck, and head sections). This single-pass processing, where the image is divided
into a grid for simultaneous predictions, distinguishes YOLO from other approaches and
contributes to its exceptional speed. Postprediction, nonmaximum suppression is applied
to filter redundant and low-confidence predictions, ensuring that each object is detected
only once. In the medical field, YOLO has been used for a variety of imaging tasks,
including cytology automation [47], detecting lung nodules in CT scans [48], segmentation
of structures [49], detecting breast cancer in mammograms [50], or to track needles in
ultrasound sequences [51], among others. YOLO’s fast and accurate object detection
capabilities make it an excellent choice for many medical imaging applications.

Finally, it is noteworthy to highlight the emergence of hybrid approaches that com-
bine the aforementioned algorithms, as observed in instances like TransU-net [52] or
ViT-YOLO [53]. These combinations aim to leverage the strengths of each individual al-
gorithm, with the objective of achieving performance enhancements. It is important to
acknowledge, however, that these approaches are still in an early stage of development
and are not explored here.

3.2. Generative Models

Generative models are a class of machine learning models that can generate new data
based on training data. Other generative models include generative adversarial networks
(GANs), variational autoencoders (VAEs), and flow-based models. Each can produce
high-quality images.

Generative adversarial networks, or GANs, are a class of machine learning models
introduced in 2014 [54] that excel at generating data, often in the form of images, but
applicable to other data types like text or audio as well. GANs consist of two neural
networks: a generator and a discriminator. The generator creates synthetic data from
random noise and aims to produce data that are indistinguishable from real data, while the
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discriminator tries to distinguish between real and fake data, as represented in Figure 5.
Through an adversarial training process, these networks compete, with the generator
continually improving its ability to create realistic data and the discriminator enhancing its
capacity to identify real from fake data.

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 22 
 

divided into a grid for simultaneous predictions, distinguishes YOLO from other ap-
proaches and contributes to its exceptional speed. Postprediction, nonmaximum sup-
pression is applied to filter redundant and low-confidence predictions, ensuring that 
each object is detected only once. In the medical field, YOLO has been used for a variety 
of imaging tasks, including cytology automation [47], detecting lung nodules in CT 
scans [48], segmentation of structures [49], detecting breast cancer in mammograms [50], 
or to track needles in ultrasound sequences [51], among others. YOLO’s fast and accurate 
object detection capabilities make it an excellent choice for many medical imaging appli-
cations. 

Finally, it is noteworthy to highlight the emergence of hybrid approaches that com-
bine the aforementioned algorithms, as observed in instances like TransU-net [52] or 
ViT-YOLO [53]. These combinations aim to leverage the strengths of each individual al-
gorithm, with the objective of achieving performance enhancements. It is important to 
acknowledge, however, that these approaches are still in an early stage of development 
and are not explored here. 

3.2. Generative Models 
Generative models are a class of machine learning models that can generate new 

data based on training data. Other generative models include generative adversarial 
networks (GANs), variational autoencoders (VAEs), and flow-based models. Each can 
produce high-quality images. 

Generative adversarial networks, or GANs, are a class of machine learning models 
introduced in 2014 [54] that excel at generating data, often in the form of images, but ap-
plicable to other data types like text or audio as well. GANs consist of two neural net-
works: a generator and a discriminator. The generator creates synthetic data from ran-
dom noise and aims to produce data that are indistinguishable from real data, while the 
discriminator tries to distinguish between real and fake data, as represented in Figure 5. 
Through an adversarial training process, these networks compete, with the generator 
continually improving its ability to create realistic data and the discriminator enhancing 
its capacity to identify real from fake data. 

 
Figure 5. Architecture overview for a generative adversarial network for images. 

GANs have revolutionized the field of data generation, a highly valued resource 
due to the data avidity of modern machine learning systems, due to the lack of data in 
some areas and due to data protection and security constraints. These networks offer a 
highly effective way to create synthetic data that closely resemble real data. This is high-
ly valuable, especially when dealing with limited datasets, as GANs can help augment 
training data for various machine learning tasks. For instance, in medical imaging, 
where obtaining large, diverse datasets can be challenging, GANs enable researchers to 

Figure 5. Architecture overview for a generative adversarial network for images.

GANs have revolutionized the field of data generation, a highly valued resource
due to the data avidity of modern machine learning systems, due to the lack of data in
some areas and due to data protection and security constraints. These networks offer
a highly effective way to create synthetic data that closely resemble real data. This is
highly valuable, especially when dealing with limited datasets, as GANs can help augment
training data for various machine learning tasks. For instance, in medical imaging, where
obtaining large, diverse datasets can be challenging, GANs enable researchers to generate
additional, realistic medical images for training diagnostic models, ultimately improving
the accuracy of disease detection [55]. A recent study by Armanious et al. proposed a
new framework called MedGAN [56] for medical image-to-image translation that operates
on the image level in an end-to-end manner. MedGAN builds upon recent advances
in the field of GANs by merging the adversarial framework with a new combination of
nonadversarial losses. The framework utilizes a discriminator network as a trainable
feature extractor which penalizes the discrepancy between the translated medical images
and the desired modalities. Style-transfer losses are also utilized to match the textures and
fine structures of the desired target images to the translated images. Additionally, a new
generator architecture, titled CasNet, enhances the sharpness of the translated medical
outputs through progressive refinement via encoder–decoder pairs. MedGAN was applied
to three different tasks: PET–CT translation, correction of MR motion artefacts, and PET
image denoising. Perceptual analysis by radiologists and quantitative evaluations illustrate
that MedGAN outperforms other existing translation approaches.

Generative adversarial networks (GANs) have been a promising tool in the field of
medical image analysis [57], particularly in image-to-image translation. Skandarani et al. [58]
conducted an empirical study on GANs for medical image synthesis. The results revealed
that GANs are far from being equal as some are ill-suited for medical imaging applications
while others are much better off. The top-performing GANs are capable of generating
realistic-looking medical images by FID standards that can fool trained experts in a visual
Turing test and comply with some metrics [58]. The introduction of these models into
clinical practice has been cautious [59], but the advantages and performance that have been
successively achieved with their development have allowed GANs to become a successful
technology.

Along with GANs, variational autoencoders (VAEs) are a popular technique for image
generation. While both models are capable of generating images, they differ in their
approach and training methodology. VAEs are a type of generative model that learns to
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encode the fundamental information of the input data into a latent space. The encoder
network maps the input data to a latent space, which is then decoded by the decoder
network to generate the output image. VAEs are trained using a probabilistic approach
that maximizes the likelihood of the input data given the latent space. VAEs are better
suited for applications that require probabilistic modeling, such as image reconstruction
and denoising. This approach is capable of generating high-quality images but may suffer
from blurry outputs [60–62].

Diffusion models constitute another class of generative models employed in image
synthesis, functioning by iteratively transforming a base distribution into a target distribu-
tion through a series of diffusion steps [63]. These models leverage the concept of image
diffusion, wherein the generation process unfolds progressively by adding noise to the
image iteratively. Typically, the generation process commences with a simple distribution,
such as a Gaussian, and refines it over multiple steps to approximate the desired complex
distribution of real images. The iterative nature of diffusion models allows them to cap-
ture intricate structures and nuanced details present in medical images, where they can
outperform GAN [64,65]. They can also be applied to video data [66,67].

Flow-based generative models represent a distinct approach in variational inference
and natural image generation, recently gaining attention in the realm of computer vi-
sion [68]. The foundational concept, introduced in [69], centers around the utilization of a
(normalizing) flow—a sequence of invertible mappings—to construct the transformation
of a probability density, approximating a posterior distribution. The process commences
with an initial variable, progressively mapping it to a variable characterized by a simple
distribution (such as an isotropic Gaussian). This is achieved by iteratively applying the
change of variable rule, akin to the inference mechanism in an encoder network. In the
context of image generation, the initial variable is the real image governed by an unknown
probability function. Through the employment of a well-designed inference network,
the flow undergoes training to learn an accurate mapping. Importantly, the invertibility
of the flow-based model facilitates the straightforward generation of synthetic images.
This is accomplished by sampling from the simple distribution and navigating through
the map in reverse. Comparative to alternative generative models and autoregressive
models, flow-based methods offer a notable advantage by enabling tractable and accurate
log-likelihood evaluation throughout the training process [70]. Simultaneously, they afford
an efficient and exact sampling process from the simple prior distribution during testing.
Image modality transfer [71] and 3D data augmentation [72] are promising areas in the
medical field.

GANs are highly popular for magnetic resonance applications due to their ability
to generate additional datasets and also due to the existing datasets that can support
the training of effective models [73]. Reconstruction and segmentation tasks are also an
important field of application. Here, the adversarial training plays a crucial role in imposing
robust constraints on both the shape and texture of the generator’s output [73]. In some
cases, GANs can be preferred over VAE due easier optimal model optimization [74]. In
many applications, a balance must be found between the ability to generate high-quality
samples, achieve fast sampling (inference), and exhibit mode diversity [75].

Overall, generative approaches are vital in machine learning for medical images
due to their capacity to generate realistic data, drive innovation in image generation and
manipulation, facilitate image-to-image translation, and open up creative opportunities for
content generation across various domains.

3.3. Deep Learning Techniques and Performance Optimization

Medical imaging techniques are based on different physical principles, each with
their benefits and limitations. The ability to deal with such diverse modalities is also an
important aspect to be addressed by AI. In [76], a set of “tricks” are presented to improve the
performance of deep learning models for multimodal image classification tasks. The authors
start by emphasizing the increasing importance of multimodal image classification, which
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involves utilizing information from multiple modalities, such as images, text, and other data
sources. For this, they also address the challenges specific to multimodal datasets, including
data preprocessing, feature extraction, data imbalance, heterogeneity of modalities, data
fusion, and model optimization. As defined by the authors, a “bag of tricks” or techniques
can enhance the effectiveness of these models in handling multimodal data. These tricks
can focus on the data, covering feature alignment, modality-specific preprocessing, and
class balancing techniques, and also on the processing, using architectural modifications,
training strategies, and regularization techniques. For the evaluation of such systems,
benchmarking approaches are also presented and explored. These are valuable insights for
researchers and practitioners working in the field of multimodal image classification.

4. Applications

AI-based imaging techniques can be divided in eight distinct categories: acquisition,
preprocessing, feature extraction, registration, classification, object localization, segmenta-
tion, and visualization. These can also be organized in the clinical process pipeline broadly
encompassing prevention, diagnostics, planning, therapy, prognostic, and monitoring. It is
also possible to focus on the human organ or physiological process under focus. Using this
last perspective, groups have been created using the associated keywords of the selected
papers, and their relative expression has been calculated, as in Figure 6. Notably, lungs
emerge as the primary focus, likely attributed to the aftermath of the recent COVID-19
pandemic and the availability of novel, untapped datasets. The significance of the affected
organ in human life should also be a pivotal factor driving researchers’ interest in each
domain.
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4.1. Medical Image Analysis for Disease Detection and Diagnosis

Medical image analysis for disease detection and diagnosis is a rapidly evolving field
that holds immense potential for improving healthcare outcomes. By harnessing advanced
computational techniques and machine learning algorithms, medical professionals are now
able to extract invaluable insights from various medical imaging modalities [76,77].

Artificial intelligence is an area where great progress has been observed, and the num-
ber of techniques applicable to medical image processing has been increasing significantly.
In this context of diversity, review articles where different techniques are presented and
compared are useful. For example, in the area of automated retinal disease assessment
(ARDA), AI can be used to help healthcare workers in the early detection, screening, di-
agnosis, and grading of retinal diseases such as diabetic retinopathy (DR), retinopathy of
prematurity (RoP), and age-related macular degeneration (AMD), as shown in the compre-
hensive survey presented in [77]. The authors highlight the significance of medical image
modalities, such as optical coherence tomography (OCT), fundus photography, and fluores-
cein angiography, in capturing detailed retinal images for diagnostic purposes and explain
how AI can cope with these distinct information sources, either isolated or combined. The
limitations and subjectivity of traditional manual examination and interpretation methods
are emphasized, leading to the exploration of AI-based solutions. For this, an overview of
the utilization of deep learning models is presented, and the most promising results in the
detection and classification of retinal diseases, including age-related macular degeneration
(AMD), diabetic retinopathy, and glaucoma, are thoroughly covered. The role of AI in facil-
itating the analysis of large-scale retinal datasets and the development of computer-aided
diagnostic systems is also highlighted. However, AI is not always a perfect solution, and
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the challenges and limitations of AI-based approaches are also covered, addressing issues
related to data availability, model interpretability, and regulatory considerations. Given the
significant interest in this field and the promising results that AI has yielded, other studies
have also emerged to cover various topics related to eye image analysis [78,79].

Another area of great interest is brain imaging, whose techniques play a crucial role in
understanding the intricate workings of the human brain and in diagnosing neurological
disorders. Methods such as magnetic resonance imaging (MRI), functional MRI (fMRI),
positron emission tomography (PET), or electroencephalography signals (EEG) provide
valuable insights into brain structure, function, and connectivity. However, the analysis
of these complex data, be it images or signals, requires sophisticated tools and expertise.
Again, artificial intelligence (AI) comes into play. The synergy between brain imaging and
AI has the potential to revolutionize neuroscience and improve patient care by unlocking
deeper insights into the intricacies of the human brain. In [80], a powerful combination of
deep learning techniques and the sine–cosine fitness grey wolf optimization (SCFGWO)
algorithm is used on the detection and classification of brain tumors. It addresses the
importance of accurate tumor detection and classification as well as the associated chal-
lenges. Complexity and variability are tackled by convolutional neural networks (CNNs)
that can automatically learn and extract relevant features for tumor analysis. In this case,
the SCFGWO algorithm is used to fine-tune the parameters of the CNN leading to an
optimized performance. Metrics, such as accuracy, sensitivity, specificity, and F1-score,
are compared with other existing approaches to showcase the effectiveness and benefits
of the proposed method in brain tumor detection and classification. The advantages and
limitations of the proposed approach and the potential impact of the research in clinical
practice are also mentioned.

Lung imaging has been a subject of extensive research interest [81,82], primarily due
to the aggressive nature of lung cancer and its tendency to be detected at an advanced stage,
leading to high mortality rates among cancer patients. In this context, accurate segmentation
of lung fields in medical imaging plays a crucial role in the detection and analysis of
lung diseases. In a recent study [83], the authors focused on segmenting lung fields
in chest X-ray images using a combination of superpixel resizing and encoder–decoder
segmentation networks. The study effectively addresses the challenges associated with
lung field segmentation, including anatomical variations, image artifacts, and overlapping
structures. It emphasizes the potential of deep learning techniques and the utilization of
encoder–decoder architectures for semantic segmentation tasks. The proposed method,
which combines superpixel resizing with an encoder–decoder segmentation network,
demonstrates a high level of effectiveness compared to other approaches, as assessed
using evaluation metrics such as the Dice similarity coefficient, Jaccard index, sensitivity,
specificity, and accuracy.

More recently, the interest in lung imaging has been reinforced due to its importance
in the diagnosis and monitoring of COVID-19 disease. In a notable study [84], the authors
delve into the data-driven nature of AI and its need for high-quality data. They specifically
focus on the generation of synthetic data, which involves creating artificial instances that
closely mimic real data. In fact, by using the proposed approach, the synthetic images are
nearly indistinguishable from read images when compared using the structural similarity
index (SSIM), peak signal-to-noise ratio (PSNR), and the Fréchet inception distance (FID).
In this case, lung CT for COVID-19 diagnosis is used as an application example where
this proposed approach has shown to be successful. The problem is tackled by means of a
new regularization strategy, which refers to a technique used to prevent overfitting in ML
models. This strategy does not require making significant changes to the underlying neural
network architecture, making it easier to implement. Furthermore, the proposed method’s
efficacy extends beyond lung CT for COVID-19 diagnosis and can be easily adapted to
other image types or imaging modalities. Consequently, future research endeavors can
explore its applicability to diverse diseases and investigate its relevance to emerging AI
topics, such as zero-shot or few-shot learning.
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Breast cancer, the second most reported cancer worldwide, must be diagnosed as early
as possible for a good prognostic. In this case, medical imaging is paramount for disease
prevention and diagnosis. The effectiveness of an AI-based approach is evaluated in [85].
The authors present a novel investigation that constructs and evaluates two computer-
aided detection (CAD) systems for digital mammograms. The objective was to differentiate
between malignant and benign breast lesions by employing two state-of-the-art approaches
based on radiomics (with features such as intensity, shape, and texture) and deep transfer
learning concepts and technologies (with deep features). Two CAD systems were trained
and assessed using a sizable and diverse dataset of 3000 images. The findings of this study
indicate that deep transfer learning can effectively extract meaningful features from medical
images, even with limited training data, offering more discriminatory information than
traditional handcrafted radiomics features. However, explainability, a desired characteristic
in artificial intelligence and in medical decision systems in particular, must be further
explored to fully unravel the mysteries of these “black-box” models.

Still, concerning breast imaging, and addressing the typical high data needs of ma-
chine learning systems, a study was made to compare and optimize models using small
datasets [86]. The article discusses the challenges associated with limited data, such as over-
fitting and model generalization. Distinct CNN architectures, such as AlexNet, VGGNet,
and ResNet, are trained using small datasets. The authors discuss strategies to mitigate
these limitations, such as data augmentation techniques, transfer learning, and model
regularization. With these premises, a multiclass classifier, based on the BI-RADS lexicon
on the INBreast dataset [87], was developed. Compared with the literature, the model was
able to improve the state-of-the-art results. This comes to reinforce that discriminative
fine-tuning works well with state-of-the-art CNN models and that it is possible to achieve
excellent performance even on small datasets.

Radiomics and artificial intelligence (AI) play pivotal roles in advancing breast cancer
imaging, offering a range of applications across the diagnostic spectrum. These technolo-
gies contribute significantly to risk stratification, aiding in the determination of cancer
recurrence risks and providing valuable insights to guide treatment decisions [88,89]. More-
over, AI algorithms leverage radiomics features extracted from diverse medical imaging
modalities, such as mammography, ultrasound, magnetic resonance imaging (MRI), and
positron emission tomography (PET), to enhance the accuracy of detecting and classifying
breast lesions [88,89]. For treatment planning, radiomics furnishes critical information
regarding treatment effectiveness, facilitating the prediction of treatment responses and
the formulation of personalized treatment plans [90]. Additionally, radiomics serves as
a powerful tool for prognosis, enabling the prediction of outcomes such as disease-free
survival and recurrence risk in breast cancer patients [91]. Furthermore, the robustness
of MRI-based radiomics features against interobserver segmentation variability has been
highlighted, indicating their potential for future breast MRI-based radiomics research [92].

Liver cancer is the third most common cause of death from cancer worldwide [93],
and its incidence has been growing. Again, the development of the disease is often
asymptomatic, making screening and early detection crucial for a good prognosis. In [8],
the authors focus on the segmentation of liver lesions in CT images of the LiTS dataset [94].
As a novelty, the paper proposes an intelligent decision system for segmenting liver and
hepatic tumors by integrating four efficient neural networks (ResNet152, ResNeXt101,
DenseNet201, and InceptionV3). These classifiers are independently operated, and a final
result is obtained by postprocess to eliminate artifacts. The obtained results were better
than those obtained by the individual networks. In fact, concerning liver and pancreatic
images, the use of AI algorithms is already a reality for speeding up repetitive tasks,
such as segmentation, acquiring new quantitative parameters, such as lesion volume and
tumor burden, improving image quality, reducing scanning time, and optimizing imaging
acquisition [95].

Diabetic retinopathy (DR) is a significant cause of blindness globally, and early detec-
tion and intervention can help change the outcomes of the disease. AI techniques, including
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deep learning and convolutional neural networks (CNN), have been applied to the analysis
of retinal images for DR screening and diagnosis [96]. Some studies have shown promising
results in detecting referable diabetic retinopathy (rDR) using AI algorithms with high
sensitivity and specificity compared to human graders [97], while reducing the associated
human resources. For example, a study using a deep learning-based AI system achieved
97.05% sensitivity, 93.4% specificity, and 99.1% area under the curve (AUC) in classify-
ing rDR as moderate or worse diabetic retinopathy, referable diabetic macular edema, or
both [97]. Nevertheless, there are also shortcomings, such as the lack of standards for
development and evaluation and the limited scope of application [98].

AI can also help in the detection and prediction of age-related macular degeneration
(AMD). AI-based systems can screen for AMD and predict which patients are likely to
progress to late-stage AMD within two years [99]. AI algorithms can provide analyses to
assist physicians in diagnosing conditions based on specific features extrapolated from
retinal images [100].

Yet in this area, optical coherence tomography (OCT) is a valuable tool in diagnosing
various eye conditions and is where artificial intelligence (AI) can successfully be used.
AI-assisted OCT has several advantages and applications in ophthalmology for diagnosis,
monitoring, and disease-progression estimation (e.g., for glaucoma, macular edema, or
age-related macular degeneration) [101]. AI-assisted OCT can provide more accurate and
sensitive results compared to traditional methods [102]. For example, an OCT-AI-based
telemedicine platform achieved a sensitivity of 96.6% and specificity of 98.8% for detecting
urgent cases, and a sensitivity of 98.5% and specificity of 96.2% for detecting both urgent
and routine cases [103].

These tools can lead to more efficient and objective ways of diagnosing and managing
eye conditions.

4.2. Imaging and Modeling Techniques for Surgical Planning and Intervention

Imaging and 3D modeling techniques, coupled with the power of artificial intelligence
(AI), have revolutionized the field of surgical planning and intervention, offering numerous
advantages to both patients and healthcare professionals. By leveraging the capabilities
of AI, medical imaging data, such as CT scans and MRI images, can be transformed into
detailed three-dimensional models that provide an enhanced understanding of a patient’s
anatomy. This newfound precision and depth of information allow surgeons to plan com-
plex procedures with greater accuracy, improving patient outcomes and minimizing risks.
Furthermore, AI-powered algorithms can analyze vast amounts of medical data, assisting
surgeons in real-time during procedures, guiding them with valuable insights, and enabling
personalized surgical interventions. For example, in [49], a new deep learning (DL)-based
tool for segmenting anatomical structures of the left heart from echocardiographic images
is proposed. It results from a combination of the YOLOv7 algorithm and U-net, specifically
addressing segmentation of echocardiographic images into LVendo, LVepi, and LA.

Additionally, the integration of 3D printing technology with imaging and 3D modeling
techniques further amplifies the advantages of surgical planning and intervention. With 3D
printing, these intricate anatomical models can be translated into physical objects, allowing
surgeons to hold and examine patient-specific replicas before the actual procedure. This
tangible representation aids in comprehending complex anatomical structures, identifying
potential challenges, and refining surgical strategies. Surgeons can also utilize 3D-printed
surgical guides and implants, customized to fit each patient’s unique anatomy, thereby
enhancing precision and reducing operative time.

These benefits are described and explored in [104], covering the operative workflow
involved in the process of creating 3D-printed models of the heart using computed tomog-
raphy (CT) scans. The authors begin by emphasizing the importance of accurate anatomical
models in surgical planning, particularly in complex cardiac cases. They also discuss
how 3D printing technology has gained prominence in the medical field, allowing for the
creation of patient-specific anatomical models. In their developments, they thoroughly
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describe the operative workflow for generating 3D-printed heart models. Throughout the
process, the challenges and limitations of the operative workflow from CT to 3D printing of
the heart are covered. They also discuss factors such as cost, time, expertise required, and
the need for validation studies to ensure the accuracy and reliability of the printed models.

A similar topic is presented in [105]. Here the authors focus specifically on coronary
artery bypass graft (CABG) procedures and describe the feasibility of using a 3D modeling
and printing process to create surgical guides, contributing to the success of the surgery
and enhancing patient outcomes. In this paper, the authors also discuss the choice of
materials for the 3D-printed guide, considering biocompatibility and sterility requirements.
In addition, a case study that demonstrates the successful application of the workflow in a
real clinical scenario is presented.

The combination of AI-driven imaging, 3D modeling, and 3D printing technologies
revolutionizes surgical planning and intervention, empowering healthcare professionals
with unparalleled tools to improve patient outcomes, create personalized solutions, and
redefine the future of surgical practice. These advancements in imaging and 3D modeling
techniques, driven by AI, are driving a new era of surgical precision and innovation in
healthcare.

4.3. Image and Model Enhancement for Improved Analysis

Decision-making and diagnosis are important purposes for clinical applications, but
AI can also play an important role in other applications of the clinical process. For example,
in [106] the authors focus on the application of colorization techniques to medical images,
with the goal of enhancing the visual interpretation and analysis by adding chromatic
information. The authors highlight the importance of color in medical imaging as it
can provide additional information for diagnosis, treatment planning, and educational
purposes. They also address the challenges associated with medical image colorization,
including the large variability in image characteristics and the need for robust and accurate
colorization methods. The proposed method utilizes a spatial mask-guided colorization
with a generative adversarial network (SMCGAN) technique to focus on relevant regions
of the medical image while preserving important structural information during the process.
The evaluation was based on a dataset from the Visible Human Project [107] and from
the prostate dataset NCI-ISBI 2013 [108]. With the presented experimental setup and
evaluation metrics used for performance assessment, the proposed technique was able to
outperform the state-of-the-art GAN-based image colorization approaches with an average
improvement of 8.48% in the peak signal-to-noise ratio (PSNR) metric.

In complex healthcare scenarios, it is crucial for clinicians and practitioners to under-
stand the reasoning behind AI models’ predictions and recommendations. Explainable
AI (XAI) plays a pivotal role in the domain of medical imaging techniques for decision
support, where transparency and interpretability are paramount. In [9], the authors address
the problem of nuclei detection in histopathology images, which is a crucial task in digital
pathology for diagnosing and studying diseases. They specifically propose a technique
called NDG-CAM (nuclei detection in histopathology images with semantic segmentation
networks and Grad-CAM). Grad-CAM (gradient-weighted class activation mapping) [109]
is a technique used in computer vision and deep learning to visualize and interpret the
regions of an image that are most influential in the prediction made by a convolutional
neural network. Hence, in the proposed methodology, the semantic segmentation network
aims to accurately segment the nuclei regions in histopathology images, while Grad-CAM
helps visualize the important regions that contribute to the model’s predictions, helping
to improve the accuracy and interpretability of nuclei detection. The authors compare the
performance of their method with other existing nuclei detection methods, demonstrating
that NDG-CAM achieves improved accuracy while providing interpretable results.

Still with the purpose of making AI provide human understandable results, the authors
in [110] focus on the development of an open-source COVID-19 CT dataset that includes
automatic lung tissue classification for radiomics analysis. The challenges associated with
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COVID-19 research, including the importance of large-scale datasets and efficient analysis
methods are covered. The potential of radiomics, which involves extracting quantitative
features from medical images, in aiding COVID-19 diagnosis, prognosis, and treatment
planning, are also mentioned. The proposed dataset consists of CT scans from COVID-19
patients, which are annotated with labels indicating different lung tissue regions, such as
ground-glass opacities, consolidations, and normal lung tissue.

Novel machine learning techniques are also being used to enhance the resolution and
quality of medical images [111]. These techniques aim to recover fine details and structures
that are lost or blurred in low-resolution images, which can improve the diagnosis and treat-
ment of various diseases. One of the novel machine learning techniques is based on GANs.
For example, Bing at al. [112] propose the use of an improved squeeze-and-excitation block
that selectively amplifies the important features and suppresses the nonimportant ones in
the feature maps. A simplified EDSR (enhanced deep super-resolution) model to generate
high-resolution images from low-resolution inputs is also proposed, along with a new
fusion loss function. The proposed method was evaluated on public medical image datasets
and compared with state-of-the-art deep learning-based methods, such as SRGAN, EDSR,
VDSR, and D-DBPN. The results show that the proposed method achieves better visual
quality and preserves more details, especially for high upscaling factors.

Vision transformers, with their ability to treat images as sequences of tokens and to
learn global dependencies among them, can capture long-range and complex patterns
in images, which can benefit super-resolution tasks. Zhu et al. [113] propose the use of
vision transformers with residual dense connections and local feature fusion. This method
proposes an efficient vision transformer architecture that can achieve high-quality single-
image super-resolution for various medical modalities, such as MRI, CT, and X-ray. The
key idea is to use residual dense blocks to enhance the feature extraction and representation
capabilities of the vision transformer and to use local feature fusion to combine the low-level
and high-level features for better reconstruction. Moreover, this method also introduces
a novel perceptual loss function that incorporates prior knowledge of medical image
segmentation to improve the image quality of desired aspects, such as edges, textures, and
organs. In another work, Wei et al. [114] propose to adapt the SWIN transformer, which
is a hierarchical vision transformer that uses shifted windows to capture local and global
information, to the task of automatic medical image segmentation. The high-resolution
SWIN transformer uses a U-net-like architecture that consists of an encoder and a decoder.
The encoder converts the high-resolution input image into low-resolution feature maps
using a sequence of SWIN transformer blocks, and the decoder gradually generates high-
resolution representations from low-resolution feature maps using upsampling and skip
connections. The high-resolution SWIN transformer can achieve state-of-the-art results
on several medical image segmentation datasets, such as BraTS, LiTS, and KiTS (details
below).

In addition, perceptual loss functions can be used to further enhance generative
techniques. These are designed to measure the similarity between images in terms of their
semantic content and visual quality rather than their pixel-wise differences. Perceptual loss
functions can be derived from pretrained models, such as image classifiers or segmenters,
that capture high-level features of images. By optimizing the perceptual loss functions, the
super-resolution models can generate images that preserve the important structures and
details of the original images while avoiding artifacts and distortions [112,115].

Medical images often suffer from noise, artifacts, and limited resolution due to the
physical constraints of the imaging devices. Therefore, developing effective and efficient
methods for medical image super-resolution is a challenging and promising research topic,
searching to obtain previously unachievable details and resolution [116,117].

4.4. Medical Imaging Datasets

Numerous advancements outlined above have arisen through machine learning public
challenges. These initiatives provided supporting materials in the form of datasets (which
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are often expensive and time consuming to collect) and, at times, baseline algorithms,
contributing to the facilitation of various research studies aimed at the development and
evaluation of novel algorithms. The promotion of a competitive objective was pivotal for
promoting the development of a scientific community around a given topic. In Table 1,
some popular datasets are presented.

Table 1. Examples of datasets with medical images.

Name Description Reference

BRATS

The Multimodal Brain Tumor Segmentation Benchmark (BRATS) is an annual challenge
that aims to compare different algorithms for brain tumor segmentation. The dataset,
which has received several enhancements over the years, consists of preoperative
multimodal MRI scans of glioblastoma and lower-grade glioma with ground truth
labels and survival data for participants to segment and predict the tumor.

[118]

KiTS

The Kidney Tumor Segmentation Benchmark (KiTS) is a dataset used to evaluate and
compare algorithms for kidney tumor segmentation. The dataset consists of CT scans of
the kidneys and kidney tumors, with 300 scans in total. The data and segmentations are
provided by various clinical sites around the world.

[119]

LiTS

The Liver Tumor Segmentation Benchmark (LiTS) is a dataset used to evaluate and
compare liver tumor segmentation algorithms. The dataset consists of CT scans of the
liver and liver tumors, with 130 scans in the training set and 70 scans in the test set. The
data and segmentations are provided by various clinical sites around the world.

[94]

MURA
The Musculoskeletal Radiographs (MURA) dataset is a large dataset of musculoskeletal
radiographs containing 40,561 images from 14,863 studies. Each study is manually
labeled by radiologists as either normal or abnormal.

[120]

MedPix A free online medical image database with over 59,000 indexed and curated images
from over 12,000 patients. [121]

NIH Chest X-rays A large dataset of chest X-ray images containing over 112,000 images from more than
30,000 unique patients. The images are labeled with 14 common disease labels. [122]

5. Conclusions

Cutting-edge techniques that push the limits of current knowledge have been covered
in this editorial. For those focused on the AI aspects of technology, evolutions have been
reported in all stages of the medical imaging machine learning pipeline. As mentioned, the
data-driven nature of these techniques requires that special attention is given to it. Beyond
a high-quality dataset [110], attention can be given to the generation of more data [84] and
better data [83]. The training process can be optimized to deal with small datasets [86],
or techniques can be used to improve the parameter optimization process [80]. To better
understand the models’ operating, we can use explainable AI techniques [9]. We can
also focus on generating a better output by combining several classifiers [8] or by adding
useful information, such as colors [106]. Many of the involved challenges throughout the
process can address using a “bag of tricks” [76]. The advantages of using AI in medical
imaging applications is explored in [77], and its ability to perform better than feature-based
approaches is covered in [85]. Finally, applications of AI to 3D modeling and physical
object generation are covered in [104,105].

The field of medical imaging and AI is evolving rapidly, driven by ongoing research
and technological advancements. Researchers are continuously exploring novel algorithms,
architectures, and methodologies to further enhance the capabilities of AI in medical
imaging. Additionally, collaborations between clinicians, computer scientists, and industry
professionals are vital in translating research findings into practical applications that can
benefit patients worldwide.

In conclusion, the fusion of medical imaging and AI has brought about significant
advancements in healthcare. From early disease detection to personalized diagnosis and
therapy, AI has demonstrated its potential to revolutionize medical practice. By harnessing
the power of AI, medical professionals can leverage the wealth of information contained
within medical images to provide accurate diagnoses, tailor treatment plans, and improve
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patient outcomes. As technology continues to advance, we can expect even more ground-
breaking innovations that will further transform the landscape of medical imaging and AI
in the years to come.
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