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Abstract: A low-cost, fast, dependable, repeatable, non-invasive, portable, and simple-to-use vascular
screening tool for coronary artery diseases (CADs) is preferred. Photoplethysmography (PPG), a
low-cost optical pulse wave technology, is one method with this potential. PPG signals come from
changes in the amount of blood in the microvascular bed of tissue. Therefore, these signals can be
used to figure out anomalies within the cardiovascular system. This work shows how to use PPG
signals and feature selection-based classifiers to identify cardiorespiratory disorders based on the
extraction of time-domain features. Data were collected from 360 healthy and cardiovascular disease
patients. For analysis and identification, five types of cardiovascular disorders were considered.
The categories of cardiovascular diseases were identified using a two-stage classification process.
The first stage was utilized to differentiate between healthy and unhealthy subjects. Subjects who
were found to be abnormal were then entered into the second stage classifier, which was used to
determine the type of the disease. Seven different classifiers were employed to classify the dataset.
Based on the subset of features found by the classifier, the Naïve Bayes classifier obtained the best
test accuracy, with 94.44% for the first stage and 89.37% for the second stage. The results of this study
show how vital the PPG signal is. Many time-domain parts of the PPG signal can be easily extracted
and analyzed to find out if there are problems with the heart. The results were accurate and precise
enough that they did not need to be looked at or analyzed further. The PPG classifier built on a simple
microcontroller will work better than more expensive ones and will not make the patient nervous.

Keywords: PPG signals; detection applications; cardiorespiratory function; feature combination;
biomedical analysis; biomedical signal processing

1. Introduction

Cardiovascular diseases (CVDs) are illnesses of the heart and blood vessels that result
in inadequate arterial blood flow to many essential organs [1]. Recent data worldwide
shows that the number of people with heart disease is increasing. CVDs were responsible
for about 30% of deaths worldwide in 2018 and about 36% of deaths in Jordan in 2020,
according to the Jordanian Ministry of Health (MOH) [2]. So, sensitive, practical, and cost-
effective ways to monitor CVDs early on are needed, in order to speed up efforts to stop
the rise of CVD-related deaths [3]. Classification algorithms based on machine learning
are commonly employed to anticipate and categorize the many features of biomedical
signals and molecules, such as cardiac anomalies, toxicity, or biological activity [4–8].
Three datasets were generated to test different classification models based on machine
learning [4]. Further, they applied many classification performance indicators from many
fields. To compare the two groups, they used a novel method that was based on traditional
chemometric techniques, such as the sum of ranking differences (SRD) and analysis of
variance (ANOVA) [8].
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Risk factors, such as smoking, obesity, high blood pressure, family history, and others,
can be used to predict all cardiovascular diseases [9]. On the other hand, the goal of the
healthcare revolution was to make monitoring technologies, such as PPG, that were small,
cheap, and easy to use and could predict the start of CVDs. PPG is a non-invasive method
of examining a specific body signal that provides detailed information about the heart and
lungs. Several researchers focused on finding links between the PPG signal and events in
the heart and blood vessels, so they could predict CVDs [9–12]. They did this by relying
on extracting the PPG signal’s temporal domain properties [9–12]. Aboy et al. presented a
pressure-based technique for automatic beat detection [13]. Solosenko et al. automatically
exploited PPG signals to detect pre-ventricular contraction (PVC) [14]. Yousefi et al. [15]
found a way to find PVC automatically by combining the chaotic nature of the PPG signal
with higher-order statistics (HOS). They used several chaotic and statistical features, such
as the Lyapunov exponent, skewness, kurtosis, fuzzy entropy, and spectral entropy, which
were taken from the signals. Principal component analysis (PCA) was used to figure out
which data points should be used to group the data. Poloania et al. and Abu Elhijja et al.
developed algorithms for classifying cardiac arrhythmias based on PPG [16,17]. By taking
PPG and ECG measurements, Nano et al. figured out the time between heartbeats and
pulses [18]. Quality assessment for signal reliability estimation was proposed in [19] for
PPG beat recognition and morphology estimation. Recently, Prabhakar et al. [20] developed
a few metaheuristic techniques for reducing dimensionality. Post-classifiers then used the
reduced values to separate PPG normal and CVD signals.

Recent strategies have focused on figuring out the best set of PPG characteristics
that can be used to classify things helpfully. Data mining techniques, which are used to
obtain useful information from data, can be used to find and emphasize differences in
PPG time-domain characteristics between healthy human subjects and CVD patients [21].
Al-Fahoum et al. used data mining and a signal processing strategy called “multiple
signal classification” to classify the difference between CVD patients and healthy normal
subjects [12]. The primary applications of data mining techniques are the classification,
prediction, and grouping of observations [22,23]. Improving the performance and useful-
ness of data mining algorithms means finding the best way to pick the most important
attributes [15,24–28]. Recent research publications [28–33] demonstrated the need for au-
tomatic detection strategies for identifying arrhythmias using cutting-edge PPG-based
techniques. The results from [28] to [33] supported the study’s goal. Based on an analysis
of the time-domain features of the PPG signal, this study aims to find the best set of studied
features that use data mining techniques to combine the most critical features of the PPG
signal with other demographic information to tell the difference between healthy human
subjects and CVD patients.

2. Materials and Methods
2.1. Data Collection

The primary goal of this study is to distinguish between normal and abnormal cardio-
vascular cases by combining time-domain features of the PPG signal with a set of subject
demographic characteristics. Data from 360 people (200 healthy and 160 with CVD) were
collected for solid results. As for the PPG, data collection from CVD patients was carried
out at the internal medicine clinic of Princess Basma Hospital. The study focused on five
common types of CVDs: acute coronary syndrome (ACS) (63 patients), cerebrovascular
accident (CVA) (50 patients), deep vein thrombosis (DVT) (23 patients), heart failure (HF),
and atrial fibrillation (AF) (13 patients each). A chart of the five CVD cases that were
studied, each with its percentage from the CVD sample, is displayed in Figure 1.

This study employed the PO-80 pulse oximeter from Beurer Healthcare in Germany
to take non-invasive PPGs (pulse rate), SpO2, and heart rate measurements. PO-80 is a
portable, rechargeable, small (L 57 mm × W 32 mm × H 30 mm), lightweight (about 42 g),
and compact device that comes with “SpO2-Viewer/Manager” software that works with
Windows. Using a USB connection, the software can send measured data from the device to
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the PC, which can be viewed in real-time. The sensor has an accuracy of +/−2% for SpO2
in the range of 30–100% measurement and +/−2 beats/minute for pulse rate monitoring in
the range of 30–250 beats/minute, according to its specifications.
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The SpO2 sensor comprises an emitter and a detector housed in a finger clip probe.
The emitter comprises a group of light-emitting diodes (LEDs) that give off red light at
660 nm and infrared light at 905 nm. The detector, in contrast, is a silicon-based photodiode.
The method used to measure PPG is conducted by inserting one finger into the finger
opening of the pulse oximeter. By pressing the function button on the PO-80 sensor, the
oxygen saturation of the blood’s hemoglobin and the heart rate can be measured non-
invasively [34].

2.2. Data Description

In addition to the PPG signal recorded for at least 2 min while the volunteer was
at rest, the following ten variables about the volunteer’s background and health were
also collected.

2.2.1. Demographic and Health Status Variables
Age

Age is considered a primary factor highly correlated with arterial stiffness, and its
effect is reflected in the shape of the PPG signal [23,24].

Height, Weight, and Body Mass Index (BMI)

Even though BMI is an indicator of obesity that can increase the risk of many health
problems, such as hypertension and diabetes, BMI can forecast the beginning of cardiovas-
cular diseases [25,35].

Gender

Gender influences several vital signs in the human body [1], and researchers in [36] dis-
covered no binding effect for changes in PPG signals due to gender. Regitz-Zagrosek et al. [37]
said that cardiovascular events and heart failure are different for men and women, and Al-
Fahoum et al. [12] found that men and women had different results during and before exercise.

Blood Pressure

Arza et al. [38] and Samria et al. [39] found a relationship between the PPG signal and
blood pressure. Blood pressure correlates well with some PPG features.
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Respiratory Problems

Respiration is a vital sign closely linked to the heart and lungs because of interactions
between the two [11]. Monitoring respiratory activity may reveal important information
that may aid in diagnosing CVD [3].

Smoking

Clair et al. statistically analyzed the relationship between smoking and CVDs risk.
Their study revealed that quitting smoking can potentially decrease CVDs risk [40].

Physical Activity

Increasing physical activity improves cardiorespiratory fitness, which reflects favor-
ably on the cardiovascular system by decreasing the risk of CVDs [41].

Other Variables (Diabetes, Kidney Failure, and Pregnancy)

Wannamethee et al. studied the effect of diabetes on the cardiovascular system and
found that type I diabetes can influence the risk of coronary heart disease [42]. On the other
hand, kidney failure and pregnancy were included in this study.

2.2.2. Pulse Oximetry
Arterial Oxygen Saturation (SpO2)

SpO2 is between 97% and 99% in healthy individuals and is clinically acceptable
at 95%. If the SpO2 value exceeds 95%, it may indicate an inadequate oxygen supply
or hypoxia.

Pulse Rate

The average pulse rate is between 60 and 100 beats per minute. Caffeine, exercise,
stress, certain medications, and other things can speed or slow the pulse rate.

2.2.3. PPG Signal

The PPG signal is susceptible to the subject’s movements and breathing activity. These
artifacts can change the baseline of the signal, causing shifts and offsets. In order to remove
different artifacts and obtain a pure pulse wave, an elliptic band pass filter with a sampling
frequency of 120 Hz, a lower cut-off frequency of 0.6 Hz, and an upper cut-off frequency of
15 Hz was used to eliminate the breathing effect.

The time-domain analysis of each pulse wave is the most important part of extracting
features from the PPG signal. For this analysis, it is a must to find several time intervals
and figure out where the peaks are in the signal [43]. The MATLAB software analyzed the
pure PPG signal by taking out the following time-domain features:

Systolic Amplitude

Figure 2 shows the systolic amplitude that is the highest and the first peak of the pulse.
Elgendi [44] mentioned that the systolic amplitude was found to be directly proportional to
local vascular distensibility, while Awad et al. [10] stated that finger PPG systolic amplitude
has a low correlation to the systemic vascular resistance (SVR).

Peak-to-Peak Interval (∆T)

The time interval between two sequential systolic peaks can be seen in Figure 2. This
interval is approximately the same as the R–R interval in ECG.

Pulse Interval

Elgendi defined the pulse interval as the time allocated between two consecutive
minimums of the pulse [44]; see Figure 2. It relates to the time required for systole and
diastole to be completed.
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Crest Time (CT)

Crest time is the interval between the start of the pulse wave and the time at the
systolic peak. Angius et al. defined it as the amount of time needed for the fast ejection
phase [9].

Pulse Width (PW)

As seen in Figure 3, it is the entire width of the pulse at the half height of the systolic
peak. Awad et al. [10] calculated the SVR depending on the pulse width of the finger and
PPG signals; they suggested that the higher the pulse width, the higher the SVR.
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Dicrotic Notch

Figure 3 points to the dicrotic notch point separating the systolic and diastolic phases.
Angius et al. stated that sometimes the second or diastolic peak is absent in the pulse wave,
especially in older adults and CVDs patients; in this case, the dicrotic notch substitutes for
this peak [9].

Diastolic Time

It is the time interval from the dicrotic notch to the end of the pulse wave; it relates to
the time required for the diastolic phase to be completed.
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Pulse Transit Time (PTT)

Figure 3 shows the transit time of the pulse and the time between the systolic peak and
the diastolic notch. According to Peulić et al. [11], age is negatively proportional to PTT.

Total Area and Inflection Point Area Ratio (IPA)

The total area is the whole area under the pulse wave curve that can be divided into
two areas: the systolic and diastolic areas. These two areas are separated at the dicrotic
notch. The total area parameter was suggested to indicate arterial stiffness [45]. The ratio of
the diastolic area-to-systolic area is called IPA, and it can be used to measure total peripheral
resistance [46].

Augmentation Indices (AI) and Time Ratios

Table 1 shows four different augmentation indices and three different time ratios
that can be calculated from the PPG waveform. Augmentation indices may be used as a
measure of systemic arterial stiffness [47,48]. On the other hand, Angius et al. [9] found a
higher mean value of relative crest time for CVD patients.

Table 1. Augmentation Indices and Time Ratios.

AI/Time Ratio Mathematical Formula

AI of Amplitude (SA-Dicrotic Notch Amplitude)/SA
Reflection Index (RI) Dicrotic Notch Amplitude/SA

AI of Time PTT/Pulse Interval
Stiffness Index (SI) Subject’s Height/PTT

Relative Crest Time (T1 Ratio) CT/∆T
T2 Ratio Systolic Time/∆T
T3 Ratio PTT/∆T

APG Parameters and Their Ratios

In Figure 4, the parameters taken from the APG signal are shown. These parameters
can be used to measure vascular aging. Baek et al. [49] studied some ratios between APG
parameters and found them to be related to the cardiovascular system and age.

2.3. Feature Selection and Classification

Selecting features or attributes is searching for and selecting the best set of features
that provides the highest classification accuracy. WEKA software allows for the selection
of features from the dataset by applying two-step procedures: an attribute evaluator and
a search method. In this study, the classifier subset evaluator method was used as the
attribute evaluator. This method uses a classifier to estimate the best set of attributes. The
classifier subset evaluator figures out how valuable a subset of attributes is by looking at
how well each feature predicts on its own and how much it overlaps with other features.
Subsets of attributes that are highly correlated with the class, while having low inter-
correlation, are preferred. At the same time, the searching method was greedy stepwise,
which performed a forward or backward search through the space of attribute subsets. For
each classifier, all the features were analyzed, and the set of features that maximized the
accuracy of the classifier was selected.
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The frequencies of three CVD cases in the collected data, namely AF, DVT, and HF,
were relatively small, compared to the other two cases, leading to an imbalanced class
frequency problem. Under such situations, classifiers ignore the lower frequency classes
and treat them as errors. In order to force the classifier to pay more attention to lower-
frequency classes, we replicated the low-frequency classes.

2.4. Machine Learning Classification Algorithm

The proposed algorithm was conducted in four steps, as shown in Figure 5. In the
first step, data for healthy and CVD patients were collected. Information about the person
being studied’s age, gender, health, and PPG signal were among the things that were
collected. MATLAB extracted time-domain features from each PPG signal. In the third
step, a feature selection-based classifier was used. This was performed using the Waikato
Environment for Knowledge Analysis (WEKA) software. This step involved two stages:
the first distinguishes between healthy and CVD subjects and the second classifies five
CVD cases. A feature selection process was used at both stages to pull out each classifier’s
best, most accurate features. Finally, the classifier with the highest accuracy was selected.
From another perspective, statistical analysis by MINITAB software was performed to
compare the time-domain features of healthy and CVD subjects. The difference between
the two samples was interpreted by applying a t-test, which tests the null hypothesis of
whether the means of the two samples are equal.

In the first step of the classification process, each time-domain characteristic’s mean
and standard deviation was utilized. In the second stage, when the search space became
more extensive, the search strategy could not choose the best subset of features.

Due to the fact that AF, DVT, and HF occurred less frequently than the other two
cardiac conditions, there was an imbalance in class frequency. In such cases, classifiers
disregarded low-frequency classes as mistakes and discarded them. Classes with low
frequency were replicated, so the classifier would pay greater attention to them. As
indicated in the literature, each participant was assigned a unique PPG signal and treated
as a new patient.

A p-value between 0 and 1 for the t-test on the mean of time-domain features for
healthy and CVD patients demonstrates the result’s significance [8].

The significance level was set at 0.05; a p-value > 0.05 indicates no difference in the
means of the two samples, and a p-value below 0.05 indicates a significant difference
between the means of the two samples.
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Accordingly, this study induced two stages of classification. The first one classifies
data into two distinct categories: healthy and CVD. In the first step of classifying the
subjects, each time-domain feature’s mean and standard deviation were used. The second
stage classifies CVD cases into five classes, where only the feature mean value was used,
since the search method could not select the best subset of features, due to the increased
search space.

In this study, seven types of classifiers were considered, i.e., decision trees (J48 and
random forest), rule-based (J-Rip and PART), artificial neural network/ANN (multilayer
perceptron), K-nearest neighbor (KNN), and Bayesian (Naïve Bayes) classifiers, in both
stages. The attribute selection tool in WEKA selects a set of features for each classifier. This
set of features is considered the best subset that improves the classifier’s performance.

3. Results

Each classifier’s subset of features was used to sort features into groups, and the most
accurate classifier was chosen. Additionally, 10-fold cross-validation was used in this step.
Tables 2 and 3 show each classifier’s set of features and their accuracies in the first stage.
Tables 4 and 5 depict each classifier’s features and their accuracies in the second stage of
the classification process. In both stages: naïve Bayes gave the highest accuracy in both
stages (94.44% and 89.37%, respectively). Naïve Bayes also provided accuracies of 66.12%
and 62.28%, based on PPG features only.

Table 2. Selected features by each classifier in the first stage.

Classifier Selected Demographic Features Selected PPG Features

J48 Age, weight Pulse rate, PW, diastolic time, a, variance of e

Random forest Pulse rate, variance of ∆T

J-Rip Age Pulse rate, variance of pulse interval, notch, variance of e

PART Age, weight Pulse rate, variance of total area, diastolic time, a, variance of e

Naïve Bayes Age, smoking, respiratory problem,
others SA, variance of diastolic time

ANN
Age, height, BMI, gender, smoking,

respiratory problem, blood pressure,
others

SA, variance of SA, Notch, variance of diastolic time, AI of
amplitude

KNN Age Variance of total area
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Table 3. The accuracy of seven classifiers in the first classification stage.

Classifier Accuracy (%)

J48 89.10
Random forest 62.94

J-Rip 85.15
PART 85.33

Naïve Bayes 94.44
ANN 89.56
KNN 82.08

Table 4. Selected features by each classifier in the second stage.

Classifier Selected Demographic Features Selected PPG Features

J48 Age, weight, BMI Pulse rate, SpO2, SA, diastolic time, T1, b, e,
e/a

Random forest ∆T

J-Rip Age, weight, height, BMI, smoking SpO2, Notch, SI, b/a

PART Age, weight, BMI, smoking Total area, A1, T2, AI of amplitude, b, e, e/a

Naïve Bayes Age, height, gender, smoking, respiratory problem, blood
pressure SpO2, ∆T, Notch, total area, b/a, e, e/a, SI

ANN Age, height, gender, physical activity, smoking, respiratory
problem, blood pressure

CT, Notch, diastolic time, SI, a, b, b/a, e, e/a,
(b–e)/a

KNN Age, height Notch

Table 5. The accuracy of seven classifiers in the second classification stage.

Classifier Accuracy (%)

J48 59.36
Random forest 34.12

J-Rip 69.07
PART 72.07

Naïve Bayes 89.37
ANN 88.52
KNN 83.64

Sometimes it is not favorable to depend only on accuracy to evaluate the classifier.
The recall is another evaluator of the classifier. The better the classifier, the higher the recall.
The recall values of naïve Bayes in both stages were 0.882 in the first one and 0.806 in the
second one.

4. Discussion

Regarding the best subset of features selected by each classifier, age dominates each
classifier’s selection. This result is the same as other studies, which said that age was an
essential factor in how stiff the arteries were [10]. Likewise, some CVD risk factors, such
as smoking, respiratory problems, hypertension, and diabetes, appeared repeatedly in the
selected feature set.

Variability analysis of PPG time-domain features assesses their degree of variation
over time. These features’ variance and their means helped differentiate healthy PPG
signals from CVD signals. Naïve Bayes selected the mean systolic amplitude. The fact
that arterial stiffness in CVD cases changes the amplitudes of the PPG signal matches this
selection. Additionally, the classifier selected the variance of diastolic time within the signal.
Based on the 61% accuracy, these two features can detect CVD occurrence.

Since the variance of PPG features over time among CVD cases did not improve the
classifier’s performance, only the mean of each feature represented the PPG signal. The
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inability to deal with the variance may be related to the fact that the search method could
not select the best subset of features due to the increased search space. Arterial stiffness
changes both the amplitudes and time intervals of the PPG signal, and each type of CVD
affects the PPG amplitudes and intervals. So, in the second classification stage, naïve Bayes
selected the CT, Notch, diastolic time, and SI, along with the APG parameters and ratios (a,
b, b/a, e, e/a, (b–e)/a).

In this study, the differences between CVDs affect the CT, notch amplitude, and
diastolic time selection. Finally, the SI and APG parameters are correlated with arterial
stiffness, so selecting these features may relate to CVDs that include a blockage of vessels,
such as CVA, DVT, and ACS.

From another point of view, naïve Bayes provides accuracies of 66.12% and 62.28%,
based on the PPG features alone. The results indicate a significant effect of PPG features
in classification. Both accuracy and recall in the two stages indicate an excellent evalua-
tion of the constructed naïve Bayes classifier. The quality of the classification models can
be measured by several performance measures with frequently contradictory outcomes.
In [46], they compared multiple levels using various performance measures and machine
learning categorization techniques. In each instance, well-established and defined tech-
niques were utilized for the machine-learning tasks. Three datasets (acute and aquatic
toxicities) were compared, and the robust yet sensitive sum of ranking differences (SRD)
and analysis of variance (ANOVA) were used to evaluate the data. The effects of dataset
composition (balanced versus unbalanced) and two-class versus multiclass classification
scenarios were also investigated. Most performance indicators are sensitive to dataset
composition, particularly in two-class classification issues. The ideal machine-learning
algorithm is also very dependent on the dataset’s makeup [4]. In [50–53], the outcomes
of regression performance metrics are discussed in greater detail. These studies show
how important it is to validate machine learning models, which tend to work better than
“traditional” regression techniques. Based on the difference between the training set and the
test set’s coefficients of determination, the most reliable models are principal components
and partial least squares regression.

5. Conclusions

As datasets, the mean and variance of the 24-time-domain feature extracted from
PPG signals, demographic factors, and some information about health status were used
to identify the difference between healthy human subjects and CVD patients. To classify
the five types of CVDs, on the other hand, only the mean of the characteristics derived
from the PPG signal and other covariates was used. In all instances, seven distinct classi-
fiers [15,26–33] were utilized to apply feature selection and classification techniques. In the
two classification stages, the naïve Bayes classifier scored the highest accuracies at 94.44%
and 89.37%, respectively.

This study shows that the PPG signal can be used to find CVD by using a minimum
number of PPG time-domain features, demographic factors, and some health status infor-
mation. Based on these results, future work will use machine learning and deep learning
algorithms to create other classification methods.

Author Contributions: Conceptualization, A.S.A.F. and A.O.A.A.-H.; methodology, A.S.A.F.; soft-
ware, A.O.A.A.-H.; validation, A.S.A.F. and H.A.A.; formal analysis, A.S.A.F.; investigation, A.S.A.F.;
resources, A.S.A.F.; data curation, A.O.A.A.-H.; writing—original draft preparation, A.S.A.F.,
A.O.A.A.-H. and H.A.A.; writing—review and editing, A.S.A.F.; visualization, A.O.A.A.-H.; su-
pervision, A.O.A.A.-H.; project administration, A.S.A.F.; funding acquisition, A.S.A.F. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the deanship of research and higher studies at Yarmouk
University for its support and funding.

Institutional Review Board Statement: The study was approved by the institutional review board
at Jordan University of Science and Technology IRB-2019-07.



Bioengineering 2023, 10, 249 11 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy of the hospital requirements and
ethical restrictions.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. Labarthe, D. Epidemiology and Prevention of Cardiovascular Diseases, 2nd ed.; Jones and Bartlett Publishers: Burlington, MA,

USA, 2010.
2. Jordanian Ministry of Health. Periodic-Newsletters, Amman. 2020. Available online: http://www.moh.gov.jo/EN/Pages/

Periodic-Newsletters.aspx (accessed on 18 September 2020).
3. Jain, P.; Tiwari, A. Heart monitoring systems: A review. Comput. Biol. Med. 2014, 54, 1–13. [CrossRef]
4. Rácz, A.; Bajusz, D.; Héberger, K. Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics.

Molecules 2019, 24, 2811. [CrossRef]
5. Al-Fahoum, A.; Khadra, L. Combined Bispectral and Bicoherency approach for Catastrophic Arrhythmia Classification. In

Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January
2005; pp. 332–336. [CrossRef]

6. Al-Fahoum, A.S.; Qasaimeh, A.M. A practical reconstructed phase space approach for ECG arrhythmias classification. J. Med.
Eng. Technol. 2013, 37, 401–408. [CrossRef]

7. Al-Fahoum, A.; Al-Fraihat, A.; Al-Araida, A. Detection of cardiac ischaemia using bispectral analysis approach. J. Med. Eng.
Technol. 2014, 38, 311–316. [CrossRef] [PubMed]

8. Héberger, K. Sum of ranking differences compares methods or models fairly. TrAC Trends Anal. Chem. 2010, 29, 101–109.
[CrossRef]

9. Angius, G.; Barcellona, D.; Cauli, E.; Meloni, L.; Raffo, L. Infarction and antiphospholipid syndrome: A first study on finger PPG
waveforms effects. Comput. Cardiol. 2012, 12, 517–520.

10. Awad, A.; Haddadin, A.; Tantawy, H.; Badr, T.; Stout, R.; Silverman, D.; Shelley, K. The relationship between the photople-
thysmographic waveform and systemic vascular resistance. J. Clin. Monit. Comput. 2007, 21, 365–372. [CrossRef]

11. Peulic, A.; Milojevic, N.; Jovanov, E.; Radovic, M.; Saveljic, I.; Zdravkovic, N.; Filipovic, N. Modeling of arterial stiffness using
variations of pulse transit time. Comput. Sci. Inf. Syst. 2013, 10, 547–565. [CrossRef]

12. Al Fahoum, A.S.; Al Zaben, A.; Seafan, W. A multiple signal classification approach for photoplethysmography signals in healthy
and athletic subjects. Int. J. Biomed. Eng. Technol. 2015, 17, 1–23. [CrossRef]

13. Aboy, M.; McNames, J.; Thong, T.; Tsunami, D.; Ellenby, M.; Goldstein, B. An Automatic Beat Detection Algorithm for Pressure
Signals. IEEE Trans. Biomed. Eng. 2005, 52, 1662–1670. [CrossRef] [PubMed]

14. Solosenko, A.; Petrenas, A.; Marozas, V. Photoplethysmography-Based Method for Automatic Detection of Premature Ventricular
Contractions. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 662–669. [CrossRef]

15. Yousefi, M.R.; Khezri, M.; Bagheri, R.; Jafari, R. Automatic detection of premature ventricular contraction based on pho-
toplethysmography using chaotic features and high order statistics. In Proceedings of the IEEE International Symposium on
Medical Meas-urements and Applications (MeMeA), Rome, Italy, 11–13 June 2018.

16. Polania, L.F.; Mestha, L.K.; Huang, D.T.; Couderc, J.P. Method for classifying cardiac arrhythmias using photoplethys-mography.
In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milano, Italy,
25–29 August 2015.

17. Al-haija, A.A.; Alshraideh, H.; Al-Fahoum, A. Cardiorespiratory Disorders Detection Using Photoplethysmography. In Proceed-
ings of the 81st IASTEM International Conference, Phuket, Thailand, 9–10 October 2017; pp. 65–69.

18. Nano, M.; Papini, G.; Fonseca, P. Comparing inter beat and inter pulse intervals from ECG and PPG signals. In Proceedings of the
Biomedica Summit, Eindhoven, The Netherlands, 9–10 May 2017.

19. Papini, G.B.; Fonseca, P.; Aubert, X.L.; Overeem, S.; Bergmans, J.W.; Vullings, R. Photoplethysmography beat detection and pulse
morphology quality assessment for signal reliability estimation. In Proceedings of the IEEE Engineering in Medicine and Biology
Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017. [CrossRef]

20. Prabhakar, S.K.; Rajaguru, H.; Lee, S.-W. Metaheuristic-Based Dimensionality Reduction and Classification Analysis of PPG
Signals for Interpreting Cardiovascular Disease. IEEE Access 2019, 7, 165181–165206. [CrossRef]

21. Fayyad, U.; Uthurusamy, R. Data mining and knowledge discovery in databases. Commun. ACM 1996, 39, 24–26. [CrossRef]
22. Ahmed, K.; Abdullah-Al-Emran, A.-A.; Jesmin, T.; Mukti, R.F.; Rahman, Z.; Ahmed, F. Early Detection of Lung Cancer Risk Using

Data Mining. Asian Pac. J. Cancer Prev. 2013, 14, 595–598. [CrossRef]
23. Pilt, K.; Ferenets, R.; Meigas, K.; Lindberg, L.-G.; Temitski, K.; Viigimaa, M. New Photoplethysmographic Signal Analysis

Algorithm for Arterial Stiffness Estimation. Sci. World J. 2013, 2013, 169035. [CrossRef] [PubMed]
24. Yousef, Q.; Reaz, M.B.I.; Ali, M.A.M. The Analysis of PPG Morphology: Investigating the Effects of Aging on Arterial Compliance.

Meas. Sci. Rev. 2012, 12, 266–271. [CrossRef]

http://www.moh.gov.jo/EN/Pages/Periodic-Newsletters.aspx
http://www.moh.gov.jo/EN/Pages/Periodic-Newsletters.aspx
http://doi.org/10.1016/j.compbiomed.2014.08.014
http://doi.org/10.3390/molecules24152811
http://doi.org/10.1109/iembs.2005.1616412
http://doi.org/10.3109/03091902.2013.819946
http://doi.org/10.3109/03091902.2014.925983
http://www.ncbi.nlm.nih.gov/pubmed/25050476
http://doi.org/10.1016/j.trac.2009.09.009
http://doi.org/10.1007/s10877-007-9097-5
http://doi.org/10.2298/CSIS120531015P
http://doi.org/10.1504/IJBET.2015.066962
http://doi.org/10.1109/TBME.2005.855725
http://www.ncbi.nlm.nih.gov/pubmed/16235652
http://doi.org/10.1109/TBCAS.2015.2477437
http://doi.org/10.1109/embc.2017.8036776
http://doi.org/10.1109/ACCESS.2019.2950220
http://doi.org/10.1145/240455.240463
http://doi.org/10.7314/APJCP.2013.14.1.595
http://doi.org/10.1155/2013/169035
http://www.ncbi.nlm.nih.gov/pubmed/23983620
http://doi.org/10.2478/v10048-012-0036-3


Bioengineering 2023, 10, 249 12 of 13

25. Tybor, D.J.; Lichtenstein, A.H.; Dallal, G.E.; Daniels, S.R.; Must, A. Independent effects of age-related changes in waist circumfer-
ence and BMI z scores in predicting cardiovascular disease risk factors in a prospective cohort of adolescent females. Am. J. Clin.
Nutr. 2010, 93, 392–401. [CrossRef] [PubMed]

26. Allen, J.; Liu, H.; Iqbal, S.; Zheng, D.; Stansby, G. Deep learning-based photoplethysmography classification for peripheral arterial
disease detection: A proof-of-concept study. Physiol. Meas. 2021, 42, 054002. [CrossRef] [PubMed]

27. Shabaan, M.; Arshid, K.; Yaqub, M.; Jinchao, F.; Zia, M.S.; Bojja, G.R.; Iftikhar, M.; Ghani, U.; Ambati, L.S.; Munir, R. Survey:
Smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis. BMC Med. Inform. Decis. Mak. 2020, 20,
1–16. [CrossRef]

28. Olsen, M.; Zeitzer, J.M.; Richardson, R.N.; Davidenko, P.; Jennum, P.J.; Sorensen, H.B.D.; Mignot, E. A Flexible Deep Learning
Architecture for Temporal Sleep Stage Classification Using Accelerometry and Photoplethysmography. IEEE Trans. Biomed. Eng.
2022, 70, 228–237. [CrossRef]

29. Schrumpf, F.; Serdack, P.R.; Fuchs, M. Regression or Classification? In Reflection on BP prediction from PPG data using Deep
Neural Networks in the scope of practical applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, New Orleans, LO, USA, 18–24 June 2022; pp. 2171–2180. [CrossRef]

30. Fakhry, M.; Brery, A.F. A Comparison Study on Training Optimization Algorithms in the biLSTM Neural Network for Classi-
fication of PCG Signals. In Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science,
Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [CrossRef]

31. Bhadri, K.; Karnik, N.; Dhatrak, P. Current Advancements in Cardiovascular Disease Management using Artificial Intelligence
and Machine Learning Models: Current Scenario and Challenges. In Proceedings of the 2022 10th International Conference on
Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 29–30 April
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [CrossRef]

32. Neha; Sardana, H.K.; Kanwade, R.; Tewary, S. Arrhythmia detection and classification using ECG and PPG techniques: A review.
Phys. Eng. Sci. Med. 2021, 44, 1027–1048. [CrossRef] [PubMed]

33. Khan, M.U.; Aziz, S.; Iqtidar, K.; Zaher, G.F.; Alghamdi, S.; Gull, M. A two-stage classification model integrating feature fusion for
coronary artery disease detection and classification. Multimed. Tools Appl. 2022, 81, 13661–13690. [CrossRef]

34. Beurer PO 80 Pulse Oximeter. Available online: https://www.beurer.com/web/gb/products/medical/pulse-oximeter/po-80
.php (accessed on 8 January 2023).

35. Freedman, D.; Ogden, C.; Kit, B. Interrelationships between BMI, skinfold thicknesses, percent body fat and cardiovascular
disease risk factors among U.S. children and adolescents. BMC Pediatr. 2015, 15, 188. [CrossRef] [PubMed]

36. Nilsson, L.; Goscinski, T.; Johansson, A.; Lindberg, L.-G.; Kalman, S. Age and Gender Do Not Influence the Ability to Detect
Respiration by Photoplethysmography. J. Clin. Monit. Comput. 2006, 20, 431–436. [CrossRef] [PubMed]

37. Regitz-Zagrosek, V.; Lehmkuhl, E.; Weickert, M. Gender differences in the metabolic syndrome and their role for cardi-ovascular
disease. Clin. Res. Cardiol. 2006, 95, 136–147. [CrossRef] [PubMed]

38. Arza, A.; Lazaro, J.; Gil, E.; Laguna, P.; Aguilo, J.; Bailon, R. Pulse Transit Time and Pulse Width as Potential Measure for
Estimating Beat-to-Beat Systolic and Diastolic Blood Pressure. Comput. Cardiol. 2013, 40, 887–890.

39. Samria, R.; Jain, R.; Jha, A.; Saini, S.; Chowdhury, S. Noninvasive cuffless estimation of blood pressure using photople-
thysmography without electrocardiograph Measurement. In Proceedings of the International Conference IEEE Region 10
Symposium, Kuala Lumpur, Malaysia, 14–16 April 2014.

40. Clair, C.; Rigotti, N.A.; Porneala, B.; Fox, C.S.; D’Agostino, R.B.; Pencina, M.J.; Meigs, J.B. Association of Smoking Cessation and
Weight Change with Cardiovascular Disease Among Adults with and Without Diabetes. JAMA 2013, 309, 1014–1021. [CrossRef]

41. Durand, C.P.; Andalib, M.; Dunton, G.F.; Wolch, J.; Pentz, M.A. A systematic review of built environment factors related to
physical activity and obesity risk: Implications for smart growth urban planning. Obes. Rev. 2011, 12, e173–e182. [CrossRef]
[PubMed]

42. Wannamethee, S.G.; Shaper, A.G.; Whincup, P.; Lennon, L.; Sattar, N. Impact of Diabetes on Cardiovascular Disease Risk and
All-Cause Mortality in Older Men. Arch. Intern. Med. 2011, 171, 404–410. [CrossRef]

43. Kuntamalla, S.; Reddy, L.R.G. An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals.
Int. J. Comput. Appl. 2014, 97, 18–23. [CrossRef]

44. Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [CrossRef]
45. Usman, S.; Reaz, M.; Ali, M. Repeated measurement analysis of the area under the curve of photoplethysmogram among diabetic

patients. Life Sci. J. 2011, 10, 532–539.
46. Wang, J. Data Mining; Idea Group Pub: Hershey, PA, USA, 2003.
47. Manimegalai, P.; Jacob, D.; Thanushkodi, K. An Early Prediction of Cardiac Risk using Augmentation Index Developed based on

a Comparative Study. Int. J. Comput. Appl. 2012, 49, 27–32.
48. Jayasree, V.; Sandhya, T.; Radhakrishnan, P. Non-invasive Studies on Age Related Parameters Using a Blood Volume Pulse Sensor.

Meas. Sci. Rev. 2008, 8, 82–86. [CrossRef]
49. Beak, H.; Kim, J.; Kim, Y.; Lee, H.; Park, K. Second derivative of photoplethysmography for estimating vascular aging. In

Proceedings of the 6th International Special Topic Conference on Information Technology Applications in Biomedicine, Tokyo,
Japan, 8–11 November 2007.

50. Kruschke, J. Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen. 2013, 142, 573–603. [CrossRef]

http://doi.org/10.3945/ajcn.110.001719
http://www.ncbi.nlm.nih.gov/pubmed/21147855
http://doi.org/10.1088/1361-6579/abf9f3
http://www.ncbi.nlm.nih.gov/pubmed/33878743
http://doi.org/10.1186/s12911-020-01199-7
http://doi.org/10.1109/TBME.2022.3187945
http://doi.org/10.1109/cvprw56347.2022.00236
http://doi.org/10.1109/iraset52964.2022.9738309
http://doi.org/10.1109/icetet-sip-2254415.2022.9791776
http://doi.org/10.1007/s13246-021-01072-5
http://www.ncbi.nlm.nih.gov/pubmed/34727361
http://doi.org/10.1007/s11042-021-10805-3
https://www.beurer.com/web/gb/products/medical/pulse-oximeter/po-80.php
https://www.beurer.com/web/gb/products/medical/pulse-oximeter/po-80.php
http://doi.org/10.1186/s12887-015-0493-6
http://www.ncbi.nlm.nih.gov/pubmed/26582570
http://doi.org/10.1007/s10877-006-9050-z
http://www.ncbi.nlm.nih.gov/pubmed/17033878
http://doi.org/10.1007/s00392-006-0351-5
http://www.ncbi.nlm.nih.gov/pubmed/16598526
http://doi.org/10.1001/jama.2013.1644
http://doi.org/10.1111/j.1467-789X.2010.00826.x
http://www.ncbi.nlm.nih.gov/pubmed/21348918
http://doi.org/10.1001/archinternmed.2011.2
http://doi.org/10.5120/17115-7686
http://doi.org/10.2174/157340312801215782
http://doi.org/10.2478/v10048-008-0020-0
http://doi.org/10.1037/a0029146


Bioengineering 2023, 10, 249 13 of 13

51. Rácz, A.; Bajusz, D.; Héberger, K. Consistency of QSAR models: Correct split of training and test sets, ranking of models and
performance parameters. SAR QSAR Environ. Res. 2015, 26, 683–700. [CrossRef]

52. Héberger, K.; Rácz, A.; Bajusz, D. Which Performance Parameters Are Best Suited to Assess the Predictive Ability of Models? In
Advances in QSAR Modeling; Roy, K., Ed.; Springer: Cham, Switzerland, 2017; pp. 89–104. [CrossRef]

53. Rácz, A.; Bajusz, D.; Héberger, K. Modelling methods and cross-validation variants in QSAR: A multi-level analysis. SAR QSAR
Environ. Res. 2018, 29, 661–674. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/1062936X.2015.1084647
http://doi.org/10.1007/978-3-319-56850-8_3
http://doi.org/10.1080/1062936X.2018.1505778

	Introduction 
	Materials and Methods 
	Data Collection 
	Data Description 
	Demographic and Health Status Variables 
	Pulse Oximetry 
	PPG Signal 

	Feature Selection and Classification 
	Machine Learning Classification Algorithm 

	Results 
	Discussion 
	Conclusions 
	References

