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Abstract: The SARS-CoV-2 pandemic challenged health systems worldwide, thus advocating for
practical, quick and highly trustworthy diagnostic instruments to help medical personnel. It features a
long incubation period and a high contagion rate, causing bilateral multi-focal interstitial pneumonia,
generally growing into acute respiratory distress syndrome (ARDS), causing hundreds of thousands
of casualties worldwide. Guidelines for first-line diagnosis of pneumonia suggest Chest X-rays (CXR)
for patients exhibiting symptoms. Potential alternatives include Computed Tomography (CT) scans
and Lung UltraSound (LUS). Deep learning (DL) has been helpful in diagnosis using CT scans, LUS,
and CXR, whereby the former commonly yields more precise results. CXR and CT scans present
several drawbacks, including high costs. Radiation-free LUS imaging requires high expertise, and
physicians thus underutilise it. LUS demonstrated a strong correlation with CT scans and reliability in
pneumonia detection, even in the early stages. Here, we present an LUS video-classification approach
based on contemporary DL strategies in close collaboration with Fondazione IRCCS Policlinico
San Matteo’s Emergency Department (ED) of Pavia. This research addressed SARS-CoV-2 patterns
detection, ranked according to three severity scales by operating a trustworthy dataset comprising
ultrasounds from linear and convex probes in 5400 clips from 450 hospitalised subjects. The main
contributions of this study are related to the adoption of a standardised severity ranking scale to
evaluate pneumonia. This evaluation relies on video summarisation through key-frame selection
algorithms. Then, we designed and developed a video-classification architecture which emerged as
the most promising. In contrast, the literature primarily concentrates on frame-pattern recognition.
By using advanced techniques such as transfer learning and data augmentation, we were able to
achieve an F1-Score of over 89% across all classes.

Keywords: video classification; SARS-CoV-2; Lung Ultrasound; deep learning

1. Introduction

The SARS-CoV-2 virus, which originated in China in 2019, has spread globally and is
highly contagious [1]. It has a variable incubation period, during which infected individ-
uals may exhibit a range of symptoms including fever, dry cough, fatigue, and difficulty
breathing [2]. However, some infected people may not show any symptoms at all. The virus
can also cause a variety of clinical presentations, including bilateral multi-focal interstitial
pneumonia, which can progress to acute respiratory distress syndrome (ARDS).

Lung UltraSound testing aids in visualising and quantifying pulmonary involvement,
typically retaining the white lung pattern or bilateral submantellar-subpleural consolida-
tions [3,4]. The primary method of SARS-CoV-2 diagnosis is the nasopharyngeal swab
and the combined IgM-IgG antibody test [5]. The nasopharyngeal swab relies on real-time
reverse transcription-polymerase chain reactions (rRT-PCR). Therefore, the main draw-
backs include long response times and shortages in reagents and other specific laboratory
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supplies. On the other hand, the IgM-IgG antibody test features a lower sensitivity than
rRT-PCR, yielding false-negative results in the early phases of the infection. Specifically,
the disease begins with mild symptoms but can rapidly progress to severe forms leading
to fatal consequences from multi-organ failure. Hence, the fast progression highlights the
importance of developing a human-sensible perceptive device that can detect the disease’s
presence and assess its degree of severity.

In the literature, the first line diagnosis of pneumonia exploits X-rays (CXR) [6],
which also enables fast first-aid for patients showing pneumonia symptoms. The literature
also indicates that Computer Tomography (CT) [7] scans and Lung UltraSound (LUS) [8]
represent an alternative to CXR.

Different studies compared these techniques highlighting that CT and LUS outperform
CXR [9-11]. The main conclusions from studies concerning these methodologies state that:
first, both LUS and CT scans are significantly better first-line diagnostic tools than CXR,
whose main drawback is poor sensitivity; second, although ultrasonography is a cost-
effective, radiation-free, and promising tool, it must be performed by a highly skilled
radiographer to achieve accurate results. Furthermore, LUS effectively performed at a
bedside in approximately 13 min yielded a higher sensitivity than that of CXR. This makes
it comparable to other CT imaging tools with its cost being significantly lower than those
of the other two solutions.

In this context, academia evaluated different Deep Learning (DL) models to auto-
matically expose the presence of SARS-CoV-2 from medical images [12]. Several works
considered SARS-CoV-2 diagnosis exploiting LUS [8,10-12]. All these studies assessed
a single frame extracted from the video assembled by the LUS probe. It is essential to
highlight that an expert manually selected the frame to be classified to ensure that the main
patterns were present in the image. This aspect limits the applicability of these procedures
since the final results strictly depend on the frames extracted, and few works address this
issue. In particular, researchers [13] evaluated a Two-Stream Inflated 3D ConvNet (I3D)
to perform the end-to-end video classification. The results comprise precision, recall and
F1-Score on the A and B lines LUS patterns. Consequently, this network cannot diagnose
SARS-CoV-2 directly.

On the other hand, another investigation [14] conceived a network based on Con-
volutional Neural Network (CNN) and Long-Short Term Memory (LSTM) cells. This
method features accuracy, precision, and recall at approximately 92% in the most promising
configuration. Regardless, the study does not rank SARS-CoV-2 pneumonia severity but
only differentiates viral and bacterial cases of pneumonia from a healthy lung. Besides, it
operates a sequence of features extracted from the frames with a CNN. Hence, it does not
address the end-to-end video classification of an LUS clip. Eventually, the literature retains
a final study [15] that compared a Multi-Layer Perceptron (MLP) network, the EfficentNet
and the Vision Transformer (ViT). The study found that the EfficientNet outperforms the
other techniques measuring 96% accuracy. Nonetheless, even if the paper addresses video
classification, the networks target the classification of a single frame without explaining
how the authors chose the clip’s frame.

Here, we propose an investigation comparing different video classification method-
ologies, resulting in the X3D network as the most performing one. Accordingly, this
manuscript’s main contributions are:

e  Analysis of different key-frame selection strategies to perform LUS clip summarisation
and extract meaningful content, resulting in fewer data to be elaborated and faster
diagnosis. We evaluated the key-frame selection approaches, training benchmark
architectures on the selected frames and testing on frames that experienced physi-
cians extracted, containing pneumonia scoring patterns that the end-to-end video
classification network should highlight

e Assessment of diverse DL architectures to identify the most promising one. The
architectures varied on structure topology and video assessment strategy
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The data used to train the networks was collected from the emergency department
(ED) of the Fondazione IRCCS Policlinico San Matteo Hospital in Pavia. The medical
staff at the ED collected 12 clips for each patient and assigned each clip a standardised
score using standard scales [16,17]. In total, data was collected from 450 patients,
yielding a total of 5400 clips. However, not all clips were scored by the same medical
practitioner, so the ED staff conducted a review to ensure that all clips had accurate and
standardised scores, avoiding discrepancies that have been reported in other studies
Three different ranking scales to assess the severity of lung involvement, whereas the
literature proposes investigations whose classifications mainly retain whether or not
there is a viral pneumonia

Robustness to noise and adversarial attacks assessed through a data augmentation
process applied to the training set

Eventually, we assessed the X3D architecture concerning t-SNE, PCA, and Grad-Cam
strategies to demonstrate the trustworthiness of the results

We organised the paper as follows: Materials and Methods describe the Al method-

ologies, algorithms, and data used to conduct the experiments in detail. Results and
Discussion retain the essential results to compare our study with the literature, thus em-
phasising their significance.

Eventually, the last section offers the main scientific advancements that extend the

field based on current knowledge and our achievements.

Figure 1 shows the main steps of the proposed work.

K-Frames methods » Classification methods ' < '
evaluation evaluation | 1

Best K-Frame selection algorithm |
+
trained model

Figure 1. Main steps of the proposed work. (A) Data are acquired in the Emergency Department
of the San Matteo Hospital to create a dataset of Lung UltraSound clips. (B) Part of these clips are
selected as training set. These videos are also augmented to enlarge the training set. In this phase,
different key-frames selection algorithm and classification techniques are evaluated. (C) The best
key-frame selection algorithm and the best classifier are validated through the test set.
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2. Materials and Methods

In this section, we provide a detailed description of the dataset we used for SARS-
CoV-2 end-to-end video classification and the selection, design, and training of the CNN
architecture we employed. Specifically, we focus on data augmentation, transfer learn-
ing, training options, and the hyperparameters used to train and fine-tune our video
classification networks.

In particular, we addressed end-to-end video classification, since the proposed system
takes as input the original clip acquired by the medical instrumentation. Then, the classifica-
tion system elaborates this video and gives as output the pneumonia severity classification.
The elaboration consists of two main steps: the former is the video summarisation, which
produces a shorted clip containing only the most informative frames, while the latter is the
classification of this summarised video adopting a suitable deep learning architecture.

2.1. Lung Ultrasound Score

The first step to analysing the LUS dataset is understanding the manuscript’s scoring
methodology. Remarkably, this investigation employed the ranking scale we introduced
in our prior study that laid the foundations for this improvement. Table 1 summarises
how physicians assessed the severity of lung involvement by assigning patients’ lung
portions with a standardised score. The description explains what deep video classification
architectures concentrate on.

Table 1. The pneumonia severity scale [8].

Severity Score Description
Score 0 A-lines with at most two B-lines
Score 1 Artefacts occupy at most 50% of the pleura

Artefacts occupy more than 50% of pleura,

Score 2 consolidated areas might be visible

Score 3 Tissue-like pattern

This manuscript operates at most four classes to indicate the severity of lung involve-
ment. The pneumonia severity classification scale comprises scores ranging from 0 to 3,
where Score 3 describes a lung almost incapable of breathing. A lung rated as Score 3
indicates that the illness affects the pleural line, namely the interface between the fluid-rich
soft tissues of the wall and the gas-rich lung tissue [18], whilst Score 0 identifies a healthy
lung portion.

2.2. SARS-CoV-2 LUS Dataset

Since March 2020, medical personnel at the San Matteo Hospital’s ED have been gath-
ering LUS tests to examine the health of patients with suspected SARS-CoV-2 infection. The
doctors operated the Aloka Arietta V70 ultrasound device (Hitachi Medical Systems), which
works with convex and linear probes at frequencies of 5 MHz and 12 MHz, respectively.
They standardised the procedure by focusing on the pleural line at a depth of 10 cm with
the convex probe, and adjusting the gain to optimise the imaging of the pleural line, vertical
artifacts, and peripheral consolidations with or without air bronchograms. Longitudinal
and transversal scans were performed to examine the full length of the pleural line, with
all harmonics and artifact-erasing software disabled.

LUS was performed on patients with suspected SARS-CoV-2 infection due to the
potential presence of false negatives in rRT-PCR testing. Specifically, the artefacts observed
in the earlier section of the manuscript may be caused by either pulmonary edema or
non-cardiac causes of interstitial syndromes [19]. Even if a swab test is negative, patients
with lung involvement have a high likelihood of being SARS-CoV-2 positive. Medical
practitioners are trained to distinguish suspected cases from healthy patients using a
triaging process that includes LUS examination.
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In this study, a “clip” refers to the result of an LUS test, consisting of a set of frames
or images. The medical personnel at the hospital collected 12 clips for each patient, all
assigned a standardised LUS score according to Table 1 [16,17]. Data was collected from
450 patients treated in Pavia, yielding a total of 5400 clips. Table 2 lists the subjects classified
as SARS-CoV-2 positive and negative, along with their clinical data in the form of median
and 25th-75th percentile values. The LUS Score entry indicates the sum of the values
obtained from the 12 examinations for each patient.

Table 2. Data augmentation methods adopted in this work.

Augmentation Method Description
Frames resize Resize every frame of the video to size of 224 x 224
Random rotation Rotate randomly every frame between —10 to 10 degrees
Random translate Translate randomly every frame, either vertical or horizontal

Adds salt-and-pepper noise to frames. Namely, random pixels

Image noise get randomly coloured towards white

Nonetheless, different doctors scored the clips, so the ED staff conducted a review to
validate the classifications and avoid incorrect severity-scoring issues. This process ensured
that each clip had a standardised rank value and that there were no discrepancies in the
scores associated with different clips at the same severity stage, as emphasised in other
studies [20].

Accordingly, the dataset operated in this manuscript consisted of 624 clips randomly
selected from the initial 5400 clips distribution.

Fondazione IRCCS Policlinico San Matteo Hospital’s Emergency Department physi-
cians oversaw the methodical procedure and ensured that the labeling was accurate. During
the first part of the data collection and annotation process, they manually selected all clips
from each patient, assessed the quality of each clip, and either proceeded to evaluate it
based on the two scoring methodologies or discarded it. They reviewed each clip to assign
a score and verify that SARS-CoV-2 pneumonia patterns, as described in Section 2.1, were
present. The patient selection process was random and blinded to reject the hypothesis of
biased outcomes. Some subjects may have received fewer LUS exams than others due to
the detection of severe lung involvement in the early stages of the procedure. The entire
annotation and collection process took longer than one month, resulting in 624 gathered
clips based on the initial 5400 clips. Figure 2 shows the class distribution in the dataset,
divided into four tiers.
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Figure 2. Dataset classes distribution.
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Finally, this study randomly split the data into training (80%), validation (10%), and
testing (10%) sets, following standard deep learning practice [21] and keeping the training
set size as small as possible to reject the overfitting hypothesis.

Similarly, we increased the statistical variance in the training set by applying various
data augmentation strategies listed in Table 2, which forced the networks to focus on
relevant information. We applied geometric, filtering, random center cropping, and color
transformations to the training frames. The literature demonstrated that these methods are
effective when applied to SARS-CoV-2 [22] and produce strong results in deep learning
classification tasks, significantly reducing overfitting [23]. In addition, we added salt-
and-pepper white noise to expand the training set. The X3D pre-trained architecture
requires 3 x 32 x 224 x 224 clips in the PyTorch framework, so we converted the grayscale
ultrasound frames to RGB to enable color augmentation. Data augmentation modifies
the training data numerically, introduces statistically diverse samples, and enables the
architectures to robustly classify new frames. The data augmentation process shifts the
frame’s point of interest, slightly modifying its shape or color along with noise, preparing
the models to expect relevant features to be in a different location. The models also learn to
reject disruptions such as probe sensor measurement errors. Therefore, this research applied
augmentations to all training images, regardless of the probe used for the LUS examination.

We repeatedly applied augmentations to the training data to exponentially expand the
training set.

According to the Al act established by the European Commission, ensuring cyber-
security is crucial in guaranteeing that artificial intelligence applications are resistant to
attempts to alter their service, behavior, and performance, or compromise their safety
properties through malicious interference by third parties exploiting system vulnerabil-
ities. Cyberattacks on Al systems can leverage assets specific to Al, such as introducing
adversarial attacks on trained models, namely providing the optimised architectures with
slightly different inputs and confuse their behavior. Consequently, providers of high-risk Al
systems should take appropriate measures to ensure an appropriate level of cybersecurity
in relation to the risks, taking into account the underlying ICT infrastructure as necessary.

At the end of the training settings management stage, with transfer learning and data
augmentation, we collected 29,952, 171, and 171 clips for the training, validation, and
test sets.

2.3. Key-Frame Selection Algorithm

There are several ways to summarise video data, including selecting the most impor-
tant frames, reducing the memory needed for video processing and storage, and simplifying
the structure of the video information. This paper used three different methods for extract-
ing key frames:

1.  Histogram [24]: a histogram approach that compares the difference of consecutive
frames to a threshold value

2. Relative entropy [25]: a method based on relative entropy, a measure of the distance
between probability distributions in information theory to calculate the distance
between neighboring video frames and partition a video sequence [26]

3. ResNet + K-means clustering [27]: a technique that involves using a ResNet-18 to
encode the information in each frame, followed by K-means clustering to sample
frames from groups and produce an unsupervised video summary. The ResNet
employed in this method is the standard ResNet18 architecture which is a 72 layers
network with 18 deep layers.

All these key-frames selection algorithms have been used to summarise the clips.
These summarised clips are then used to train the networks described in Section 2.4. It is
important to highlight that, in the classification phase, the key-frame selection represents
the step that produces the input for the trained network.
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2.4. Video Classification Architecture

This research evaluated various architectures to perform the end-to-end video classi-
fication of the data described in the earlier section. This investigation aims to determine
the severity of lung involvement in an end-to-end fashion operating three different hierar-
chical ranking scales. All the architectures receive the summarisation of clips evaluated
through the three methodologies we described in Section 2.3. Remarkably, we evaluated
the following architectures:

1. CNN + LSTM [28]: we designed the first architecture leaning on features extracted
from a CNN, specifically a residual architecture, concerning each clip’s frame. Ac-
cordingly, we treated the sequence of features belonging to the frames as a time series
processed through the LSTM network. The CNN network is the same adopted in [28]
while we considered a single LSTM cell.

2. CNN + Transformer [29]: the second architecture follows the idea mentioned ear-
lier. Accordingly, the CNN section remains unvaried, but we replaced the LSTM
with an attention-based transformer for sequence classification coming from Natural
Language Processing (NLP) applications.

3. R(2+1)D [30]: researchers usually employ this convolutional neural network for action
recognition that employs R(2+1)D convolutions in a ResNet-inspired architecture.
The use of these convolutions over regular 3D Convolutions reduces computational
complexity, prevents overfitting, and introduces more non-linearities that allow for
better functional relationships. The R(2+1)D adopted in this work features 5 (2+1)D
convolutional layers followed by a fully connected network.

4. Multiscale Vision Transformer (MViT) [31]: can classify videos joining multiscale
feature hierarchies with transformer models. MViTs have several channel-resolution
scale stages. Starting from the input resolution and a small channel dimension, the
stages hierarchically expand the channel capacity while reducing the spatial resolu-
tion. This growth process creates a multiscale pyramid of features with early layers
operating at a high spatial resolution to model simple low-level visual information
and deeper layers at spatially coarse but complex, high-dimensional features. In this
case we adopted the MViT_base_32 x 3 which concurrently elaborates 32 frames.

5. Slow-fast architecture [32]: the architecture presents a novel method to analyse the
contents of a video segment. The architecture’s core comprises two parallel convolution
neural networks (CNNs) on the same video segment—a Slow and a Fast pathway. The
authors observed that frames in video scenes usually contain two distinct parts—static
areas in the frame, which do not change at all or change slowly, and dynamic areas,
which indicate something important that is currently going on.

6.  X3D [33]: it is a family of efficient video networks that progressively boost a tiny 2D
image classification architecture along multiple network axes in space, time, width
and depth. Motivated by feature sampling methods in machine learning, a stepwise
network growth approach extends a single axis in each step, such that sound accuracy
to complexity trade-off exists. The X3D advantages include that despite having a
high spatiotemporal resolution, it is incredibly light in terms of network width and
parameters. In particular, we adopted the model X3DM from [33].

2.5. Performance Evaluation

First, we assessed the quality of the key-frame video summary algorithms. This re-
search represents a follow-up of the first study concerning frame classification [8]. Hence,
we have a carefully set of selected frames containing the exact patterns in Table 1. Nonethe-
less, video summaries also produce transition frames due to probe movements or noise.
Hence, only some of the frames contain patterns. This manuscript aims to deliver end-to-
end video classification without manual frame extraction from expert professionals. Hence,
we trained residual architectures on the dataset retained from extracting key-frames via
all the algorithms described in Section 2.3. We tested the networks on frames carefully
extracted from the Fondazione IRCCS Policlinico San Matteo ED’s medical personnel.
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We cannot retain 100% accuracy on the test set due to the presence of transition frames.
However, good classification performance on the test set implies that it is similar to the
training one, thus retaining the patterns in Table 1.

Similarly, we evaluated the following similarity indexes (Equations (1)—(3)) to compare
the datasets originating from the key-frame algorithms (Section 2.3) and the frames derived
from the first study, which laid the grounds for this, carefully selected from San Matteo
ED'’s skilled physicians.

(2 pxpy +c1) (200 +c2)

SSIM = 1)
(H%‘FH%‘FQ) <U§+0’5+C2)
P(x)
DKL P||Q Z§€X <Q(x)> (2)
JSD (P[|Q) = 5 Dis (P\”Q) <QI|P+Q> 3

Equation (1) reports the Structural Similarity Index (SSIM) where i, and py, are the
pixel sample mean of image x and y, respectively. The terms ¢2 and (rf are the variance of
image x and y, respectively. Finally, oy, is the covariance of the two images and c; and c;
are factors used to stabilise the division with a weak denominator [34].

Equation (2) is the Kullback-Leibler Divergence (Dkr) where P and Q are two discrete
probability distributions over the same probability space .

Finally, Equation (3) defines the Jensen-Shannon divergence as a symmetrised and
smoothed version of Equation (2).

It is crucial to decrease false negatives to the maximum extent feasible, particularly
when treating an infectious disease such as SARS-CoV-2. A patient’s incorrect diagnosis
introduces a false negative, which causes improper care, lack of necessary treatment
that reflects cross-contamination among subjects with additional pathologies, and faulty
medications that may harm an infected person.

In this research, the performance of the network classifications was evaluated using
the validation and test sets. The focus was not only on accuracy, but also on precision,
recall, and F1-Score (Equations (4)—(7)) and ROC-AUC [35]. These metrics, defined in
the equations below, were calculated for each category for all classification tasks. The
importance of reducing false negatives, particularly in the context of infectious diseases
such as SARS-CoV-2, cannot be overemphasised. False negatives can lead to incorrect diag-
noses, inadequate treatment, cross-contamination among patients with other pathologies,
and potentially harmful medications. True Positive (TP) refers to correct classifications,
False Negative (FN) refers to incorrect classifications, True Negative (TN) refers to correct
classifications, and False Positive (FP) refers to incorrect classifications.

Accuracy = IN+TP (4)
Y= INTFP+TP+FN
TP
Precision —
recision TPLFP %)
TP
R = —
ecall TPrEN (6)
F1— Score — 2 * Precision * Recall @

Precision + Recall

Researchers often place a particular emphasis on recall in order to reduce false nega-
tives. Recall measures the performance of correctly identifying frames that do not contain
SARS-CoV-2 pneumonia patterns and that belong to either of the considered classes or that
display a healthy lung. Precision tells the reader about the classification performance in
detecting the considered patterns. Therefore, the F1-Score is considered as a function of the
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previous two metrics. This parameter provides a more accurate measurement in terms of
accuracy, taking into account the trade-off between precision and recall in unbalanced class
distributions. Therefore, we need to evaluate recall and F1-Score in order to minimise false
negatives while maintaining high precision.

Eventually, this study assessed the quality and robustness of the classification per-
formance through explainable Al strategies. Accordingly, we operated the gradient class
activation mapping (Grad-CAM) algorithm and the statistical analysis of features deriving
from deep architectural layers to evaluate whether we could clearly identify patterns from
LUS clips and how dividable such patterns are in architectural encoded features. The for-
mer enables the interpretation of the architecture’s decision-making. Indeed, it emphasises
the decisive parts to assign a rank through a heat map. Concerning the latter strategies,
we performed PCA and t-SNE over the inner layers of the X3D architecture. Hence, we
coloured the clusters according to the clips’ original classes.

3. Results

The study assessed the quality of video summaries produced by the key-frame se-
lection algorithms. Table 3 contains the performance of residual architectures, trained
on the dataset of extracted key-frames, tested on the set of frames derived from the first
study, which laid the foundations for this manuscript, carefully selected by San Matteo
ED’s expert physicians.

Table 3. Residual architectures performance on the validation set.

Bynary Classification Three-Way Classification Four-Way Classification

Metric

Class 0

Class 1 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 3

Accuracy

0.859

0.942 0.972 0.919 0.923 0.925 0.838 0.930 0.909

Precision

0.859

0.942 0.972 0.919 0.923 0.925 0.838 0.930 0.909

Recall

0.936

0.871 0.897 0.975 1.000 0.949 0.861 0.889 0.833

F1-Score

0.896

0.905 0.933 0.946 0.960 0.937 0.849 0.909 0.870

ROC-AUC

0.967

0.967 0.986 0.987 1.000 0.982 0.978 0.903 0.998

Likewise, we report in Table 4 the similarity indexes to compare the summarised
frames and the ones selected by the San Matteo ED’s medical personnel. Table 4 shows
the similarity between the automatically selected frames and the ones manually chosen
by an expert medical practitioner. We expected the measurements to slightly diverge from
the ideal values because extracted frames contain transition information such as probe
movements or patient’s respiratory motion. Table 4 highlights two main results. The first is
that the three key-frame selection methods feature similarity indexes values that are very
close, meaning that the extracted frames are nearly the same. The latter is that the distance
from the original dataset is nearly the same for all the methods; therefore the summarisation
performed by these algorithms is comparable in terms of informative content.

Table 4. Similarity indexes.

Dataset

Original

Class 0 Class 1 Class 2 Class 3

SSIM Dk JSD SSIM Dy JSD SSIM Dy JSD  SSIM Dy JSD

Original

0.41 0.18 0.23 0.57 0.43 0.21 0.59 0.16 0.20 0.41 0.06 0.14

Histogram

0.27 2.34 0.70 0.36 2.39 0.69 030 18.00 0.81 0.31 5.83 0.80

Relative entropy

0.26 3.70 0.79 0.36 6.08 0.82 036 1559 0.81 0.32 1.70 0.66

Resnet + K-means

0.26 271 0.60 0.37 0.63 0.40 0.31 6.91 0.80 0.31 9.61 0.83
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Hence, this research reports key-frame selection as a promising methodology to deliver
the LUS clips summarisation and reduce memory footprint, enabling faster training.

Being that the three similarity indexes are very close, we also adopt the three key-
frames selection algorithms to enlarge the size of our dataset.

We employed a ResNet-50 to measure the closeness between the frames extracted by
the doctors and the automatic algorithms. Namely, we trained the architecture only with
the automatically extracted frames to classify the manually chosen frames by the doctor (at
the end of the random selection process described in Section 2.2). Therefore, we exploited
overfitting as a measure to understand how well the automatic methods reproduce the
statistical distribution of frames containing SARS-CoV-2 pneumonia patterns. Table 5
contains the classification results exceeding 90%, thus highlighting the trustworthiness of
our results. In fact, the high values featured by all the metrics can be obtained only if the
training set features are similar to the validation set ones. In other words, these values
clearly indicate that the frame automatically extracted by the proposed method are close to
the ones manually selected by the doctors.

Table 5. ResNet-50 classification performance on the dataset of validated SARS-CoV-2 pneumonia frames.

) Bynary Classification Three-Way Classification Four-Way Classification
Metric Class 0 Class 1 Class0 Class1 Class2 Class0 Class1 Class 2 Class 3
Accuracy 0.859 0.942 0.963 0.981 0.989 0.921 0.999 0.968 0.994
Precision 0.859 0.942 0.963 0.981 0.989 0.921 0.999 0.968 0.994
Recall 0.936 0.871 0.952 0.976 1.000 0.976 1.000 0.939 0.984
F1-Score 0.896 0.905 0.958 0.979 0.995 0.948 1.000 0.954 0.989
ROC-AUC 0.967 0.967 0.998 0.999 1.000 0.996 1.000 0.955 0.999

The investigation assessed the architectures” diagnostic performance starting from the
binary classification, which consists of evaluating all the scores in Table 1 as SARS-CoV-2
positive. Hence, the classes are simply either healthy or infected. Retaining bad diagnostic
outcomes in this classification task prevents the models from behaving correctly in multi-
class scenarios. We also discard the wrong video summary extraction hypothesis from the
algorithms in Section 2.3 since the doctors assessed the presence of the patterns in Table 1.

We report that the first five architectures mentioned in Section 2.4 yielded binary
accuracy ranging from 30% to 60% at most. Accordingly, we ended the experiments on
such architectures. On the other hand, the X3D architecture retained good performance
in Table 3, and we continued the research operating only this latter deep neural network.
Table 6 shows a comparison between X3D, R(2+1)D and MViT considering the different
key-frames algorithms described in Section 2.3 and the binary, three-way, and four-way
classifications. The results are reported in terms of mean values.

Table 1 reports the severity scale this manuscript employed to assess the severity of
lung involvement. Accordingly, we evaluated the following classification tasks:

1. Binary classification: only two classes exist, namely Score 0 and the set resulting from
the union of all the other scores

2. Three-way classification: we consider Score 1 and Score 2 as a unique rank, thus
scoring lungs as either healthy (Score 0), containing B-lines (Score 1 or Score 2) or
consolidations (Score 3)

3. Four-way classification: we considered all the scores in Table 1

Hence, this manuscript reports the X3D architecture’s results according to the three
classification tasks mentioned above. The designated architecture steadily approached
optimisation convergence concerning the hyperparameters and training options in Table 7.
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Table 6. Comparison between X3D, R(2+1)D, and MViT. The metrics have been computed as mean
values across the classes considered for the classification. The best results are highlighted in bold.

X3D R(2+1)D MViT

Flr(ae;; Metric Binary TV}\l]ree- Four-Way Binary Tvl‘\l’ree- Four-Way Binary Tvl\l]ree- Four-Way
Selection Classifi- %Y.~ Classifi  Classifi- .  Classifi-  Classifi- %%, Classifi

cation cation cation cation cation cation cation cation cation

Accuracy 0.773 0.739 0.687 0.272 0.196 0.448 0.272 0.158 0.053

Precision 0.773 0.739 0.687 0.272 0.196 0.448 0.272 0.158 0.053

Entropy Recall 0.775 0.778 0.632 0.500 0.367 0.494 0.500 0.333 0.250

AUC 0.814 0.865 0.877 0.500 0.640 0.731 0.500 0.499 0.502

F1-Score 0.772 0.756 0.655 0.352 0.255 0.425 0.352 0.214 0.087

Accuracy 0.770 0.845 0.654 0.272 0.272 0.225 0.272 0.158 0.018

Precision 0.770 0.845 0.654 0.272 0.272 0.225 0.272 0.158 0.018

Histogram Recall 0.772 0.625 0.609 0.500 0.404 0.387 0.500 0.333 0.250

AUC 0.867 0.837 0.815 0.500 0.693 0.590 0.442 0.429 0.490

F1-Score 0.771 0.659 0.615 0.352 0.309 0.267 0.352 0.214 0.033

Accuracy 0.862 0.843 0.743 0.272 0.158 0.452 0.272 0.158 0.066

ResNet + Precision 0.862 0.843 0.743 0.272 0.158 0.452 0.272 0.158 0.066

K-means Recall 0.855 0.840 0.688 0.500 0.333 0.402 0.500 0.333 0.250

AUC 0.934 0.934 0.826 0.500 0.564 0.674 0.358 0.321 0.504

F1-Score 0.858 0.840 0.695 0.352 0.214 0.383 0.352 0.214 0.104

Table 7. Hyperparameters and training options for the X3D network.
Options and Hyper-Parameters Two Classes Three Classes Four Classes
Initial Learning Rate 0.001 0.001 0.001
Learning Rate’s Drop Factor 0.5 0.5 0.5
Learning Rate’s Drop Period 3 3 3
(Epochs)
Batch Size 2 2 2
L2—Regularisation 0.0001 0.0001 0.0001
Epochs 12 12 12
Environment Single-GPU Single-GPU Single-GPU
Optimiser Adam Adam Adam
Loss Function Cross-Entropy Cross-Entropy Cross-Entropy

The results of the network’s weights at the end of each training process are reported,
regardless of the number of epochs chosen for optimisation. We did not perform early
stopping, which involves evaluating the epoch that shows promising performances with
the validation set during optimisation, because the training process converged when the
number of epochs elapsed. In addition, the training settings in Table 7, which contain
extensively tuned hyperparameters to achieve recall and F1-Score above 90%, are reported.
This indicates a reliable balance between precision and recall, which is important when
working with unbalanced datasets (Figure 2).

Table 3 shows the X3D video classification network, which performs exceptionally well
in all scenarios when provided with the LUS clip summaries using the key-frame selection
algorithms, and achieves excellent results in the four-way classification task. It also shows
an average recall of over 89%, demonstrating the effectiveness of the classification for
detecting SARS-CoV-2 pneumonia patterns.
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We used Grad-CAM to validate the network’s decision-making. The physicians
evaluated whether the X3D correctly identified B-lines, pleural line abnormalities, or
other patterns examined in the LUS scoring section, which is the procedure doctors use
to assess patients’ health. Figure 3 shows the behavior of X3D in the most complex
four-way classification task. We present the Grad-CAM results starting from the lowest
score, indicating that the subject being considered is healthy, and approaching the highest
score, indicating that the patient requires urgent respiratory assistance. The architecture
accurately and thoroughly highlights all patterns, including A and B lines and small or
large consolidations.

4
Score

Time

Figure 3. X3D network Grad-CAM results. The numbers on the vertical axis indicate the score
associate to each video, while on the time axis three significant video frames are shown. The Grad-
CAM activation map is superimposed to each frame, highlighting the image regions which are
important for the classification.

Eventually, we further validated the results by analysing the features extracted from
the X3D architecture related to each clip coming from the test set. We reduced the order
of each feature operating t-SNE and PCA algorithms in 2D. Figure 4 displays the results
coloured concerning the original class of each clip. Hence, distinct clusters originate from
the features extracted from the network concerning each clip, emphasising that the X3D can
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discriminate between the SARS-CoV-2 patterns to rank the severity of lung involvement
and robustness to adversarial attacks. In particular, Figure 4A shows the t-SNE and
PCA results related to the binary classification. The red and green points constitute two
different clusters in the bidimensional plane, meaning that the features extracted by the
network can discriminate between the two classes. Similar considerations can be made for
Figure 4B,C. In these cases, the only difference is in the number of classes considered for
the classifications, which reflects an equivalent number of clusters in the charts.
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Figure 4. t-SNE and PCA results: (A) binary classification, (B) three-way classification, and (C) four-
way classification.

4. Discussion

Table 8 reports the literature results. First, we must stress that we do not consider an
end-to-end classification task extracting features from a CNN architecture later ensembled
into a sequence to be processed by an architecture such as an LSTM. Accordingly, the last
two investigations in Table 8 do not assess LUS clips in an end-to-end manner but either
perform the action mentioned earlier or the frame classification. On the other hand, the
first research assesses LUS clips employing the I3D architecture.
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Table 8. Related works performance.

Work
[13] [14] [15]
F1-Score 87-94% 58-95% 97%
Accuracy N. A. N. A. 96-89%
Precision 87-96% 66—-100% N. A.
Recall 86-92% 52-97% 98%
Discrimination Discrimination
Three-way between bacterial between bacterial
Performed task . . .
classification pneumonia, healthy pneumonia, healthy
and SARS-CoV-2 and SARS-CoV-2
End-to-end Yes No No

video classification

Furthermore, the first investigation is the only one assessing the clips operating one of
the tasks we mentioned in this manuscript, namely the three-way classification. All the
others discriminate between bacterial or viral (SARS-CoV-2) pneumonia and healthy lungs.

Hence, our results in Table 3 improve the results proposed by the literature by op-
erating diverse classification tasks that assess the severity of lung involvement and by
employing the key-frame selection algorithm joined with an end-to-end X3D video classifi-
cation architecture.

In conclusion, previous research on SARS-CoV-2 LUS clip assessment has some limita-
tions. Some studies only utilised transfer learning and relied on low quality data sources
that were not assessed by a qualified physician. Additionally, only the first study in Table 8
used a severity scale to diagnose LUS clips and assess patients” health. It employed an ex-
plainable algorithm to validate the network’s decision-making. The other studies attempted
to distinguish between different types of pneumonia and applied image classification net-
works with minor modifications to analyze small clip sections. In this study, we propose a
straightforward approach to apply DL to LUS clips and assess the severity of SARS-CoV-2
pneumonia. We utilised a pre-trained video classification architecture in three classification
tasks and utilised an existing and validated ranking scale. It helps differentiate between
cardiogenic and non-cardiogenic causes of B-lines [19] and enables the early detection and
timely treatment of ARDS pneumonia symptoms. At the time of writing, this is the first
study to evaluate the end-to-end LUS clip assessment using the scoring methodologies
listed in Table 1. Specifically, we validated our collection of clips using data augmentation,
transfer learning, and hyperparameter tuning to obtain the results presented in this paper.

5. Conclusions

In summary, we developed a reliable Al diagnostic tool to provide overworked med-
ical personnel with an efficient and affordable SARS-CoV-2 detection system. The close
collaboration with the Fondazione IRCCS Policlinico San Matteo ED allowed us to conduct
our research using highly reliable and validated LUS data. We employed modern DL strate-
gies, including video classification architectures, data augmentation, transfer learning, and
key-frame selection algorithms, to assess the severity of lung involvement in SARS-CoV-2
infected individuals.

This study used three different scoring scales to measure accurate and robust diagnos-
tic performance. We addressed the issue of data heterogeneity, including low sensitivity
leading to inadequate treatment and cross-contamination. We improved existing state-of-
the-art diagnostic methods [20,35,36] for detecting SARS-CoV-2 in LUS clips.

This study provides an end-to-end approach for classifying and scoring LUS clips. The
Fondazione IRCCS Policlinico San Matteo ED reviewed every exam to uniformly assign
the same score to lungs with the same disease stage.
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The proposed Al diagnostic tool features the advantage of providing a tool to detect
and diagnose SARS-CoV-2 severity only considering LUS. Therefore, this analysis produced
a DL-based system to automatically detect SARS-CoV-2 pneumonia patterns in LUS clips
and rate their severity based on three standardised scoring scales with impressive, reliable,
and promising results. The main drawback is that ultrasound imaging technologies require
specialised expertise to achieve diagnostic reliability, including high sensitivity and overall
accuracy. Moreover, the validated results are lacking an external cohort of patients, but this
problem could be easily solved in the future by involving other hospitals into the research.
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Abbreviations

Acronym Meaning

ARDS Acute Respiratory Distress Syndrome
CNN Convolutional Neural Network

CT Computed Tomography

CXR Chest X-rays

DL Deep Learning

ED Emergency Department

FN False Negative

FP False Positive

Grad-CAM  Gradient Class Activation Mapping
LST™M Long-Short Term Memory

LUS Lung UltraSound

MLP Multi-Layer Perceptron

MViT Multiscale Vision Transformer

PCA Principal Component Analysis
rRT-PCR real-time Reverse Transcript-Polimerase Chain Reactions
N True Negative

TP True Positive

ViT Vision Transformer



Bioengineering 2023, 10, 282 16 of 17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

Li, Q.; Guan, X.,; Wu, P,; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.5.M.; Lau, E.H.Y.; Wong, ].Y.; et al. Early Transmission
Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. . Med. 2020, 382, 1199-1207. [CrossRef]
[PubMed]

Mohanty, S.K.; Satapathy, A.; Naidu, M.M.; Mukhopadhyay, S.; Sharma, S.; Barton, L.M.; Stroberg, E.; Duval, E.J.; Pradhan, D.;
Tzankov, A.; et al. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and Coronavirus Disease 19 (COVID-19)—Anatomic
Pathology Perspective on Current Knowledge. Diagn. Pathol. 2020, 15, 1-17. [CrossRef] [PubMed]

Shi, H.; Han, X,; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological Findings from 81 Patients with COVID-19
Pneumonia in Wuhan, China: A Descriptive Study. Lancet. Infect Dis. 2020, 20, 425-434. [CrossRef] [PubMed]

Soldati, G.; Smargiassi, A.; Inchingolo, R.; Buonsenso, D.; Perrone, T.; Briganti, D.E; Perlini, S.; Torri, E.; Mariani, A;
Mossolani, E.E.; et al. Proposal for International Standardization of the Use of Lung Ultrasound for Patients With COVID-19: A
Simple, Quantitative, Reproducible Method. J. Ultrasound Med. 2020, 39, 1413-1419. [CrossRef]

Li, Z,; Yi, Y;; Luo, X,; Xiong, N.; Liu, Y.; Li, S.; Sun, R;; Wang, Y.; Hu, B.; Chen, W,; et al. Development and Clinical Application of a
Rapid IgM-IgG Combined Antibody Test for SARS-CoV-2 Infection Diagnosis. |. Med. Virol. 2020, 92, 1518-1524. [CrossRef]
Niederman, M.S.; Mandell, L.A.; Anzueto, A.; Bass, J.B.; Broughton, W.A.; Campbell, G.D.; Dean, N.; File, T.; Fine, M.] ;
Gross, P.A ; et al. Guidelines for the Management of Adults with Community-Acquired Pneumonia. Diagnosis, Assessment of
Severity, Antimicrobial Therapy, and Prevention. Am. J. Respir. Crit. Care Med. 2001, 163, 1730-1754. [CrossRef]

Garg, M.,; Prabhakar, N.; Bhalla, A.; Irodi, A.; Sehgal, I.; Debi, U.; Suri, V.; Agarwal, R.; Yaddanapudi, L.; Puri, G.; et al. Computed
Tomography Chest in COVID-19: When & Why? Indian |. Med. Res. 2021, 153, 86-92. [CrossRef]

la Salvia, M.; Secco, G.; Torti, E.; Florimbi, G.; Guido, L.; Lago, P; Salinaro, F,; Perlini, S.; Leporati, F. Deep Learning and Lung
Ultrasound for Covid-19 Pneumonia Detection and Severity Classification. Comput. Biol. Med. 2021, 136, 104742. [CrossRef]
Chavez, M.A.; Shams, N.; Ellington, L.E.; Naithani, N.; Gilman, R.H.; Steinhoff, M.C.; Santosham, M.; Black, R.E.; Price, C.;
Gross, M.; et al. Lung Ultrasound for the Diagnosis of Pneumonia in Adults: A Systematic Review and Meta-Analysis. Respir. Res.
2014, 15, 1-6. [CrossRef]

Pagano, A.; Numis, E.G.; Visone, G.; Pirozzi, C.; Masarone, M.; Olibet, M.; Nasti, R.; Schiraldi, F.; Paladino, F. Lung Ultrasound for
Diagnosis of Pneumonia in Emergency Department. Intern. Emerg. Med. 2015, 10, 851-854. [CrossRef]

Bourcier, J.E.; Paquet, J.; Seinger, M.; Gallard, E.; Redonnet, J.P.; Cheddadi, F.; Garnier, D.; Bourgeois, ].M.; Geeraerts, T.
Performance Comparison of Lung Ultrasound and Chest X-ray for the Diagnosis of Pneumonia in the ED. Am. J. Emerg. Med.
2014, 32, 115-118. [CrossRef] [PubMed]

Manoj, M.K,; Atalla, S.; Almuraqab, N.; Moonesar, I.A. Detection of COVID-19 Using Deep Learning Techniques and Cost
Effectiveness Evaluation: A Survey. Front. Artif. Intell. 2022, 5, 107. [CrossRef]

Erfanian Ebadj, S.; Krishnaswamy, D.; Bolouri, S.E.S.; Zonoobi, D.; Greiner, R.; Meuser-Herr, N.; Jaremko, J.L.; Kapur, J.; Noga, M.;
Punithakumar, K. Automated Detection of Pneumonia in Lung Ultrasound Using Deep Video Classification for COVID-19.
Inform. Med. Unlocked 2021, 25, 100687. [CrossRef] [PubMed]

Barros, B.; Lacerda, P.; Albuquerque, C.; Conci, A. Pulmonary COVID-19: Learning Spatiotemporal Features Combining CNN
and LSTM Networks for Lung Ultrasound Video Classification. Sensors 2021, 21, 5486. [CrossRef]

Rahhal, M.M.A; Bazi, Y.; Jomaa, R.M.; Zuair, M.; Melgani, F. Contrasting EfficientNet, ViT, and GMLP for COVID-19 Detection in
Ultrasound Imagery. J. Pers. Med. 2022, 12, 1707. [CrossRef]

Mongodi, S.; Bouhemad, B.; Orlando, A.; Stella, A.; Tavazzi, G.; Via, G.; Iotti, G.A.; Braschi, A.; Mojoli, F. Modified Lung
Ultrasound Score for Assessing and Monitoring Pulmonary Aeration. Ultraschall Med. 2017, 38, 530-537. [CrossRef]

Secco, G.; Delorenzo, M.; Zattera, C.; Moore, B.G.; Demitry, L.; Vezzoni, G.; Resta, F.; Barcella, B.; Cappa, G.; Perrone, T.; et al.
Lung Ultrasound in COVID-19: A Useful Diagnostic Tool. Emerg. Care J. 2020, 16, 1-9. [CrossRef]

Lichtenstein, D.A. The Pleural Line. Lung Ultrasound Crit. Ill 2016, 4, 61-64. [CrossRef]

Arntfield, R.; Vanberlo, B.; Alaifan, T.; Phelps, N.; White, M.; Chaudhary, R.; Ho, J.; Wu, D. Development of a Convolutional
Neural Network to Differentiate among the Etiology of Similar Appearing Pathological B Lines on Lung Ultrasound: A Deep
Learning Study. BM] Open 2021, 11, e045120. [CrossRef]

Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F; Sentelli, A ; et al. Deep
Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging
2020, 39, 2676-2687. [CrossRef]

Islam, M.M.; Karray, F.; Alhajj, R.; Zeng, ]. A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus
(COVID-19). IEEE Access 2021, 9, 30551. [CrossRef]

Monshi, M.M.A; Poon, J.; Chung, V.; Monshi, EM. CovidXrayNet: Optimizing Data Augmentation and CNN Hyperparameters
for Improved COVID-19 Detection from CXR. Comput. Biol. Med. 2021, 133, 104375. [CrossRef]

Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big. Data. 2019, 6, 1-48. [CrossRef]
Sheena, C.V.; Narayanan, N.K. Key-Frame Extraction by Analysis of Histograms of Video Frames Using Statistical Methods.
Procedia Comput. Sci. 2015, 70, 36—40. [CrossRef]

Guo, Y,; Xu, Q.; Sun, S.; Luo, X.; Sbert, M. Selecting Video Key Frames Based on Relative Entropy and the Extreme Studentized
Deviate Test. Entropy 2016, 18, 73. [CrossRef]


http://doi.org/10.1056/NEJMoa2001316
http://www.ncbi.nlm.nih.gov/pubmed/31995857
http://doi.org/10.1186/s13000-020-01017-8
http://www.ncbi.nlm.nih.gov/pubmed/32799894
http://doi.org/10.1016/S1473-3099(20)30086-4
http://www.ncbi.nlm.nih.gov/pubmed/32105637
http://doi.org/10.1002/jum.15285
http://doi.org/10.1002/jmv.25727
http://doi.org/10.1164/ajrccm.163.7.at1010
http://doi.org/10.4103/IJMR.IJMR_3669_20
http://doi.org/10.1016/j.compbiomed.2021.104742
http://doi.org/10.1186/1465-9921-15-50
http://doi.org/10.1007/s11739-015-1297-2
http://doi.org/10.1016/j.ajem.2013.10.003
http://www.ncbi.nlm.nih.gov/pubmed/24184011
http://doi.org/10.3389/FRAI.2022.912022/BIBTEX
http://doi.org/10.1016/j.imu.2021.100687
http://www.ncbi.nlm.nih.gov/pubmed/34368420
http://doi.org/10.3390/s21165486
http://doi.org/10.3390/jpm12101707
http://doi.org/10.1055/s-0042-120260
http://doi.org/10.4081/ecj.2020.9017
http://doi.org/10.1007/978-3-319-15371-1_8
http://doi.org/10.1136/bmjopen-2020-045120
http://doi.org/10.1109/TMI.2020.2994459
http://doi.org/10.1109/ACCESS.2021.3058537
http://doi.org/10.1016/j.compbiomed.2021.104375
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1016/J.PROCS.2015.10.021
http://doi.org/10.3390/e18030073

Bioengineering 2023, 10, 282 17 of 17

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Cover, TM.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley Series in Telecommunications and Signal Processing; John
Wiley & Sons: Hoboken, NJ, USA, 2006; p. 776.

Yang, S.; Lin, X. Key Frame Extraction Using Unsupervised Clustering Based on a Statistical Model. Tsinghua Sci. Technol. 2005,
10, 169-173. [CrossRef]

Abdullah, M.; Ahmad, M.; Han, D. Facial Expression Recognition in Videos: An CNN-LSTM Based Model for Video Classification.
In Proceedings of the 2020 International Conference on Electronics, Information, and Communication, ICEIC, Melia Barcelona,
Spain, 19-22 January 2020. [CrossRef]

Xie, Y.; Zhang, ].; Shen, C.; Xia, Y. CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation. In
Lecture Notes in Computer Science, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Strasbourg, France, 27 September—1 October 2021; Springer: Cham, Switzerland, 2021; pp. 171-180. [CrossRef]

Han, X,; Lu, E; Yin, J; Tian, G.; Liu, J. Sign Language Recognition Based on R(2+1)D with Spatial-Temporal-Channel Attention.
IEEE Trans. Hum. Mach. Syst. 2022, 52, 687-698. [CrossRef]

Fan, H.; Xiong, B.; Mangalam, K.; Li, Y.; Yan, Z.; Malik, J.; Feichtenhofer, C. Multiscale Vision Transformers. In Proceedings of the
IEEE International Conference on Computer Vision, Montreal, QC, Canada, 10-17 October 2021; pp. 6804-6815. [CrossRef]
Wei, D.; Tian, Y.; Wei, L.; Zhong, H.; Chen, S.; Pu, S.; Lu, H. Efficient Dual Attention SlowFast Networks for Video Action
Recognition. Comput. Vis. Image Underst. 2022, 222, 103484. [CrossRef]

Feichtenhofer, C. X3D: Expanding Architectures for Efficient Video Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020; pp. 200-210. [CrossRef]

Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [CrossRef]
Baloescu, C.; Toporek, G.; Kim, S.; McNamara, K.; Liu, R.; Shaw, M.M.; McNamara, R.L.; Raju, B.I; Moore, C.L. Automated
Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020,
67,2312-2320. [CrossRef]

Horry, M.J.; Chakraborty, S.; Paul, M.; Ulhaq, A.; Pradhan, B.; Saha, M.; Shukla, N. COVID-19 Detection Through Transfer
Learning Using Multimodal Imaging Data. IEEE Access 2020, 8, 149808-149824. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1016/S1007-0214(05)70050-X
http://doi.org/10.1109/ICEIC49074.2020.9051332
http://doi.org/10.1007/978-3-030-87199-4_16/COVER
http://doi.org/10.1109/THMS.2022.3144000
http://doi.org/10.1109/ICCV48922.2021.00675
http://doi.org/10.1016/j.cviu.2022.103484
http://doi.org/10.1109/CVPR42600.2020.00028
http://doi.org/10.1007/978-0-387-84858-7
http://doi.org/10.1109/TUFFC.2020.3002249
http://doi.org/10.1109/ACCESS.2020.3016780

	Introduction 
	Materials and Methods 
	Lung Ultrasound Score 
	SARS-CoV-2 LUS Dataset 
	Key-Frame Selection Algorithm 
	Video Classification Architecture 
	Performance Evaluation 

	Results 
	Discussion 
	Conclusions 
	References

