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Abstract: Diffuse optical tomography (DOT) is a non-invasive method for detecting breast cancer;
however, it struggles to produce high-quality images due to the complexity of scattered light and
the limitations of traditional image reconstruction algorithms. These algorithms can be affected by
boundary conditions and have a low imaging accuracy, a shallow imaging depth, a long computation
time, and a high signal-to-noise ratio. However, machine learning can potentially improve the
performance of DOT by being better equipped to solve inverse problems, perform regression, classify
medical images, and reconstruct biomedical images. In this study, we utilized a machine learning
model called “XGBoost” to detect tumors in inhomogeneous breasts and applied a post-processing
technique based on genetic programming to improve accuracy. The proposed algorithm was tested
using simulated DOT measurements from complex inhomogeneous breasts and evaluated using the
cosine similarity metrics and root mean square error loss. The results showed that the use of XGBoost
and genetic programming in DOT could lead to more accurate and non-invasive detection of tumors
in inhomogeneous breasts compared to traditional methods, with the reconstructed breasts having
an average cosine similarity of more than 0.97 ± 0.07 and average root mean square error of around
0.1270 ± 0.0031 compared to the ground truth.

Keywords: diffuse optical tomography; extreme gradient boosting; genetic programming; inhomogeneous
breast; inverse problems

1. Introduction

Imaging with randomly scattered light is a significant challenge with a pressing need
in non-invasive biomedical diagnosis [1–6]. One of the more significant applications is
a non-invasive functional imaging technique called diffuse optical tomography (DOT),
which uses near-infrared (NIR) light to map in 3D the optical characteristics of tissue
by penetrating it deeply [7–13]. Soft tissue, including the breast and the brain, can be
penetrated several centimeters by diffuse light in the NIR wavelength range. Measurements
from reflected or transmitted light at the tissue surface are used to reconstruct DOT images
using inverse problems [14–16]. Moreover, DOT has many advantages, including the non-
ionizing nature of the light spectra used for imaging tissues and the non-invasive nature of
the technology. As a result, DOT has found critical applications, especially in breast tissue
imaging [8,15,17] and tissue property estimation [10,18–21]. However, many challenges
persist. Although near-infrared (NIR) photons can travel several centimeters into the tissue
to enable non-invasive biomedical imaging, these photons scatter widely and migrate in
random directions before escaping or being absorbed by the medium, making imaging and
detection tasks challenging [20,22].

Moreover, DOT reconstruction is an ill-defined and inadequately framed topic that
calls for an inversion regularization to enhance convergence [15,23]. Inaccurate DOT recon-
struction can also be caused by model inadequacies, including poor boundary conditions,
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the chest wall beneath the breast tissue, and inaccurate background tissue estimation [8,24].
Due to the above reasons, DOT for breast cancer imaging has previously been investigated
but found to be facing various challenges when considering large-scale medical deployment.
Since then, significant technological advancements have been made, including improved
computational efficiency that stimulated the creation of novel deep learning algorithms and
a deeper comprehension of how light travels through tissues. Therefore, a less complicated
yet computationally effective approach is needed to detect anomalies and tumors present
in thick tissues.

Recent research has attempted to address some of the challenges posed due to the
diffuse nature of photons and ill-posed inverse problems by employing deep learning
(DL) [15,17,20,25,26] and shallow machine learning (ML) techniques [8,27]. The usage
of ML algorithms regularly beats the analytical solution technique in all of the articles
previously mentioned. Compared to traditional analytical models, ML and DL algorithms
are better posed, faster, and provide a better convergence while determining tissues’ optical
properties or detecting locations of tumors and anomalies in thick tissues. For instance,
Murad et al. [28] experimentally demonstrated the simultaneous reconstruction of the
absorption and scattering coefficient of tissue mimicking using a 1D convolution neural
network (1D-CNN). Here, simple batch normalization (BN) layers were used to significantly
improve the accuracy and reduce the time consumed for DOT image reconstruction. Yoo
et al. [15] developed a novel DL algorithm that accurately detects anomalies in beast tissues
by inverting the Lippman–Schwinger equation, achieving significant results. In a more
recent study, Mozumder et al. [29] employed a model-based DL approach to improve the
estimation of the absorption and scattering coefficient of diffuse media. It was shown
in this study that the proposed DL method also significantly reduces computation time.
Moreover, several excellent reviews [30] and tutorials [14] exist that provide valuable
insights regarding the use of DL for DOT image reconstruction.

However, despite the improvements in accuracy obtained in DOT reconstruction by
DL methods, there is still a pressing need for algorithms that provide similarly good results
with smaller datasets and reduce the computational load on the system. ML algorithms may
provide solutions to some of these issues as they work well on smaller datasets, can function
without a GPU, and are generally computationally quicker than DL methods. Recently,
Zou et al. [8] used a machine learning model with physical constraints to reconstruct DOT
images. Yun Zou et al. proposed that the ML algorithm significantly reduced the DOT
image reconstruction error, especially in high-contrast samples, compared to the Born
gradient descent analytic reconstruction method. The significant observations and the
results obtained from this work clearly show the potential of machine learning algorithms
where DOT reconstruction problems are concerned.

Extreme gradient boosting or XGBoost is a widely used machine learning algorithm
known for its high performance and accuracy in various applications such as regression,
classification, and ranking problems [31]. XGBoost shows high scalability, robustness, and
speed compared to other models [32,33]. Therefore, in this article, for the first time, to the
best of our knowledge, we use XGBoost to detect tumors located in compressed breast
tissues. We later apply an optimization method called genetic programming (GP) [34–36] to
improve our results further. GP is an evolutionary algorithm that uses natural selection to
evolve solutions to optimization problems. It can automate the design and optimization of
complex systems, generate novel solutions, find robust and interpretable solutions, and be
more efficient than other optimization algorithms. The proposed machine learning diffuse
optical tomography (ML-DOT) method requires short training times and delivers high
accuracy in detecting tumors even with small datasets, and thus significantly reduces the
computational load.

The article is designed as follows: The imaging geometry used in this study and
the data generation are described in Section 2.1, and the proposed technique for tumor
detection in compressed breasts is described in Sections 2.2 and 2.3, along with the obtained



Bioengineering 2023, 10, 382 3 of 13

results. Section 3 discusses the results of the proposed algorithm, and we finish with the
conclusions derived from this study in Section 4.

2. Materials and Methods

Image reconstruction in DOT has traditionally been achieved using inverse problems,
which take the form [37]:

Findx ∈ X f rom data y = A(x) + δ, y ∈ Y (1)

where the parameter space is defined by X, Y is the measurement space, A is the propaga-
tion model of photons convolved with the optical component response, and δ is the noise
mechanism in the system. The scarcity of ballistic photons coupled with the loss of imaging
data as a result of repeated scattering events, however, results in a non-linear, ill-posed
inverse problem, needing an effective solution to accomplish this challenging task. In order
to simplify the DOT system and precisely locate cancers embedded in the compressed
breast tissue, approaches based on extreme gradient boosting and genetic programming are
proposed in this section. This section includes a brief introduction to the proposed machine
learning techniques, the proposed methodology, and the results obtained from this study.

2.1. Simulating Photon Migration in Digital Breast Phantoms to Generate Dataset

The compressed breast geometry is chosen for this study. This particular type of geome-
try is used as it considerably reduces movement artifacts, evenly spreads the different layers
of tissue, and also helps considerably reduce the amount of tissue to be imaged [16,38]. The
dataset used to train, validate, and test the algorithm is created using the finite element
method (FEM) [39]. The evaluation of DOT models is usually conducted through computer
simulations, as it allows for easy comparison to the work of other scientists, creating a
larger dataset and providing a better-controlled environment. Additionally, simulations
allow for the avoidance of costly and wasteful fabrication of clinical prototype systems
that may possess inherent engineering problems. Furthermore, it is both complicated and
expensive to create an inhomogeneous breast phantom for experimental purposes [14,38].
The compressed breast mesh itself is loaded from the “DigiBreast” [40] digital breast phan-
tom modeled accurately using the optical properties of the skin, breast tissues, and the
chest wall [17,41]. The digital breast phantom includes a realistic 3D glandularity map,
which is more detailed than the representation of breast tissue in conventional numerical
breast phantoms. These traditional phantoms use piecewise-constant regions to represent
the fibroglandular and adipose tissue, which can result in a loss of information. In contrast,
the digital breast phantom uses statistical or fuzzy segmentation methods to create spatially
varying tissue volume fraction maps, which preserve more detailed information about the
breast tissue.

The dimensions of the compressed breast are 220.8 mm, 102.9 mm, and 23.7 mm in
the X, Y, and Z directions, respectively. A parallel-plate-based measurement scheme is
employed to set a 48 × 54 source–detector arrangement on either side of the breast. The
simulated compressed breast mesh and the source–detector arrangement are shown in
Figure 1.

The simulations are then performed in the transmission geometry using the Toast++ [39]
forward solver to simulate light intensity measurements at the detectors. As tumors often
have a high blood concentration, in this study, they are modeled as oxyhemoglobin spheres
with radii ranging from 2 mm to 15 mm randomly located inside a compressed breast
mesh. The algorithm used 5000 simulated breast measurements taken in the transmission
geometry as input, and the x, y, and z coordinates, the absorption coefficient matrix,
and the tumor’s radius were the labels. These simulated measurements were performed
in the continuous wave regime at a wavelength of 833 nm, and a 2% gaussian noise
was added to mimic errors that might occur if the measurements were taken from an
experimental procedure.
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2.2. Detecting Tumors in the Compressed Breast Using Extreme Gradient Boosting

Following the creation of the dataset, the collected data are used to solve the inverse
problem and detect the location of tumors inside the compressed breast. A machine learn-
ing algorithm called extreme gradient boosting (XGBoost) is employed to solve the inverse
problem. XGBoost is a distributed, scalable gradient-boosted decision tree (GBDT) machine
learning framework with several applications that use regression [32] and classification [33].
Here, gradient boosting refers to “boosting” or strengthening one weak model by fusing it
with several other weak models to create a more robust model. As an extension of boosting,
gradient boosting formalizes the process of additively creating weak models as a gradient
descent method over a fitness function. Gradient boosting algorithms create a model that
predicts the label by evaluating a tree of logical feature questions and determining the mini-
mum number of questions required to assess the probability of obtaining a correct decision.
To reduce errors, gradient boosting establishes desired outcomes for the upcoming model.
The gradient of the error concerning the prediction determines the targeted outcomes for
each case, hence the name “gradient boosting”.

Created by Tianqi Chen and contributions from numerous developers, “Extreme Gra-
dient Boosting (XGBoost)” is one of the most important and successful implementations
of gradient boosting machines [31]. XGBoost is a scalable and highly accurate gradient-
boosting algorithm that pushes the limits of computing power for boosted tree algorithms.
It was created primarily to enhance machine learning models’ performance and computa-
tional speed. Unlike GBDTs, where decision trees are generated sequentially, the trees in
XGBoost are built in parallel. The XGBoost method takes a level-wise approach, scanning
over multiple gradient values and using the partial sum generated from the gradient values
to evaluate the performance of the splits for each possible split in the training dataset.

As described earlier, the dataset is created using 5000 different measurements at the
transmission boundaries of the compressed breast. The log of the measured signal at
each detector with respect to different sources (log(d)) is used as the input to the XGBoost
algorithm. The “x”, “y”, and “z” coordinates, the absorption coefficient, and the radius are
the labels. The algorithm is employed to find an accurate model that establishes a precise
relation between the simulated measurements and the tumor locations. The root mean
squared error (RMSE) loss function is used to assess the algorithm’s performance, and the
accuracy of the predicted outcome is measured using the RMSE and the cosine similarity
(CS) metrics [42]. The RMSE loss function is given by:

RMSE =

√√√√ N

∑
i=1

(Yi − Xi)
2

N
(2)
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and the cosine similarity is given by:

CS =
∑N

i=1 XiYi√
∑N

i=1 X2
i

√
∑N

i=1 Y2
i

(3)

where Yi and Xi are the predictions and the labels, respectively, and N is the total number
of datasets. These metrics are specifically used primarily because the R2 metrics perform
relatively poorly when the prediction window is narrow, as is the case with the radius of
the spheres. Furthermore, the RMSE and the CS metrics are better suited to solving inverse
problems where the prediction interval is narrow and continuous [8,43]. A computer with
an i9 series 9900k processor and two NVIDIA GeForce RTX 2080Ti graphics processors were
used to build and train the XGBoost algorithm. Each GPU contains 11 GB of VRAM, and
the two GPUs are connected through an NVlink. The network is by Adam Optimizer with
an initial learning rate of 0.0001. For the XGB predictions, 50% of the total dataset is used,
out of which 60% is used for training and validation, and 40% of the data is used for testing.
The XGBoost algorithm learns the features from the input and the labels and accurately
predicts the relationship between the input (measurement data) and the labels (tumor
location) by regression. Due to variations in the dimensions of the compressed breast
and the nature of the coordinate system used to model the compressed breast, the model
prediction is made separately for the three different coordinates, the absorption coefficient,
and the radius. The best results obtained by the XGBoost algorithm are RMSE values of
0.1862 ± 0.0018 for the x coordinate, 0.1678 ± 0.0042 for the y coordinate, 0.1505 ± 0.0009
for the z coordinate, 0.1131 ± 0.0091 for the absorption coefficient, and 0.2157 ± 0.0103 for
the radius. Some of the predictions of the XGBoost algorithm are shown below in Figure 2.

From the results obtained by the XGBoost algorithm, it is undoubtedly well-posed
to detect tumors to a certain degree of accuracy using the simulated measurements. The
predictions by the XGBoost algorithm obtained a very high average cosine similarity value
of 0.9564± 0.0076 compared to the ground truth. However, the predicted size and locations
of the embedded tumors could still be improved, especially the predictions of the radius
and the z coordinate, which is also the mean direction of propagation. Therefore, the
following section applies a post-processing algorithm using genetic programming (GP) to
improve the model predictions.

2.3. Enhancing Tumor Detection Capabilities Using Genetic Programming

Genetic programming (GP) is a nature-inspired hyper-heuristic search algorithm that
optimizes a set (or a population) of solutions (or individuals), embodied as computer
programs, which are typically represented as tree-like structures, using a predefined loss
function (or a fitness function) for a given task [35,44]. In other words, GP starts with a
high-level declaration of “what needs to be done” and constructs a computer program to
solve the problem automatically. As described in Figure 3, GP begins with a primordial
soup of a large pool of randomly generated computer programs (initial guess of the model
prediction), and this population of programs evolves throughout generations. The evolu-
tionary search employs the Darwinian concept of natural selection (survival of the fittest)
and analogs of many naturally occurring events, such as crossover (sexual recombination),
mutation, gene duplication, and gene deletion. Moreover, genetic algorithms, by means of
fitness-based selections and applying genetic operators over time, can optimize solutions
automatically during the course of simulated evolution. Thus, GPs’ adaptive nature, free of
human prejudices or biases, may often provide answers better than the most exemplary
human efforts.
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Figure 2. The reconstructed tumor locations using predictions from the XGBoost machine learning
algorithm. (a) showing the reconstructed tumor locations at (z = 5.325 mm), and (b) showing
the reconstructed tumor locations at (z = 11.289 mm), are two different examples of the XGBoost
predictions. The color bar shows the absorption coefficient in (cm−1).

Genetic or evolutionary algorithms have a wide range of applications, particularly in
domains where an exact structure of the solution is unknown in advance or when finding
an approximate solution is considered suitable [45]. Genetic programming is frequently
used in conjunction with other types of machine learning because it is useful for performing
symbolic regressions and feature classifications [46].

The execution of a GP algorithm is described below:

1. Randomly generate an initial population of solutions called individuals. Each indi-
vidual is generated as a random tree of limited depth, consisting of nodes taken from
the terminal set and the function set. The terminal set contains constants and vari-
ables, and the function set consists of various operators, for example, mathematical
operations, logical operators, etc.

2. While the termination criterion is not fulfilled, the following sub-steps are repeated:

a. Evaluate the individuals in the current population according to the fitness
function, which outputs a numerical value representing the quality of the
individual as a solution.

b. Select individuals from the population using a selection method, where the
probability for selection is related to fitness values, for producing the next set
of individuals.
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c. Apply the following genetic operators to produce new individuals with prede-
termined probabilities:

I. Reproduction: clone an individual selected by the sub-step ”b” to
the population.

II. Crossover: randomly recombine two selected individuals to produce
two new offspring.

III. Mutation: randomly alter one selected individual to produce one
new offspring.

3. Output the best individual found during the run as the output.
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To implement the steps described above, we employed Koza-style [47] genetic pro-
gramming using the DEAP Python environment [48]. We now describe the details of our
implementation:

Essentially, each GP individual represents an R→ R function, which receives a single
real-valued coordinate as input (namely, x, y, z, or radius) outputted by XGBoost in the
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previous stage), and outputs a single real-value, as an estimate for the actual coordinate
(x, y, z, or radus). The function set for each individual (as can be seen in the pseudo-code
above) is comprised of binary arithmetic operations. The terminal set is comprised of a
single real-valued coordinate and integer ephemeral random constants (ERCs) [35,44,47] in
the range [−5, 5]. For example, if the coordinate in question is x, it is possible to form an
expression such as add (multiply (x, x), negate (multiply (x, 5.0))) representing the function:
x2 + (−5x). Typically, GP trees can represent expressions that are far more complex.

For assessing our individuals, fitness was calculated by randomly selecting 10%
of the dataset (with the given single label) and applying the individual to each of the
selected examples. The fitness score was determined by the RMSE measure between
the actual values for the labels in the dataset and those predicted by the individual. We
used tournament selection as the selection mechanism. Additional parameters of the GP
algorithm are given in Table 1, and the entire workflow of the proposed method, including
the XGBoost and GP, is shown in Figure 3.

Table 1. Parameters for the GP algorithm.

Parameter Range of Values

Population size Between 10,000 and 15,000

Generation count Between 100 and 250

Reproduction probability 0.35

Crossover probability 0.5

Mutation probability 0.15 (including ERC)

Tree depth Between 2 and 6

Tournament size 4

The remaining 50% of the total data after the XGBoost is used for the GP algorithm.
The data split for the GP algorithm’s training, validation, and testing is similar to the data
split used for the XGBoost, and the algorithm is also run on the same computational hard-
ware. After applying the algorithm for 30 runs with 100 generations each, the final results
obtained after XGBoost and GP are RMSE values of 0.1808 ± 0.0014 for the x coordinate,
0.1539 ± 0.0057 for the y coordinate, 0.1340 ± 0.0032 for the z coordinate, 0.0975 ± 0.0065
for the absorption coefficient, and 0.2017 ± 0.0126 for the radius. The reconstructed images
from the predictions are shown in Figure 4.

As seen in Figure 4, predictions significantly improve when the post-processing GP
algorithm is employed. The most significant enhancement is observed in the predictions of
the z coordinate of the embedded tumors. Considering that the z-axis is the mean direction
of the photon propagation due to the forward scattering anisotropy of the media, this is a
commendable result, as minimal errors in the prediction of the z coordinate will allow us to
detect anomalies and tumors at greater depths. The results obtained using the XGBoost
and the enhancement due to GP are summarized in Table 2.

Table 2. Performance of the proposed model in terms of RMSE.

Values (Units) RMSE (After XGBoost) RMSE (After GP)

X coordinate (mm) 0.1862 ± 0.0018 0.1808 ± 0.0014

Y coordinate (mm) 0.1678 ± 0.0042 0.1539 ± 0.0057

Z coordinate (mm) 0.1505 ± 0.0009 0.1340 ± 0.0032

Radius (mm) 0.2157 ± 0.0103 0.2017 ± 0.0126

〈µa〉 (mm−1) 0.1131 ± 0.0091 0.0975 ± 0.0065
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Figure 4. The reconstructed tumor locations using predictions from the GP post-processing algorithm.
(a) showing the reconstructed tumor locations at (z = 14.375 mm), (b) showing the reconstructed
tumor locations at (z = 5.325 mm), and (c) showing the reconstructed tumor locations at (z = 11.289),
are different examples of the XGBoost and GP predictions. The color bar shows the absorption
coefficient in (cm−1).

3. Discussion

As seen in Figure 4, the predicted outcomes are very close to the ground truth locations
and the radii. When the CS metric is used to validate the model’s performance, an average
similarity of 0.9720 ± 0.0062 is observed when the predicted labels are compared to the
ground truth. From the RMSE and CS values, it is apparent that the prediction is very
robust. The algorithm is also computationally fast, as training consumes less than 60 s. It
must also be noted that the algorithms do not have any prior information or knowledge
regarding the inverse solution to DOT. Our study found that our predictions for the x and
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y coordinates were significantly more accurate than those for the z coordinate and radius.
This discrepancy may be due to the fact that the range of the z coordinate and radius was
limited compared to the range of the x and y coordinates. This limited range not only
adversely affected the algorithm’s performance but also negatively impacted the simulated
measurements. The small changes within this limited range were not as clearly reflected in
the measurement matrix, resulting in a less accurate regression model for predicting the
tumor location and radius.

Moreover, our study’s absorption coefficient reconstruction is still not very accurate.
The XGBoost algorithm underestimates the absorption coefficient, while the GP regularly
overestimates the absorption coefficient. This is likely due to the inhomogeneous distri-
bution of tissue within the breast and the varying contrasts between the anomalies (such
as tumors) and the surrounding tissue. Inhomogeneity in the tissue distribution can intro-
duce variations in the optical properties of the breast, leading to challenges in accurately
reconstructing the absorption coefficient. Similarly, the variability in contrast between
the anomalies and the background can make it difficult to accurately distinguish between
the two, leading to errors in the reconstruction. These factors likely contributed to the
limitations in the accuracy of the absorption coefficient reconstruction in our study.

Despite these limitations, it is worth noting that the algorithm was still able to learn
an accurate model for solving the inverse problem and identifying tumors based on a
relatively small, simulated dataset. This demonstrates the robustness and effectiveness of
the algorithm, which effectively processed and analyzed the data despite the challenges
presented by the limited range of the z coordinate and radius. Overall, our results show that
the combination of XGBoost and genetic programming (GP) can be a powerful tool for solv-
ing inverse problems in diffuse optical tomography and may have potential applications in
medical imaging and other fields.

XG boost and genetic programming (GP) are highly effective algorithms for solving
diffuse optical tomography (DOT) problems. XG boost, a decision tree-based algorithm,
is particularly well-suited for handling highly non-linear data and can be used for clas-
sification and regression tasks. GP is versatile and can be used for a variety of purposes,
including regression, classification, and optimization. These algorithms have been shown
to outperform other approaches, such as conventional analytical inverse problems and
convolutional neural networks (CNNs), in many complex applications due to their ability
to accurately process and analyze the data. Therefore, XGBoost and GP are the preferred
choice for solving DOT problems.

Moreover, the primary issue with employing neural networks to solve DOT inverse
problems is the near impossibility of collecting massive amounts of experimental data
to train the algorithm, leading to trade-offs between precision and accuracy in actual
investigations. This study addresses this issue as shallow machine learning algorithms
such as XGBoost do not require substantial amounts of data for accurate model prediction.
The comparison of the effectiveness of our algorithm with that of the existing state-of-the-
art algorithms is shown in Table 3. A more detailed comparison to other imaging modalities
and algorithms using different metrics can be found in excellent review articles [14,30,49].

As seen in Table 3, the proposed method is well-suited and outperforms other al-
gorithms that solve a similar problem. Furthermore, transfer learning can close the gap
between simulations and real tissue imaging. Additionally, to improve performance, the
proposed methods can be trained using a more complex and realistic dataset with differ-
ent geometries and source–detector configurations, paving the way for the realization of
large-scale medical applications involving non-invasive and radiation-free diffuse optical
techniques that can provide an accurate diagnosis.
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Table 3. Comparison of the XGBoost-GP algorithm with existing algorithms in terms of RMSE.

S. No. Article Research Type Background Type RMSE

P. Proposed algorithm
(XGBoost + GP) Simulation

Inhomogeneous
background mesh
(DigiBreast [40])

0.12

1.

Jaejun Yoo et al. [15]
(Neural network for

inverting
Lippman–Schwinger

equation)

Simulation and
Experiment

Homogeneous
background mesh (breast

mesh and full body
rat mesh)

0.66

2. Yun Zou et al. [8]
(ML-PC model)

Simulation and
Experiment

Homogeneous
background mesh 0.30

3.

GM. Balasubramaniam
et al. [17] (Cascaded

feed-forward
neural network)

Simulation Homogeneous
background mesh 0.17

4. Conclusions

In this study, an extreme gradient boosting algorithm was used in conjunction with a
genetic programming algorithm to detect embedded tumors or anomalies in inhomoge-
neous compressed breast tissues. A dataset of 5000 compressed breasts with anomalies
was simulated for the study, and simulated light measurements were used to determine
the location and size of the tumors. After applying the proposed method, the obtained
RMSE and cosine similarity values showed that the algorithm was highly accurate and
robust when the predicted tumor locations and sizes were compared to the ground truth.
Moreover, the issues regarding large datasets and expensive computational costs were
addressed to a certain extent as only a few breast samples were used, and the tumor
location and radius predictions consume a very minimal amount of time. The results
from the proposed method to accurately determine the anomalies in breast tissues show
that extreme gradient boosting and genetic programming algorithms can be employed to
detect tumors in compressed breast tissues with excellent accuracy compared to previously
existing methods.
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