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Abstract: Motor imagery-based brain–computer interfaces (BCI) have been widely recognized as ben-
eficial tools for rehabilitation applications. Moreover, visually guided motor imagery was introduced
to improve the rehabilitation impact. However, the reported results to support these techniques
remain unsatisfactory. Electroencephalography (EEG) signals can be represented by a sequence of
a limited number of topographies (microstates). To explore the dynamic brain activation patterns,
we conducted EEG microstate and microstate-specific functional connectivity analyses on EEG data
under motor imagery (MI), motor execution (ME), and guided MI (GMI) conditions. By comparing
sixteen microstate parameters, the brain activation patterns induced by GMI show more similarities
to ME than MI from a microstate perspective. The mean duration and duration of microstate four
are proposed as biomarkers to evaluate motor condition. A support vector machine (SVM) classifier
trained with microstate parameters achieved average accuracies of 80.27% and 66.30% for ME versus
MI and GMI classification, respectively. Further, functional connectivity patterns showed a strong
relationship with microstates. Key node analysis shows clear switching of key node distribution
between brain areas among different microstates. The neural mechanism of the switching pattern is
discussed. While microstate analysis indicates similar brain dynamics between GMI and ME, graph
theory-based microstate-specific functional connectivity analysis implies that visual guidance may
reduce the functional integration of the brain network during MI. Thus, we proposed that combined
MI and GMI for BCI can improve neurorehabilitation effects. The present findings provide insights
for understanding the neural mechanism of microstates, the role of visual guidance in MI tasks, and
the experimental basis for developing new BCI-aided rehabilitation systems.

Keywords: EEG; motor imagery; guided motor imagery; microstate; microstate-specific functional connectivity

1. Introduction

One of the numerous applications of the brain–computer interface (BCI) is assisting
in activating neuroplastic mechanisms through various feedbacks in rehabilitation, in
particular for stroke patients [1]. BCI rehabilitation systems are considered better than
traditional rehabilitation because they are closed-loop and customized [2]. In post-stroke
rehabilitation fields, action simulations, e.g., motor imagery (MI), motor observation (MO),
and visually guided motor imagery (GMI), are widely studied since they have proven their
ability to be used for neurological rehabilitation [3,4]. The mechanism of MI, MO, and GMI
tasks’ application in stroke rehabilitation is that they can motivate neural reorganization
processes, and the rehabilitation effect can be improved by increasing the co-activation of
the motor network [1].
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Among BCI modalities, electroencephalography (EEG) is frequently used because of
its high temporal resolution, noninvasiveness, and portability. EEG signals have shown
an excellent ability to classify different motor conditions [5] and different motions during
MI tasks [6,7]. In the former studies of EEG, many investigations have been focused on
static features, which may lose important temporal information. While dynamic analysis
methods are believed to reflect brain activity patterns better and include information on
the spatiotemporal dimensions [8]. EEG microstate analysis has been increasingly utilized
for investigating the spatiotemporal properties of brain dynamics with multichannel EEG.
The numbers of electrodes vary from 19 to 204 according to a previous review [9]. EEG
microstates were first found by Lehmann et al. and were considered “basic building
blocks of brain information processing” [10]. According to the microstate theory, the
broad-band of EEG signals could be modeled as a time sequence of a finite number of
discrete microstates that remain stable for 60–120 ms [9]. The EEG microstates were
found to be mostly determined by alpha wave (8.5–12 Hz) [11]. In terms of describing
brain connectivity, dynamic functional connectivity (dFC) analysis is a popular method.
The sliding-window method was used in traditional dFC analysis [12]. However, the
optimized window size is difficult to determine, and a fixed window size hardly reflects the
cognitive processing stage [12]. To overcome the limitations, microstate-specific functional
connectivity (MSFC) analysis was proposed. It calculates the functional connectivity (FC)
pattern of each microstate. Since microstates were considered to be associated with different
cognitive processing stages in many studies [9,10], MSFC provides more exhaustive and
reliable information on brain dynamics. It has been previously used for studying brain
signals in stroke patients [8], during cognitive tasks [13], during resting-state [14], during
mental workload [15], and influenced by continuous theta-burst stimulation [16].

In neurorehabilitation fields, GMI was proposed because it was hypothesized that MI
could be affected by external cues to reach a better rehabilitation effect [17]. The visually
guided MI in this study can also be seen as a combination of MO and MI. Previous studies
have provided evidence based on oxyhemoglobin (HbO) responses [18], imagery vividness
scores and eye movements [17], and event-related desynchronization (ERD) values [3].
However, to our knowledge, no research published has provided microstate or functional
connectivity evidence in support of the hypothesis.

Most existing microstate studies focused only on one or two motor conditions among
the MI, ME, and GMI. Some former studies [19–21] conducted microstate analysis for
MI-EEG, proving the ability of microstate parameters as classification features. Fu et al. [22]
focused on EEG microstate patterns related to executed and imagined grip. However, the
brain microstate patterns activated by MI, GMI, and ME and their comparisons remain
unstudied. Besides, to our knowledge, no previous research has studied the relationship
between the FC patterns and any specific microstates in motor-related tasks. To summarize,
we expect to understand motor-related tasks, especially GMI, from a new perspective by
exploring how the microstate and MSFC patterns change with different motor conditions.

In this study, the EEG data were collected from 30 healthy participants under 18 tasks.
Each task is a combination of one of the six motions (i.e., right-hand finger tapping, left-hand
finger tapping, holding a pen, opening a pen, crossing fingers, and moving an arm) under
one of the three motor conditions (i.e., MI, GMI, ME). After that, we conducted microstate
analysis and investigated the stability and consistency of microstates when analyzing
different numbers of tasks. Next, we analyzed four types of microstate parameters: mean
duration, duration, coverage, and occurrence. Then, we studied the accuracy of the ME
versus MI and ME versus GMI classification tasks using those microstate parameters. Last,
we conducted the MSFC analysis based on graph theory. These results prove that the
microstate parameters are useful for comparing brain dynamics during various motor
conditions. Furthermore, the classification accuracy between a given motor condition and
ME with a microstate parameter-based SVM classifier can be used for creating a quantitative
index for individually evaluating the potential rehabilitation effect. This index can also be
used as feedback in a closed-loop BCI system. Moreover, brain activation patterns of those
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three motor conditions are analyzed and new evidence supporting rehabilitation therapy
to combine MI and GMI is proposed. In short, the main contribution of the present study
is providing new microstate-based references for designing and constructing BCI-aided
rehabilitation systems.

In the remaining parts of this paper, we introduce in Section 2 the proposed methods
of EEG signal acquisition and processing. The results are shown in Section 3 and discussed
and analyzed in Section 4. The conclusions are the subject of Section 5.

2. Materials and Methods
2.1. Experiments and Data Acquisition

A total of thirty healthy subjects were recruited (15 males and 15 females, 29 are
right-handed; aged 24.26 ± 3.46 years). All subjects declared no history of stroke or other
brain diseases. The experiment was approved by Westlake University Ethics Committee
(approval ID: 20191023swan001). EEG signals of MI, ME, and GMI were recorded during
six motions: right-hand finger tapping, left-hand finger tapping, holding a pen, opening a
pen, crossing fingers, and moving an arm. Each task included five trials under three motor
conditions (ME, MI, GMI). In MI tasks, subjects were instructed to imagine themselves
doing the motion without any muscle activities with audio stimuli. In GMI tasks, the screen
shows a picture of a specific motion, and subjects were instructed to conduct MI tasks with
visual guidance.

EEG data were collected with 32 Ag/AgCl electrodes, a ground electrode, and a
reference electrode, arranged in accordance with the 10–20 international standard. The EEG
recording system consisted of the Brain Products actiCHamp Plus (EEG signal amplifier)
and actiCAP slim (active EEG electrodes). More details of the recording system of the EEG
signals and the experimental protocol can be found in our former work [5]. The dataset of
this manuscript and our former work is the same.

2.2. Preprocessing

Figure 1 shows a flow-process diagram of all analytical processes in this study. Prepro-
cessing includes the following procedures: First, raw data were bandpass filtered (1–45 Hz)
with finite impulse response (FIR) filters to remove signals that are not in the interested
frequency range. Signals with a larger frequency range than what is needed in the cur-
rent study were retained because they might be used in our future research. Second,
we down-sampled the EEG signals to 250 Hz to reduce the calculation time. Next, bad
channels and segments, whose signals were evidently polluted by noise or with abnormal
power spectrum, were investigated visually and removed. Subjects with less than six bad
channels were selected for further analysis because a former study had shown that the
error of interpolation increases with the increment of the number of bad channels [23].
This method gave us nine subjects. This sample size is similar with former studies of
microstate analysis of MI-EEG [20,21]. All retained subjects are right-handers. Next, we
interpolated the bad channels’ signal with spherical interpolation before re-referencing
all EEG data to the common average. After that, independent component analysis (ICA)
was used for decomposing the EEG data, and artifactual components, including eye and
muscle components, were discarded via visual inspection. Lastly, all trials were epoched
between −1 and 3 s with baseline correction, resulting in 810 epochs. EEGLAB toolbox
(version 2022.0) [24] and MATLAB (R2022a) were applied to conduct all preprocessing
procedures above.
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field power; GMI: guided motor imagery; ME: motor execution; MI: motor imagery; PLV: phase 
lock value; SVM: support vector machine. 

2.3. EEG Microstate Analysis 
Microstate analysis was conducted in the same procedures as some former microstate 

studies [8,21,22]: global field power (GFP) calculation, microstates clustering, back-fitting, 
labeling, and microstate parameters calculation. Microstate and MSFC analyses were con-
ducted with a MATLAB toolbox: +microstate ([25]; plus-microstate.github.io). 

First, an 8–15 Hz bandpass filter (BPF) was used to get the EEG signal around the 
alpha band (8–13 Hz). Alpha and beta (13–30 Hz) bands are most commonly used in MI-
BCI [26]. In a previous study of microstate analysis of MI and ME [22], the alpha band 
shows the highest correlation coefficient value with the clustered microstates. Besides, this 
specific frequency band was chosen by a former study involving the microstate analysis 
of MI-EEG [21] and achieved good results. After this, EEG data were re-referenced to the 
common average. 

GFP of EEG signals was calculated according to Equation (1) [25]. GFP is used to 
quantify the amount of activity [27]. The value of GFP is defined as the value of the stand-
ard deviation of the EEG signal. Next, the topographies with the highest signal-to-noise 
ratio (SNR) were extracted based on local maximal values of the GFP [28]. 
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Figure 1. Flow-process diagram of the analytical process in this study: (a) EEG signal preprocess pro-
cedures, (b) Microstate analysis procedures, (c) SVM classification procedures, (d) Microstate-specific
functional connectivity analysis procedures. EEG: electroencephalography; GFP: global field power;
GMI: guided motor imagery; ME: motor execution; MI: motor imagery; PLV: phase lock value;
SVM: support vector machine.

2.3. EEG Microstate Analysis

Microstate analysis was conducted in the same procedures as some former microstate
studies [8,21,22]: global field power (GFP) calculation, microstates clustering, back-fitting,
labeling, and microstate parameters calculation. Microstate and MSFC analyses were
conducted with a MATLAB toolbox: +microstate ([25]; plus-microstate.github.io).

First, an 8–15 Hz bandpass filter (BPF) was used to get the EEG signal around the
alpha band (8–13 Hz). Alpha and beta (13–30 Hz) bands are most commonly used in
MI-BCI [26]. In a previous study of microstate analysis of MI and ME [22], the alpha band
shows the highest correlation coefficient value with the clustered microstates. Besides, this
specific frequency band was chosen by a former study involving the microstate analysis
of MI-EEG [21] and achieved good results. After this, EEG data were re-referenced to the
common average.

GFP of EEG signals was calculated according to Equation (1) [25]. GFP is used to
quantify the amount of activity [27]. The value of GFP is defined as the value of the standard
deviation of the EEG signal. Next, the topographies with the highest signal-to-noise ratio
(SNR) were extracted based on local maximal values of the GFP [28].

GFP =

√(
∑N

i (Vi(t)−Vmean (t))2
)

Ne − 1
(1)

plus-microstate.github.io
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where Vi(t) is the potential value at time t of the i th channel, Vmean (t) is the mean potential
value at time t of all channels, and Ne is the channel number [29].

Next, we applied the K-means clustering method to find the optimized microstate
maps with the original topography maps. This method is widely adopted in the former
microstate-related studies [8,22]. After that, we ran the clustering analysis for 2–7 states
to optimize the number of microstate maps. In all conditions considered in this work, the
optimum number is five. Then, the microstate maps were back-fitted to the preprocessed
EEG signal and a temporal microstate sequence was given by labeling original signals
based on maximal similarity to the microstate maps. A detailed description of the above
methods and algorithms can be found in the toolbox manual [25].

2.4. Microstate Parameters Calculation

Four microstate parameters were calculated and compared in this work. (a) mean
duration of microstates: mean value of the time all microstate maps lasted [28]; (b) coverage:
the time ratio of signal in each microstate map [28]; (c) occurrence: the frequency of each
microstate map appears [30]; (d) duration: the mean value of the time each microstate
map lasted [30]. Since we have five microstates, duration, coverage, and occurrence were
calculated for all five microstates separately, and mean duration is the mean value of the
five microstates. In total, sixteen parameters were computed for each task.

2.5. Microstate-Specific Functional Connectivity Analysis

MSFC was calculated by the “+microstate” MATLAB toolbox. We adopted the alpha
band (8–13 Hz) phase lock value (PLV) to measure FC between every two channels. The
PLV value between the two channels was calculated based on Equation (2) [31]:

PLVm
i,j =

∣∣∣∣∣ 1
N

N

∑
n=1

ei(ϕjn−ϕin)

∣∣∣∣∣ (2)

where N is the number of time points of a specific microstate m, and ϕjn, ϕin are the phase
angles of point n from channels i and j, which was obtained by the Hilbert transform. The
microstate-specific PLV were only calculated if the total duration of the microstate is longer
than 500 ms, because the PLV value was considered unreliable if the data length was shorter
than 5 cycles of the central frequency [32]. In our study, 10 Hz is the central frequency of
the relevant frequency bands, so 500 ms is the shortest acceptable microstate total duration
per epoch.

Next, a weighted brain network was constructed for each microstate under every task
to investigate the functional integration and segregation among different brain regions [33].
The set of nodes corresponds to all EEG channels, and the edge values are the mean PLV
value between each channel pair.

After that, key nodes were calculated based on nodal betweenness centrality (Nbc),
and Nbc was calculated based on Equation (3) [34]:

Nbc(i) = ∑
s 6=i 6=t

ρst(i)
ρst

(3)

where Nbc(i) is node i ’s nodal betweenness centrality value, ρst(i) is the number of the
shortest paths that pass the node i from node s to node t, ρst is the total number of the
shortest paths from node s to node t. The Nbc of a given node characterizes its effect on
information flow within the network. The nodes with high Nbc (Nbc ≥ mean + SD) were
defined as key nodes because they are considered as the centers of a network and are
important in the expression of information flow [35]. Besides, we calculated three global
metrics: global efficiency (Eg), clustering coefficient (Cp), and characteristic path length
(Lp). Eg describes the efficiency of a network in transferring information between nodes.



Bioengineering 2023, 10, 281 6 of 18

A brain network with a higher Eg means a larger information-transferring speed between
brain regions. It was calculated based on Equation (4) [15]:

Eg =
1

Nn
∑

i∈Ns
Ei =

1
Nn

∑
i∈Ns

∑j∈Ns ,j 6=i d−1
ij

Nn − 1
(4)

where Ns is the set of all nodes, Nn is the number of nodes in the network, Ei is the local
efficiency of the node i, and dij is the shortest path length from node i to j. Nodal Cp
describes the likelihood its neighborhoods are connected to each other. Mean Cp is the
average value of all nodal Cp. A brain network with a higher mean Cp contains higher local
information processing. Mean Cp was calculated as Equation (5) [15]:

Cp =
1

Nn
∑

i∈Ns
Ci =

1
Nn

∑
i∈Ns

2Ti
di(di − 1)

(5)

where Ci is the individual nodal Cp of the nodes, Ti is the count of triangles through node
i, and di is node i’s degree which is defined as Equation (6):

di = ∑
i∈Ns

eij (6)

where eij is the weight of the edge between node i and j. Lp was defined as the global
average shortest path length. A brain network with a shorter Lp has higher information
transformation efficiency. Lp was calculated as shown in Equation (7) [15]:

Lp =
1

Nn
∑

i∈Ns
Li =

1
Nn

∑
i∈Ns

∑j∈Ns ,j 6=i dij

Nn − 1
(7)

where Li is the nodal shortest path length of node i, which is the mean shortest path length
from node i to the other nodes within the network.

All graph metrics mentioned above were calculated with the GRETNA toolbox
(v2.0.0) [36].

2.6. Support Vector Machine Classifier

The support vector machine (SVM)’s classification principle is finding a hyper-plane
with maximal distance between classes within the training set in a high-dimensional
space [37]. It has shown its applicability in classifying small training sets and nonlinear
relationships [38]. In this study, we trained an SVM as the classifier between ME versus MI
and GMI. Leave-one-out cross-validation was applied to get the accuracies.

2.7. Statistical and Visualization Tools

In this study, all significance level is set as p < 0.05. Two-way repeated-measures
ANOVA (RANOVA, motion × motor condition) was applied in both microstate and MSFC
analyses. Missing values of original data were replaced with average value of other data
before statistical analyses. Before the RANOVA analysis, Mauchly’s test and Shapiro–Wilk
test were applied to evaluate the sphericity and normality of input data, respectively. If
the assumption of normality was not tenable, pairwise non-parametric permutation tests
with 100,000 replications were directly applied. If the assumption of sphericity was not
tenable, the severity of the sphericity problem could be measured by a statistic: ε, ranging
from 0 to 1. The data were processed by Huynh–Feldt correction if ε ≥ 0.75. If ε < 0.75,
data were corrected with Greenhouse–Geisser correction. To further explore the changes
of measurements under each motion, one-way RANOVA (Factor: motor condition) was
utilized. All multiple comparisons in this study were corrected with the Bonferroni method.
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IBM SPSS Statistics 26.0 was used to conduct all statistical analyses mentioned above.
Box diagrams were plotted with OriginPro 2022.

3. Results
3.1. Microstate Maps

Microstate maps were calculated separately among six tasks (right and left-hand finger
tapping under MI, ME, and GMI conditions) and all eighteen tasks (right and left-hand
finger tapping, holding a pen, opening a pen, crossing fingers, and moving an arm under
MI, ME and GMI conditions). Figure 2 shows the topographies of the microstate maps. It
can be observed that the maps with the same microstate number derived from “6 tasks”
and “18 tasks” are similar. The mean Pearson correlation coefficient value of all map pairs
was 99.77% ± 0.20%, showing high consistency between the two sets of microstate maps.
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Figure 2. Five Microstate maps of two sets of tasks: (a) The microstates clustered in six tasks (right
and left-hand finger tapping under MI, ME, and GMI conditions), (b) The microstates clustered in all
eighteen tasks (right and left-hand finger tapping, holding a pen, opening a pen, crossing fingers,
and moving an arm under MI, ME and GMI conditions). The value of the microstate topographies
was normalized to the range between −1.0 and 1.0.

3.2. Microstate Parameters Analysis

Mean duration, duration, coverage, and occurrence of the microstates were calcu-
lated. Duration, coverage, and occurrence were calculated for all five microstates indi-
vidually, and mean duration is the mean value of the five microstates, resulting in a total
of sixteen parameters. All parameters of finger-tapping motions are shown in Figure 3.
The Mn stands for the nth microstate.

In Figure 3 the analysis between tasks of the microstate parameters of finger tapping
motions is presented. In total, 24 pairs of parameters show a significant difference between
MI and GMI. They are coverage of M1, M2, M4, M5, duration of M1, M3, M4, M5, occurrence
of M2, M3, M5, and mean duration during right-hand finger tapping. In addition, the
coverage of M2, M4, M5, duration of M1, M3, M4, M5, occurrence of M1, M2, M3, M5,
and mean duration during left-hand finger tapping. Furthermore, 22 pairs of parameters
show a significant difference between MI and ME. They are coverage of M2, M4, duration
of M1, M3, M4, M5, occurrence of M1, M2, M5, and mean duration during right-hand
finger tapping, as well as the coverage of M2, M4, M5, duration of M1, M2, M3, M4, M5,
occurrence of M1, M2, M5, and mean duration during left-hand finger tapping. It is noted
that only seven pairs of parameters show a significant difference between GMI and ME.
This is shown in the coverage of M5, duration of M4, and mean duration during right-hand
finger tapping, as well as duration of M2, M3, M4, and mean duration during left-hand
finger tapping. All microstate parameters with a significant difference between all three
pairs of motor condition are shown in Tables 1–3, respectively.
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Table 1. Microstate parameters with significant difference for comparison between MI and GMI.

Motion
Microstate Parameters

Coverage Duration Occurrence Mean Duration

Left-hand finger tapping M2, M4, M5 M1, M3, M4, M5 M1, M2, M3, M5
√

Right-hand finger tapping M1, M2, M4, M5 M1, M3, M4, M5 M2, M3, M5
√

Table 2. Microstate parameters with significant difference for comparison between MI and ME.

Motion
Microstate Parameters

Coverage Duration Occurrence Mean Duration

Left-hand finger tapping M2, M4, M5 M1, M2, M3, M4, M5 M1, M2, M5
√

Right-hand finger tapping M2, M4 M1, M3, M4, M5 M1, M3, M5
√

Table 3. Microstate parameters with significant difference for comparison between ME and GMI.

Motion
Microstate Parameters

Coverage Duration Occurrence Mean Duration

Left-hand finger tapping M2, M3, M4
√

Right-hand finger tapping M5 M4
√

3.3. Classification between Motor Conditions

In Section 3.2, the result shows that GMI has a smaller number of significant different
parameters with ME than MI. However, a more intuitive index is desired to evaluate the
difference between a given motor condition and ME. Since the basic principle of SVM is to
maximally separate the distributions of the input groups’ features in parameter space and
determine an optimal hyperplane [39], the classification accuracy could reflect the degree
of dissimilarity between two given tasks.

We adopted an SVM to test microstate parameters’ ability to discriminate motor
conditions. We used the sixteen parameters discussed in the Section 3.2 as feature vectors
to train the SVM. An accuracy of 80.27% was achieved for the classification between ME
and MI tasks across all six motions. Note that we trained the modal with all data across
motions, rather than training with data of separate motions and calculating the average
accuracy. This confirms that the results are the reflection of only motor conditions and that
this method is applicable to multiple motions. We also tested the classification accuracy
between ME and GMI across all motions. An accuracy of 66.67% was achieved, indicating
higher difficulty in distinguishing ME and GMI based on microstate features. To further
investigate the relationship between classification performance and motion types, we
tested the classification accuracy under each motion separately, and the results are shown
in Table 4. According to Table 4 the average single motion classification accuracy of ME
versus MI and ME versus GMI is 80.27% ± 6.50% and 66.30% ± 5.56%, respectively. The
classification accuracy difference between the two conditions is 13.97% ± 9.25%.

Table 4. Classification accuracy (in %) of ME versus MI and ME versus GMI under six motions.

Right-Finger
Tap

Left-Finger
Tap Hold a Pen Open a Pen Cross

Fingers
Arm

Movement Mean ± STD

ME vs. MI 72.98 80.91 77.31 75.56 83.96 90.91 80.27 ± 6.50
ME vs. GMI 70.54 57.95 73.33 62.22 67.08 66.67 66.30 ± 5.56

Accuracy
difference 2.44 22.96 3.98 13.34 16.88 24.24 13.97 ± 9.25
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3.4. Microstate-Specific Functional Connectivity

The results in Sections 3.2 and 3.3 indicate that GMI could induce more similar brain
activation patterns to ME than MI from the microstate analysis. Here, we further analyze
MSFC across all 18 tasks. We calculated each microstate segment’s alpha band network
(8–13 Hz). We adopted multivariate pattern analysis by using the networks_mvpa function in
+microstate toolbox [25] to test the relationship between FC patterns and specific microstate
classes. We obtained a p-value of 0.005, suggesting a strong association between microstate
class and FC pattern.

Next, the key nodes were calculated. Figure 4a shows the area distributions of key
nodes in each microstate. It was found that during ME tasks, the key nodes were mostly
distributed in the parietal area (36.00%), frontal area (50.00%), frontal area (38.24%), parietal
area (32.56%), and parietal area (35.29%) for microstates M1 to M5, respectively. During
GMI tasks, the key nodes were mostly distributed in the frontal area (28.57%), frontal
area (70.00%), parietal area (64.71%), frontal area (31.96%), and parietal area (55.56%) for
microstates M1–M5, respectively. During MI tasks, key nodes were mostly located at the
parietal area (40.00%, 32.50%, 37.50%, 62.50%, and 46.67%) for all microstates. Figure 4b
shows the microstate distributions of key nodes for all tasks and brain regions. It can be
concluded that half of the key nodes were distributed in M4 (29%) and M5 (21%).
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Three global metrics based on graph theory: Eg, Cp, and Lp were calculated and
analyzed. Two-way RANOVA showed that the three metrics in all microstates were
significantly influenced by motor condition, and only four parameters (Eg at M2, Cp at
M3, M4, and Lp at M2) were significantly influenced by motions. To further explore the
detailed influence of motor condition on global metrics, one-way RANOVA (Factor: motor
condition) was conducted for each motion. Figure 5 shows the results under all 18 tasks.
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For Lp, pairwise comparisons show that for all significant different pairs, Lp during
GMI is longer than ME, and Lp during MI is lower than both ME and GMI. For Eg, pairwise
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comparisons show that for all significant different pairs, Eg during GMI is lower than ME,
Eg during MI is higher than both ME and GMI. While for Cp, pairwise comparisons show
that for all significantly different pairs, Cp during MI is higher than both ME and GMI, and
Cp during GMI is lower than ME except for crossing fingers at M5.

4. Discussion

To study the brain activation patterns and evaluate the rehabilitation potential under
MI and GMI tasks, microstate analysis and MSFC analysis were conducted on EEG data
of multiple motions under ME, MI, and GMI conditions. First, we gave five microstate
maps, showing high consistency between six and eighteen tasks. This suggests that the
microstate maps are stable within our dataset and irrelevant to the dataset size and motion
types. Though in most resting-state microstate studies, four types of microstate maps were
given [9], the optimal cluster number of microstate maps in task states varies in different
studies [22].

Next, from Figure 3, we gave microstate-based evidence that GMI could induce more
similar brain activation patterns with ME than MI. Previous studies have shown that visual
guidance of MI could enhance HbO responses [18], improve ERD values [3], and increase
imagery vividness [17]. In our study, we provided new evidence from a microstate-based
brain dynamic perspective showing the similarity of brain activation patterns between
GMI and ME. Moreover, the duration of M4 and the mean duration of all microstates
are significantly changed in all pairwise comparisons. Thus, the two parameters are
most sensitive to the change of motor conditions, making them potential biomarkers in
evaluating motor conditions.

Based on the difference in microstate parameters between motor conditions, we further
tested the classification ability of the parameters between ME and MI or GMI. It should be
noted that those accuracies were achieved without feature selection; we used all four types
of microstate parameters directly as the feature vector. In EEG classification tasks, feature
selection is a commonly used method to choose the best subset of features to reduce
computation time and increase classification accuracy [40]. Feature selection methods,
e.g., the relief algorithm, effect-size-based feature selection, and minimally redundant
maximally relevant algorithm, have been used in EEG classification tasks and proved their
ability to increase accuracy [41]. We did not apply feature selection because our goal in
classifying motor conditions is not to reach high accuracy but to give an intuitive index to
evaluate the given EEG signal’s similarity with the EEG pattern under the ME condition.
Thus, selecting a limited subset of given features with the highest classification ability is
not desired. All microstate features were retained. However, even without feature selection
and using only microstate parameters, accuracy (80.27% across all six motions) higher than
our former study [5] was achieved. In that study, an accuracy of 78.57% was achieved with
26 statistical, wavelet-based, and power parameters using the same dataset. Therefore,
microstate parameters are efficient and stable features in classifying ME and MI tasks.

In this study, the lower the classification accuracy, the more similar the brain dynamics
are to ME. As shown in Table 4, mean accuracy is 80.27% in MI versus ME classification
but only 66.30% in GMI versus ME under each motion, showing higher similarity between
GMI and ME with a quantitative index. This index could be part of the basis for creating a
quantitative index for individually evaluating the potential rehabilitation effect. Moreover,
the classification accuracy is decreased by 13.97% ± 9.25% because of the involvement of vi-
sual guidance. However, we can clearly see that the decrement of right-hand finger tapping
(2.44%) and holding a pen (2.98%) is much smaller than other motions (left-hand finger
tapping: 22.96%; opening a pen: 13.34%; crossing fingers: 16.88%; moving an arm: 24.24%).
Besides, the classification accuracies for ME versus GMI of right-hand motions (right-hand
finger tapping: 70.54%; holding a pen: 73.33%) are higher than other motions (left-hand
finger tapping: 57.59%; opening a pen: 62.22%; crossing fingers: 67.08%; moving an arm:
66.67%). Since the majority of our subjects are right-handers, they are likely to be most fa-
miliar with dominant hand motions than nondominant hand, two hand, and arm motions.
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The evidence together proves that more complex and unfamiliar motions may be better
assisted by visual guidance during MI tasks and are more useful in neurorehabilitation.

Finally, we conducted the MSFC analysis and constructed functional connectivity brain
networks. Results of the key nodes analysis show clear switching of key node distribution
between brain areas among different microstates. The switching and distribution of key
nodes among microstates might be undetected in static FC analysis, which only gives one
set of key nodes calculated from the overall functional connectivity. Since the key nodes
with high Nbc are considered to be critical in the information flow within a network, they
are deemed the central part of the network [35]. These results indicate that, in different
microstate periods, the brain may process different cognitive functions, and the central areas
of brain networks switch accordingly. In our study, the switching of the key nodes between
the parietal area and the frontal area at various microstates shows a high frontal–parietal
integration. Similarly, Kincses et al. [42] reported that the fronto-parieto-cerebellar network
was identified as a task-related component during sequential tapping tasks. Moreover,
meta-analysis [43] identified a predominantly premotor-parietal network for MI and the
cortical sensorimotor and premotor network for ME, which explains why predominant key
nodes distributions are consistently in parietal areas for MI, but switching between Frontal
and Parietal areas for ME. What’s more, GMI’s predominant key nodes distributions in
frontal in M1, M2, M4 can be explained by the mirror neurons (MNs). MNs were found in
area F5 of the ventral premotor cortex located in the frontal lobe, and the inferior parietal
lobule [44]. These areas were found to be more closely associated with MO than MI [43].
Since during the GMI tasks, subjects were instructed to conduct MI while observing the
visual-guidance, GMI is likely to cause the cognitive process of MO.

Former studies of resting-state microstates have found an association between EEG
microstates and resting state networks [45]. Four microstates in resting-state conditions are
proven to be associated with the auditory network, saliency network (SN), visual network,
and attention network [46]. We speculate that microstates during motor-related tasks
are associated with brain networks of different cognitive functions as well. In our study,
the midline frontal-occipital topography pattern of M2 is very similar to the microstate
C observed in resting-state condition, which was proved to be correlated with SN [9,46].
SN was believed to play an important role in responding to internal or external stimuli
concerning homeostasis and the coordination of neural resources [47]. Thus, the significant
higher coverage and occurrence of M2 during GMI than MI may be attributed to the SN’s
higher activation in processing visual stimuli. The evidence listed above indicates that the
increment of duration and occurrence of M2 and the distribution proportion of key nodes
in frontal areas can at least in part be explained by SN’s activation in processing visual
stimuli and the MNs’ activation in MO brought by visual guidance.

Besides, the M1 in our study with left-frontal right-posterior topography is similar to
the microstate B observed in resting-state condition, which was proven to be correlated
with the visual network [9,46]. Accordingly, from Figure 4a, GMI has the highest key node
distribution in the Occipital area during M1 (ME: 4.00%, MI: 10.00%, GMI: 19.05%). M1 is
also the only microstate during which GMI has a higher key node distribution proportion
than the other two motor conditions. Thus, the evidence indicates that the cognitive
progress during M1 is related to visual stimuli.

While the topographies of M4 and M5 are not typically found in resting state studies,
they contribute to half of the key nodes’ distribution (M4: 29% and M5: 21%), indicat-
ing their importance in motor-related tasks. Thus, we speculate they are task-specific
microstates. Both of them have a high proportion of key nodes distribution in frontal and
parietal areas. This distribution of key nodes fits the former findings that the interaction
between posterior parietal regions and frontal motor regions is activated in both MI and ME
tasks [48]. Notably, the topography of M5 has a clear lateralized pattern between the left and
right hemispheres. Therefore, M5 may contribute in the processing of one-hand motions,
e.g., right and left-finger tapping, which have lateralized brain activation patterns [49].
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The results of global metrics of MSFC brain network show an overall higher Eg, higher
Cp, and shorter Lp for MI compared with both ME and GMI. All three global metrics
consistently indicate a higher functional integration and information flow intensity of the
brain network during MI tasks. This may be attributed to the higher mental workload
during MI task. A similar change in global metrics was reported in [15] when the mental
workload increases. What’s more, though visual guidance of MI can induce similar brain
activation patterns from a microstate perspective, the brain network functional integration
is reduced, hindering neurorehabilitation [1,50]. Thus, we speculate that compared with
single task of MI or GMI, the combination of these two tasks may lead to better rehabilitation
results. As proven by He et al. [51], after GMI training, the EEG signals during MI tasks
show enhancement in various features. However, more experiments need to be conducted
on patients to confirm this hypothesis.

In this study, by conducting microstate and MSFC analyses on EEG signals during ME,
GMI, and MI tasks, we explored the role of visual guidance in MI tasks for multiple motions.
In Table 5, we compared this work with other published works that study motor-related
tasks with a microstate approach.

Table 5. A comparison of studies that investigate motor-related tasks with microstate approach.

Authors Main Results
Classification

Study
FC

Analysis

Motor
Conditions Specific

Biomarkers
Motion
Number

MI ME GMI

Liu et al.,
2017 [21]

Mean accuracy of 89.17% was
achieved for two motion

classification using
microstate-based features.

Used SVM to
classify

motions.
×

√
× × × 2

Li et al.,
2021 [20]

Mean accuracy of 93.93% was
achieved for two motion

classification using microstate
and Teager energy operator

features.

Used SVM to
classify

motions.
×

√
× × × 2

Fu et al.,
2018 [22]

Discussed the change of
microstate parameters

between ME and MI of grip
tasks; proved alpha wave has
the highest correlation with

microstates.

× ×
√ √

× × 3

Kim et al.,
2020 [19]

Topography of M5 in their
study can be used as a
biomarker for errors in

MI-BCI.

× ×
√

× × Topography
of M5. 2

This work

Duration of M4 and mean
duration can be biomarkers to

evaluate motor condition;
SVM classifier can be used to
quantitatively evaluate motor

condition difference; GMI
could induce similar brain
activation pattern with ME,

but may reduce the functional
integration of the

brain network.

Used SVM to
classify
motor

conditions.

√ √ √ √ Duration of
M4 and mean

duration.
6

FC: functional connectivity; BCI: brain-computer interface.
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In Table 6, we compared this work with other published works that study GMI
with different approaches. To our knowledge, we achieved the first systematic study
that conducts microstate and MSFC analysis on MI, GMI, and ME tasks under multiple
motions. Microstate-based biomarkers are first proposed to evaluate motor conditions.
Moreover, we have the highest motion number in relevant studies. The motions in our
study contain one-hand motion, two-hand motion, and arm motion, making our results
more comprehensive. However, this study still has several limitations, and more work
needs to be done in the future. As mentioned above, all subjects formally analyzed in
this study are right-handers. Future experiments for left-handers need to be performed
to examine whether the results of this work are universal. What’s more, only healthy
subjects were recruited in our study. To further study the rehabilitation ability and neural
mechanism for GMI and MI, we need to conduct the same experiment in stroke patients.
Additionally, we only focused on the alpha band of EEG. Though lower than the alpha
band, beta band EEG signals also showed a high correlation coefficient value with the
clustered microstates in a previous study [22]. The MSFC patterns in a larger frequency
band can also be explored.

Table 6. A comparison of studies that investigate GMI with different approaches.

Authors Main Results
Classification

Study
FC

Analysis
Motor Condition Specific

Biomarkers
Motion
NumberMI ME GMI MO

Romano-
Smith et al.,

2019 [52]

After GMI training, task
performance was significantly
increased compared to MI and

MO interventions.

× ×
√

×
√ √

× 1

He et al.,
2019 [51]

After GMI training, EEG signals
during MI tasks show

enhancement in various
features, Common Spatial
Pattern is most significant,

indicating improved
spatial resolution.

× ×
√

×
√

×
Characteristics of

Common
Spatial Pattern

1

Almulla
et al.,

2022 [18]

Analyzed with functional
near-infrared spectroscopy

signals, GMI activated greater
HbO responses compared MI or

MO alone.

× ×
√

×
√ √ HbO

response 2

Rungsirisilp
et al.,

2022 [3]

GMI can induce higher ERD
values in sensorimotor area and

achieve better classification
performance than MI.

Used SVM to
classify motions. ×

√
×

√
×

ERD/ERS values
of channel C3

or C4
2

This work

GMI induces similar brain
activation pattern with ME than
MI; Dominant hand motions are

less benefit from visual
guidance than nondominant

hand, two hand, and arm
motions; the brain network is
less integrated during GMI

than MI.

Used SVM to
classify motor

conditions.

√ √ √ √
×

Duration of M4
and mean
duration.

6

HbO: oxyhemoglobin; ERS: event-related synchronization; ERD: event-related desynchronization.
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5. Conclusions

To sum up, the present study conducts EEG microstate and MSFC analyses in MI,
GMI, and ME conditions for the first time. We first give evidence that visual guidance of
MI could help induce more similar brain activation patterns with ME in a microstate-based
brain dynamics perspective. We compared the microstate parameters between motor
conditions and proposed duration of M4 and mean duration as biomarkers for motor
condition evaluation. Furthermore, an average accuracy of 80.27% for ME versus MI and
66.30% for ME versus GMI classification tasks for each motion were achieved by using
an SVM. Dominant hand motions were found to benefit less from visual guidance than
nondominant hand, two hand, and arm motions. These results provide new references for
accurately evaluating brain dynamic similarity between ME and given motor condition,
which could assist in evaluating the expected rehabilitation effect. Finally, through MSFC
analysis, we proved that the FC patterns are paired with specific microstates. We found the
dynamic key nodes distribution among microstates which might be undetected in static FC
analysis, and further discussed the neurophysiological mechanism behind microstates. In
the end, we proved that visual guidance may reduce the information flow intensity and
functional integration in MI tasks. Combining with the former results, we proposed new
evidence supporting a BCI rehabilitation system to combine MI and GMI tasks. Therefore,
this work provides new empirical evidence on the role of visual guidance in MI tasks from
a microstate perspective, advances the understanding of microstates in motor-related tasks,
provides a new reference for motion selection, and has further implications for research on
BCI and neurorehabilitation.
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