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Abstract: Hypertension, a primary risk factor for various cardiovascular diseases, is a global health
concern. Early identification and effective management of hypertensive individuals are vital for
reducing associated health risks. This study explores the potential of deep learning (DL) techniques,
specifically GoogLeNet, ResNet-18, and ResNet-50, for discriminating between normotensive (NTS)
and hypertensive (HTS) individuals using photoplethysmographic (PPG) recordings. The research
assesses the impact of calibration at different time intervals between measurements, considering
intervals less than 1 h, 1–6 h, 6–24 h, and over 24 h. Results indicate that calibration is most effective
when measurements are closely spaced, with an accuracy exceeding 90% in all the DL strategies tested.
For calibration intervals below 1 h, ResNet-18 achieved the highest accuracy (93.32%), sensitivity
(84.09%), specificity (97.30%), and F1-score (88.36%). As the time interval between calibration and test
measurements increased, classification performance gradually declined. For intervals exceeding 6 h,
accuracy dropped below 81% but with all models maintaining accuracy above 71% even for intervals
above 24 h. This study provides valuable insights into the feasibility of using DL for hypertension
risk assessment, particularly through PPG recordings. It demonstrates that closely spaced calibration
measurements can lead to highly accurate classification, emphasizing the potential for real-time
applications. These findings may pave the way for advanced, non-invasive, and continuous blood
pressure monitoring methods that are both efficient and reliable.

Keywords: blood pressure; hypertension; photoplethysmography; calibration; deep learning

1. Introduction

Hypertension is a primary risk factor for a wide range of cardiovascular diseases
(CVD), including stroke, ischemic heart disease, heart failure, and peripheral arterial disease.
Research has shown that improving blood pressure (BP) control can prevent more deaths
than any other major risk factor modification. Early identification, diagnosis, and treatment
of hypertensive individuals are crucial before achieving effective BP control [1]. Regular
BP monitoring is essential for the entire population, with special emphasis on individuals
previously diagnosed with hypertension, as they are particularly vulnerable to elevated
BP. Shockingly, more than 60% of hypertensive patients continue to have uncontrolled
hypertension. Out-of-office monitoring offers the advantage of obtaining multiple readings
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over time, enabling early detection of asymptomatic individuals without acute target organ
damage and facilitating hypertension management [2].

For intermittent non-invasive BP measurement, the use of an occluding upper arm
cuff is the gold standard due to its high accuracy. BP values are obtained manually through
palpation or auscultation of Korotkoff sounds, or automatically through oscillometry with a
pressure sensor. Continuous non-invasive BP monitoring can be achieved using techniques
such as arterial applanation tonometry or the volume clamp method [3]. However, cuff-
based devices are uncomfortable and unsuitable for continuous measurements during
daily activities or exercise, as they require the user to keep their arm immobile and possess
knowledge of measurement procedures [4].

Recent advancements in digital technology have led to the development of robust
wearable BP monitoring sensors. The ideal wearable device should be non-invasive,
inconspicuous, compatible with continuous use over periods ranging from minutes to
months, lightweight, energy-efficient, and adaptable to various activities and locations [5].

Photoplethysmography (PPG) is an optical measurement technique that has been used
to create small, cost-effective sensors for monitoring changes in blood volume within the
microvascular bed of tissues. PPG waves provide valuable cardiovascular information
for clinical physiological monitoring, including blood oxygen saturation, BP, heart rate
variability, and pulse wave velocity [6]. PPG sensors consist of red and infrared light-
emitting diodes (LEDs) and a detector. These sensors monitor changes in reflected light
intensity, which correspond to blood volume changes in the tissue, thereby providing
cardiovascular information [7]. PPG is a promising, cost-effective method with a high
correlation with arterial BP in both frequency and time domains [8].

In recent years, artificial intelligence (AI) has been applied to estimate or discrimi-
nate between blood pressure levels. On the one hand, machine learning (ML) techniques
combine electrocardiography (ECG) and PPG signals, utilizing propagation theory and
parameters such as pulse transit time (PTT), pulse arrival time (PAT), and pulse wave veloc-
ity (PWV) to assess how BP affects the cardiovascular system [9]. Recent studies combine
these propagation parameters with PPG morphological feature extraction, using them as
inputs for regression methods [10], support vector machines [11], or neural networks for
BP determination [12].

On the other hand, deep learning (DL), a promising subfield of machine learning (ML),
has significantly advanced in terms of its utilization and efficiency. These advancements are
attributable to the availability of extensive data, the development of neural network models,
and the progress in computing hardware, including central processing units (CPUs) and
graphics processing units (GPUs) [13]. Currently, DL techniques are considered state-of-
the-art for image classification, exemplified by the fact that all the winning entries in the
ImageNet Large Scale Visual Recognition Competition utilized deep convolutional neural
networks (CNNs) for classification [14].

CNNs are analogous to traditional Artificial Neural Networks (ANNs) in that both
employ neurons that receive input and perform non-linear operations to derive a final
output representing class scores, achieved through weight vectors. However, CNNs are
primarily employed in tasks related to pattern recognition in images, as they are adept at
encoding specific features of the images within their architectural framework [15]. The key
advantages of CNNs include a reduction in the number of parameters when dealing with
large models designed to tackle complex tasks. CNNs eliminate the need for manual feature
extraction, making them robust in handling new and diverse images for classification.
Additionally, CNNs do not rely on spatially dependent features, enabling them to detect
patterns regardless of their location within an image. Another significant advantage is that
abstract features are progressively extracted as the input image propagates through deeper
layers of the network. Initial layers focus on detecting edges, followed by more complex
shapes, and ultimately, higher-level features [16].

For effective training of a CNN, it is crucial to optimize hyperparameters such as the
batch size, defined as the number of images used in each training epoch, and the learning
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rate or step size at each iteration. An algorithm with an excessively small learning rate
hyperparameter will converge slowly, while an overly large one may cause the training
process to diverge [17]. Moreover, a batch size that is too small can result in the algorithm
oscillating without achieving acceptable performance, while excessively high batch sizes
can lead to convergence without meaningful improvements in accuracy [18].

As a result, recent studies have employed DL techniques for the classification of blood
pressure based on PPG signals, utilizing image representations generated through tech-
niques such as continuous wavelet transform (CWT) [19] and short-time Fourier transform
(STFT) [20,21]. Notably, one of the primary advantages over traditional ML methods is
that DL eliminates the need for manual feature extraction from PPG signals, as the most
relevant features are automatically extracted from the input images, rendering ECG signals
unnecessary. This streamlines the practical application of the model in wearable devices.

The incorporation of these algorithms into wearable devices has the potential to
provide reliable insights into the blood pressure status of monitored individuals. This
contribution can play a pivotal role in the prevention, early diagnosis, and ongoing man-
agement of hypertension and related cardiovascular conditions. The growing prevalence
of wearable devices, smartphones, and biosensors has ushered in a medical revolution,
enabling the integration of AI tools to address complex medical challenges. These tech-
nologies are rapidly becoming the cornerstone of vital sign monitoring and are pivotal in
achieving optimal diagnoses and treatment follow-up, while empowering patients to take
a more active role in their healthcare journey [7].

In this study, we aim to develop a classification system using DL-based methods
to discriminate between normotensive (NTS) and hypertensive (HTS) individuals, while
evaluating the necessity and effectiveness of per-subject calibration to improve classifica-
tion results using ML-based approaches. We leverage PPG recordings transformed into
scalograms through CWT as input images for pretrained CNNs, eliminating the need for
simultaneous ECG recordings or manual feature extraction, allowing the DL models to
automatically extract deep features from PPG signals. Furthermore, we demonstrate that
DL models performed optimally when calibration and measurements occurred close in
time. However, as the time interval between calibration and measurements increased,
accuracy gradually decreased. Nonetheless, even with calibration intervals exceeding 24 h,
all models maintained an acceptable accuracy above 71%. Finally, our findings suggest that
DL models, especially ResNet-18, have the potential to be integrated into wearable devices
and digital health solutions for continuous monitoring of blood pressure.

The manuscript is organized as follows. Section 2 presents the database. Section 3
presents the previous ML-based method procedure, actual DL-based method procedure
and models evaluation. Section 4 presents the results, that will be analyzed in Section 5.
Finally, in Section 6 the main scientific contributions are remarked.

2. Materials

The signal dataset used in this study was obtained from the MIMIC, a freely-available
database, which contains biomedical recordings from ICU patients admitted to the Beth
Israel Deaconess Medical Center in Boston, MA, USA [22]. Although ICU patients recorded
in MIMIC are not completely representative of the general population, for this research it
has allowed to obtain simultaneous recordings of PPG and invasive BP signals over long
periods of time, allowing to study different periods between calibration and blood pressure
measurement. After obtaining the recordings, a manual quality check was conducted to
identify and eliminate signals with noise or artifacts. PPG and BP signals were collected
from commercial devices and a catheter in the radial artery, and significant artifacts could
arise due to sensor issues, patient movements, or interference with physiological signals,
causing deviations from their characteristic morphology.

In this study, a binary classification approach was adopted to discriminate between
NTS and HTS subjects, as the clinical focus was primarily on detecting hypertension
over the normotensive state. To achieve this, a systolic blood pressure (SBP) threshold of
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130 mmHg was established to distinguish between the two states. It’s worth noting that the
report of the Joint National Committee on the prevention, detection, evaluation, and treat-
ment of high blood pressure [23] clinically defines a third category for prehypertensive
subjects with SBP values between 120 and 140 mmHg. However, since prehypertensive
patients with stable SBP values within this range are relatively uncommon, the primary
objective of this study was to develop tools capable of detecting hypertension or its initial
symptoms, i.e., when a patient’s SBP exceeds 130 mmHg.

Additionally, subjects displaying significant fluctuations in their SBP values between
NTS and HTS measurements over time were excluded from the dataset. Ultimately, a total
of 974 recordings from 69 subjects were selected from the MIMIC database, with 45 subjects
classified as NTS and 24 as HTS. PPG and ABP signals were recorded simultaneously,
with a duration of 120 s, a common sampling frequency of 125 Hz, and a resolution of
8–10 bits [24].

3. Methods

In this section, the methodologies employed are outlined, with a particular focus on
the utilization of DL techniques in comparison to traditional ML. The ML-based method is
initially described, emphasizing the role played by ECG signals and the complex processes
of feature definition and selection. Subsequently, the DL-based method is introduced,
highlighting the signal preprocessing steps, the application of CNNs, and the necessity
of calibration for performance enhancement. The evaluation metrics for classification
performance are elucidated, and the experimental setups examining the impact of varying
time intervals between calibration and measurement are detailed.

3.1. Machine Learning-Based Method

As mentioned previously, the primary objective of this study was to evaluate whether
the classification of hypertension risk using PPG signals could be improved using DL-
based methods as compared to traditional ML-based methods. To provide context, we will
summarize the key elements of the ML methodology utilized in a previous work [25]:

• In addition to PPG and ABP signals, the ECG signal is a prerequisite, as it plays a
critical role in the extraction of pulse arrival times (PAT), a pivotal discriminant feature.
PAT is defined as the time interval between the R-peak in the ECG signal and three
fiducial points in the PPG signal [26].

• Fiducial points are identified in the PPG signal, as well as in velocity plethysmogram
(VPG) and acceleration plethysmogram (APG) signals, through the application of first
and second-order derivatives, respectively.

• The methodology defines 23 discriminatory features based on the pulse wave propaga-
tion model and morphological characteristics. Key features are illustrated in Figure 1.

• Feature selection is performed for dimensionality reduction and performance im-
provement. Features with low correlation [27] and high discrimination [28] were
selected The goal is to retain only those features that are most relevant for assessing
hypertension risk. This process results in a selection of 17 features, which are used as
inputs for ML-based classification models.

• The selected ML classification models include Support Vector Machines (SVM),
k-Nearest Neighbors (KNN), and a Bagging Ensemble classifier, as these models
demonstrated the highest classification accuracy.
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Figure 1. Main discriminatory features defined in machine learning based method: PAT, PPG peak
amplitude, time peak to peak (TPP), width, areas under the pulse and time pulse interval (TPI) [25].

3.2. Deep Learning-Based Method

Figure 2 depicts a block diagram illustrating the various stages developed in this
research. To begin with, basic signal preprocessing was applied to the PPG signal. Sub-
sequently, the processed signals were transformed into images using CWT. Finally, we
examined the necessity for calibration using GoogLeNet, ResNet-18, and ResNet-50 CNNs
in conjunction with transfer learning.

Preprocessing Image Representation

Classification

Raw PPG signals
PPG preprocessing 
and downsampling

10 seconds 
segmentation

CWT of PPG signal

NTS HTS

Training: Images of  
odd segments + not 

selected subjects

Select segments 
spaced the specified 

distance apart

Classification using 
pretrained CNN 
GoogleNet and 

ResNetValidation: Images 
of even segments

Raw ABP signals
Hypertension Label 

extraction

Figure 2. Block diagram illustrating the DL classification methodology, including the study of the
need for calibration.

3.2.1. Signal Preprocessing

SBP was extracted directly as the mean values of the peaks of each BP waveform since
these signals were clear and did not require additional processing. SBP was used to classify
subjects into the NTS and HTS groups, with SBP values lower and higher than 130 mmHg,
respectively. The PPG signals required the application of a fourth-order Chebyshev II band-
pass filter with cutoff frequencies between 0.5 and 10 Hz [29] to eliminate noise and minor
artifacts that did not lead to signal rejection in the initial stage of signal quality assessment.

In ML-based methods, a high sampling rate is needed to extract morphological features
from the PPG signal. In contrast, with DL-based methods, it is sufficient to preserve the
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signal waveform, as the most relevant discriminatory features are automatically extracted
from the image representation of the PPG signal. Thus, the PPG signals were downsampled
from a sampling frequency of 125 Hz to 25 Hz. Using lower sampling rates significantly
reduces the amount of data transmitted and saved when signals are acquired and processed
with wearable devices [30].

Finally, as the DL method required a large number of images to create an effective
classification model, the 120-s recordings of PPG and ABP were divided into 10-s sub-
segments. Consequently, the total number of sub-segments analyzed was 11,688.

3.2.2. Pretrained CNN Architecture

For the problem of hypertension risk assessment, pretrained CNNs ResNet and
GoogLeNet were employed. The ResNet network employs a residual learning frame-
work to simplify the training of deeper networks. Contrary to what one might expect
theoretically, adding more layers to a neural network can lead to saturation in accuracy and
rapid degradation due to the degradation problem. The proposed solution to this issue,
and one of its main advantages, is residual learning, which involves adding the input of
the hidden layers to their output, allowing the network to learn only the residual mapping.

Comparing ResNet-18 with ResNet-50, ResNet-18 is simpler and, therefore, com-
putationally more efficient, making it suitable for scenarios with limited computational
resources. However, this simplicity comes at the cost of not being able to capture more
complex features, affecting the final accuracy. On the other hand, ResNet-50 achieves supe-
rior results owing to its depth and skip connections, but it requires higher computational
expenses and is prone to overfitting [31].

GoogLeNet introduced an architecture for computer vision known as “Inception”,
which attempts to select the appropriate kernel size for convolutional operations, neural
network size, and computational resources. Different parts of an image may require
different kernel sizes to extract information efficiently. Moreover, increasing the size and
depth of a neural network can lead to overfitting, increased consumption of computational
resources, and inefficiency. To address these challenges, Inception modules create a “wider”
network rather than a “deeper” one. Other GoogleNet advantages are the capability to
capture complex features and the computational efficiency. Nevertheless, it can be time
consuming due to its depth [32].

As CNNs require a large amount of data to be trained from scratch, transfer learning
methods leverage background knowledge obtained after training a base network and
transfer it to solve other relevant problems [33]. Therefore, ResNet and GoogLeNet models
can automatically extract deep, powerful, and informative features without the need for
manual morphological feature extraction. Furthermore, these models were originally
trained to recognize more than 1000 objects and can be retrained with a new set of images
by fine-tuning the existing weights and layers much faster and easier than starting from
scratch [34]. In any case, it is important to highlight that the focus of our study was not
to introduce novel DL architectures but to demonstrate the effectiveness of image-based
representations derived from PPG signals in hypertension risk assessment.

To retrain the pretrained networks, the last three layers were replaced to adapt the
model to the new image dataset. These layers use image features and information from the
previous convolutional layers to classify the input images. The original fully connected
layers were replaced with new fully connected layers, with the same number of outputs
as the number of classes, in this case, 2 (NTS or HTS). Similarly, the original softmax
layer and the original classification layer were replaced with two new layers of the same
type. Figure 3 illustrates the block diagram of the modified architectures of Googlenet and
ResNet CNNs.
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Figure 3. Block diagram illustrating the modified architectures of (a) GoogleNet, (b) ResNet-18,
and (c) ResNet-50. To align these models with the new task of assessing hypertension risk using
PPG recordings, the original fully connected, softmax, and classification layers have been replaced.
Additionally, input images with both labels have been resized to 224 × 224 × 3 to meet the specific
requirements of the studied models.

The Adam optimizer was used in the CNN models for classification with an initial
learning rate of 1 × 10−4, a minimum batch size of 128, and a maximum of 20 epochs.
The validation frequency was adjusted based on the number of training images and the
ratio between training images and the minimum batch size.

In supervised learning, overfitting can be a significant issue when the model struggles
to generalize from the training set to the testing set. This issue was mitigated in this work
through the use of early stopping, a technique that automatically halts training when the
validation error starts to increase [35].

3.2.3. Image Representation of PPG Signal Using CWT

Since both ResNet and GoogLeNet CNNs require inputs of size 224 × 224 × 3 in Red-
Green-Blue (RGB) format, PPG segments were processed using CWT [36] and transformed
into a scalogram, which provided the absolute value of CWT coefficients of the PPG signal.
These scalograms were then resized to 224 × 224 × 3 to be fed into the training models.
The absolute value of the wavelet coefficients was obtained using the analytic Morse (3, 60)
wavelet with the Voices per Octave set to 12. The choice of CWT and scalograms was based
on their effectiveness in providing time-frequency information and useful learning features
for CNNs [19].

Additionally, white lines were added to the scalogram to mark the cone of influence.
This marks areas in the scalogram that may be affected by border distortions due to missing
values at the beginning and end of the transform. The unshaded region guarantees that the
information is an accurate time-frequency representation of the PPG signal.

3.3. Classification Model Evaluation

Statistical tests for accuracy (Acc), sensitivity (Se), specificity (Sp), and F1-Score were
employed for evaluating the classification performance. Acc represents the percentage of
correctly classified PPG segments. Se and Sp denote the ability to detect HTS subjects as
positive and the ability to detect NTS healthy subjects as negative, respectively. F1-Score is
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the harmonic mean of Se and Acc. These statistical tests were mathematically computed
as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

Se =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

F1-Score =
2 · Se · Acc
Se + Acc

=
2 · TP

2 · TP + FP + FN
(4)

Here, TN represents the number of correctly classified NTS segments, TP is the
number of correctly classified HTS segments, FN is the number of incorrectly predicted
HTS segments, and FP is the number of incorrectly predicted NTS segments.

3.4. Experiment

In our previous research [25], we investigated the importance of calibration in hy-
pertension risk assessment using ML methods, aiming to improve the initial accuracy
of 51.48%. This initial accuracy was achieved when a new subject entered the method
without any prior per-subject calibration. To study the effect of calibration, we conducted
experiments where calibration measurements were taken at various time intervals from the
test measurements. In the calibration approach with closely spaced measurements, we per-
formed sequential validation with the twelve sub-segments into which each 120-s segment
was divided. This approach was not feasible with DL-based methods due to their high
computational complexity and long training times. Consequently, the model would require
more training time than the time difference between calibration and test measurements.
Furthermore, it would not be practical to perform a calibration and predict hypertension
risk only a few seconds later, as the image transformations of both measurements would be
very similar.

In this study, we examined the effectiveness of calibration with different time inter-
vals between PPG segments of different subjects. The intervals included less than 1 h,
between 1 h and 6 h, between 6 h and 24 h, and more than 24 h apart. For this purpose, we
trained CNN classification models following the procedure outlined below:

1. Selection of 120-s PPG segments obtained for each time interval between measurements.
2. The images of odd segments (1st segment, 3rd segment, etc., spaced at each interval)

were used for training, and the images of even segments were used for validation.
Additionally, images corresponding to PPG signals from subjects who did not have
segments separated by the specified time interval were added to the training dataset.
This increased the training dataset with subject segments that were not part of the
validation dataset, enhancing the model’s robustness.
In this way, the calibration stage was simulated using training segments, with valida-
tion segments between two calibration measurements for classification.

3. These images were used as inputs for GoogLeNet, ResNet-18, and ResNet-50 pre-
trained CNN models, and the classification problem involved discriminating between
normotensive and hypertensive subjects using PPG signal image representations.

4. Classification performance was evaluated using the statistical tests described in
Section 3.3. This procedure was repeated for each measurement interval.

Table 1 displays the number of images used in the training and validation tasks for
each segment interval. For measurement intervals less than 24 h, the number of images
from subjects with segments spaced at these intervals was higher than from unselected
subjects. However, the opposite is observed when the interval between measurements
exceeds 24 h, as the number of subjects with PPG recordings of more than 1 day is limited,
and most of them do not belong to this group.
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Table 1. Division of PPG signals’ image representation in training and validation datasets for each
measurement interval.

Training Images Validation Images
Odd Segments Not Selected Subjects Even Segments

Below 1 h 2136 408 1752
Between 1 h and 6 h 3168 84 2784
Between 6 h and 24 h 1728 732 1356
Above 24 h 288 8868 192

4. Results

The training performance, in terms of the number of epochs after early stopping,
training time, and statistical results of classification performance achieved by the pro-
posed CNNs for discriminating between NTS and HTS segments, is presented in Table 2.
Although the maximum number of epochs was set to 20, no model reached this limit,
indicating the effectiveness of the early stopping technique in preventing overtraining.

All models achieved their highest performance when calibration and measurements
were separated by less than 1 h, resulting in accuracy exceeding 90%. Among them, ResNet-
18 exhibited the best classification results, achieving an accuracy of 93.32%, sensitivity
of 84.09%, specificity of 97.30%, and an F1-score of 88.36%. Furthermore, this model
demonstrated efficiency, requiring only 6 epochs and a training time of 28 min. As expected,
the classification performance decreased as the time interval between calibration and test
measurements increased, with accuracy falling below 81% for distances above 6 h.

Table 2. Classification performance for distinguishing between NTS and HTS individuals using
GoogLeNet, ResNet-18, and ResNet-50 pretrained CNNs with calibration distances below 1 h,
between 1 and 6 h, between 6 and 24 h, and above 24 h.

Model Epochs Training Time Accuracy Sensitivity Specificity F1-Score
Below 1 h

GoogLeNet 13 64 min 90.18% 82.77% 93.38% 83.56%
ResNet-18 6 28 min 93.32% 84.09% 97.30% 88.36%
ResNet-50 8 115 min 92.52% 84.09% 96.16% 87.14%

Between 1 h and 6 h
GoogLeNet 9 61 min 82.87% 73.12% 88.40% 75.55%
ResNet-18 15 107 min 89.04% 81.15% 93.52% 84.29%
ResNet-50 8 152 min 88.11% 80.16% 92.62% 83.00%

Between 6 h and 24 h
GoogLeNet 14 66 min 79.57% 70.57% 85.98% 74.18%
ResNet-18 6 29 min 80.16% 73.23% 85.10% 75.43%
ResNet-50 19 99 min 80.68% 76.60% 83.59% 76.73%

Above 24 h
GoogLeNet 7 57 min 73.37% 38.73% 93.68% 51.80%
ResNet-18 7 32 min 79.17% 68.14% 85.63% 70.74%
ResNet-50 19 221 min 71.56% 56.86% 80.17% 59.64%

5. Discussion

Hypertension is a major public health concern worldwide, with a high prevalence and
significant morbidity and mortality rates. Early identification and treatment of hypertensive
individuals can prevent deaths and reduce the risk of cardiovascular diseases. Wearable
devices, smartphones, and biosensors have ushered in a medical revolution, enabling the
integration of AI tools to address complex medical challenges. These technologies are
rapidly becoming the cornerstone of vital sign monitoring and are pivotal in achieving
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optimal diagnoses and treatment follow-up, while empowering patients to take a more
active role in their healthcare journey [37].

Our study leverages a dataset from the MIMIC database, consisting of PPG record-
ings and invasive blood pressure (BP) measurements. We employed deep learning (DL)
models, specifically GoogLeNet, ResNet-18, and ResNet-50, for hypertension risk discrimi-
nation. Compared to previous works in the field, our methodology incorporates the use of
CWT-based scalograms, which allow us to automatically extract deep features from PPG
signals without the need for manual feature extraction [9,38]. This marks a departure from
traditional machine learning-based approaches that rely on handcrafted features from PPG
signals and ECG data.

The models were evaluated under four different calibration intervals: below 1 h,
between 1 and 6 h, between 6 and 24 h, and above 24 h. The results show that the models
achieved their highest accuracy when the calibration and measurements were separated by
less than 1 h. In this scenario, ResNet-18 exhibited the best classification results, achieving
an accuracy of 93.32%, sensitivity of 84.09%, specificity of 97.30%, and an F1-score of 88.36%.
This indicates that close calibration intervals improve classification outcomes significantly.
As the time interval between calibration and test measurements increased, the classification
performance decreased. For intervals above 6 h, the accuracy fell below 81%. In any case,
all models maintained accuracy above 71% even for intervals above 24 h. It is important
to note that the early stopping technique was effective in preventing overtraining, as no
model reached the maximum set number of epochs (20). The training times varied between
models, with ResNet-50 having the longest training time.

This suggests that DL-based models, particularly ResNet-18, hold promise for accurate
hypertension risk discrimination from PPG signals. Consequently, this technology can be
integrated into wearable devices and digital health solutions for continuous monitoring.

Prior research in this field has explored the application of DL models for hyperten-
sion risk stratification by employing image representations of PPG signals, such as the
Hilbert–Huang Transform [39] and CWT [19,40], achieving F1-Scores exceeding 92%. How-
ever, these studies did not adhere to a rigorous classification procedure, as they performed
signal segmentation before dividing the dataset into training and validation sets. Con-
sequently, images representing consecutive signal segments were included in both the
training and validation subsets, potentially leading to an overestimation of the reported
results. The calibration method proposed in this study significantly enhances these strate-
gies, providing a classification approach that aligns with the decision-making process of a
model that can be easily integrated into wearable devices.

In contrast to our earlier research [25], where we investigated the significance of
calibration in ML-based hypertension risk assessment, and taking into account that the
methodology employed in this study differs from that detailed in Sections 3.1 and 3.4, we
have observed remarkably consistent accuracy results across the four intervals between
calibration and measurement. Notably, the DL-based method brings forth a significant
improvement by eliminating the requirement for ECG signals, with features being auto-
matically extracted from the images.

Despite the numerous benefits of AI, it is essential to consider the limitations and
challenges associated with its application in the context of vital sign monitoring and
medical diagnosis. Moral dilemmas and communication barriers between physicians
and patients may arise. Furthermore, privacy issues related to sensitive health data,
the potential for re-identification through AI processes, and concerns about data breaches
are prominent. The ethical discourse surrounding AI in healthcare, where large datasets
are required, should address these privacy concerns to ensure responsible and secure
implementation [41]. To this respect, the use of DL models entails the processing of
sensitive health data, including PPG signals and blood pressure measurements. Ensuring
the confidentiality and security of this information is paramount to maintain patient trust
and comply with data protection regulations. Striking a balance between leveraging the
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potential benefits of DL for medical diagnosis and safeguarding patient privacy remains a
critical challenge [42].

Moreover, the interpretability of DL models poses ethical challenges. The inherent
complexity of neural networks makes it challenging to provide clear explanations for
the decisions made by these models. In a healthcare setting, where transparency and
interpretability are crucial, addressing the “black box” nature of DL algorithms becomes
imperative [43]. Understanding how these models arrive at specific hypertension risk
assessments is essential for physicians, patients, and regulatory bodies.

As we consider the integration of DL into wearable devices for real-time monitoring,
additional ethical considerations come to the forefront. Wearables offer the potential for
continuous, unobtrusive monitoring of individuals’ cardiovascular health. This continuous
monitoring, while advantageous for early detection and intervention, raises concerns about
the continuous surveillance of individuals’ health data. Striking a balance between the
benefits of proactive healthcare and the right to privacy is a delicate ethical challenge.
Furthermore, while wearables offer the promise of timely health insights, issues such as
device accuracy, user adherence, and data transmission security need careful considera-
tion [44,45]. Ensuring that wearable devices are reliable and provide accurate hypertension
risk assessments is crucial for their successful integration into routine healthcare practices.

Other limitations commonly encountered when applying DL in the medical field
include the requirement for large datasets to attain optimal performance, challenges related
to overfitting where the model trained on data may struggle to generalize effectively with
new, unseen data, the computational demands associated with DL models, issues arising
from imbalanced datasets where there is a significant disparity between positive and
negative samples, and the interpretability concern. In the medical context, interpretability
is crucial as it necessitates not only predicting outcomes but also understanding and
explaining how the model arrives at its decisions [46].

The study presents a significant contribution to the field of hypertension risk dis-
crimination, demonstrating the potential of DL and calibration methods to improve the
accuracy of hypertension risk discrimination. The incorporation of these methods into
wearable devices has the potential to provide reliable insights into the blood pressure
status of monitored individuals, playing a pivotal role in the prevention, early diagnosis,
and ongoing management of hypertension and related cardiovascular conditions. This
study highlights the importance of individualized calibration for accurate hypertension risk
discrimination, demonstrating the potential of this approach to achieve optimal diagnoses
and treatment follow-up, while empowering patients to take a more active role in their
self healthcare.

6. Conclusions

This study leveraged DL models combined with proper calibration to assess hyper-
tension risk using PPG signals where the use of CWT-based scalograms eliminated the
need for manual feature extraction. The models performed best when calibration and mea-
surements were close to each other and accuracy decreased as the time interval between
calibration and test measurements increased. Furthermore, the present study emphasizes
the significance of individualized calibration for accurate hypertension risk assessment.
Finally, the future research plan involves attempting to implement these methods into
wearable devices to improve early diagnosis and management of hypertension and related
cardiovascular conditions.
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