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Abstract: Diabetic retinopathy is one of the most significant retinal diseases that can lead to blindness.
As a result, it is critical to receive a prompt diagnosis of the disease. Manual screening can result
in misdiagnosis due to human error and limited human capability. In such cases, using a deep
learning-based automated diagnosis of the disease could aid in early detection and treatment. In deep
learning-based analysis, the original and segmented blood vessels are typically used for diagnosis.
However, it is still unclear which approach is superior. In this study, a comparison of two deep
learning approaches (Inception v3 and DenseNet-121) was performed on two different datasets of
colored images and segmented images. The study’s findings revealed that the accuracy for original
images on both Inception v3 and DenseNet-121 equaled 0.8 or higher, whereas the segmented retinal
blood vessels under both approaches provided an accuracy of just greater than 0.6, demonstrating
that the segmented vessels do not add much utility to the deep learning-based analysis. The study’s
findings show that the original-colored images are more significant in diagnosing retinopathy than
the extracted retinal blood vessels.

Keywords: deep learning; retinal blood vessels; diabetic retinopathy; segmentation; convolutional
neural networks

1. Introduction

Diabetic retinopathy (DR) has been wreaking havoc on the modern-day population
given the estimation that 463 million of the global population in 2019 and 700 million in
2045 are affected by diabetes mellitus (DM). Diabetic retinopathy appears to be a prevalent
consequence of DM, thus being one of the major causes of blindness in the working
population, as suggested by the International Diabetes Federation (IDF) [1]. Due to the lack
of precise diagnosis, leaving DR untreated at the following stages can cause blindness; it has
been responsible for 5 percent of the global blindness being diagnosed, where estimations
suggest 50–65 cases of blindness occur for every 100,000 [2].

Biomarkers behind biological and pathological processes of diabetic retinopathy, such
as blood pressure, diabetes duration, glucose level, and cholesterol levels, are considered to
be unquestionably important determinants of the development of this disease, although
growth of DR cannot be determined from these [3]. This is in contrast to patients with poor
control and strong glycemic control, which can suddenly deteriorate and can allow for
the identification of various phenotypes of progression of DR following the nature of the
retinal lesions.
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A comprehensive examination must take place for the proper evaluation of this
disease. Likely, all patients suffering from type 1 diabetes and approximately 60% from
type 2 diabetes will develop a particular degree of DR within 20 years of diagnosis [4].
Thus, regular screening is a prerequisite for catching the disease at an early stage.

Consequently, a precise diagnosis of DR must be a prerequisite in the case of addressing
a patient regarding the compatible treatment, as DR treatments are vastly driven according
to their severity levels. In these terms, deep learning-based image processing can accelerate
the DR classification proficiency on the basis of precise recognition of its severity, which can
provide accurate prediction of patient’s morbidities as well as ensure enriched diagnosis
and, hence, can aid in designing plausible treatment plans for the cure. Image processing
has been enormously engaged in DR classification by highlighting where fundus cameras
are employed to collect retinal fundus images. Techniques including image enhancement,
fusion, morphology identification, and image segmentation give a rise to the cognitive
efforts of medical physicians in extracting additional information from medical image
data [5]. Several attempts have been found in the case of automated DR classification using
DL, where proposed methods encompass the types of categorizations based on lesions and
blood vessels [6], as detailed in the following sections.

1.1. State of the Art on Approaching DR Detection with Deep Learning Techniques

Studies have been extensively carried out pertinent to diabetic retinopathy, suggesting
multiple techniques proven adept for DR detection. This section represents the deep
learning and neural network technique approaches for the multiclass classification of
diabetic retinopathy. A novel automated recognition system was developed by Abbas
et al. [7] under the five severity levels of diabetic retinopathy where pre- or post-processing
of fundus images was not required. A semi-supervised deep learning technique was
utilized in tandem with fine-tuning steps, where the sensitivity of 92.18% and specificity of
94.50% were obtained.

In another study, diabetic retinopathy detection was carried out using fundus images
from the EyePACS1 dataset, containing approximately 9963 images that were collected
from 4997 patients, and the Messidor-2 dataset, which contained 1748 images acquired from
874 patients. For detecting RDR using operation cut points of high specificity, the sensitivity
and specificity gained for EyePACS-1 were 90.3 and 98.1 percent, respectively. On the other
hand, 87.0% and 98.5% were acquired in terms of sensitivity and specificity, respectively,
for the Messidor-2 dataset [8]. The architecture used was the Inception v3 [9], which
showed impressively high sensitivity and specificity. DR severity grading was performed,
yielding 93.33% accuracy by applying a quadrant-based approach; here, [10,11] addressed
the issue of scarcity of annotated data for training purposes. The model used was Inception
v3. The model training was conducted on a subsample of a Kaggle diabetic retinopathy
dataset, while the accuracy testing was carried out on another subset of data. Transfer
learning was implemented. In [12], the detection was shifted onto different platforms,
such as smartphones and smartwatches. Deploying automated DR detection on such
ubiquitous platforms, cost-effectively provides healthcare, offering a frictionless healthcare
system. A convolutional neural network (CNN) model was based on Inception, which
also serves as an ensemble of classifiers and also functions as a binary decision-tree-based
method. Goncalves et al. compared human graders and the agreement of different machine
learning models. Regardless of the dataset, transfer learning has performed well in terms
of agreement across different CNNs.

A comparison had been undertaken between traditional approaches and CNN-based
approaches. The Inception v3 model has been nonpareil, having reached the accuracy of
89% on the EyePACS dataset and performing the best [13]. In another study, the fundus
images were classified into average to extreme conditions versus non-proliferative DR [14],
where they used backpropagation neural organization (BPNN). Table 1 highlights the
multiple deep learning approaches for DR detection and classification over various datasets
of retinal fundus images.
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Table 1. Representation of traditional deep learning approaches for DR detection and classification
over various datasets.

Ref.
DL Methods

(Best Architectures) Dataset
Performance Metrics

Accuracy Sensitivity Specificity AUC

[15] VGGNet 5-class (EyePACS) 95.68% 86.47% 97.43% 0.979

[16] Custom CNN and
Decision Tree

2-class (EyePACS)
2-class (Messidor2)
2-class (E-Ophtha)

—
—
—

94%
90%
90%

98%
87%
94%

0.97
0.94
0.95

[8] CNN (Inception v3) Messidor-2 (1748)
EyePACS-1 (9963) — 96.1%

97.5%
93.9%
93.4% —

[17]
CNN (ResNet50, Inception

v3, InceptionResNet v2,
Xception, and DenseNets)

Their own dataset
(13,767) 96.5% 98.1% 98.9% —

[18] CNN (modified Alexnet) Messidor (1190) 96.35% 92.35% 97.45% —

[19]
CNN (VGGNet16,

AlexNet, and custom
CNN)

MESSIDOR (1200) 98.15% 98.94% 97.87%

[20] Fully CNN

STARE (20),
HRF (45),

DRIVE (40) and
CHASE DB1 (28)

0.9628
0.9608
0.9634
0.9664

0.8090
0.7762
0.7941
0.7571

0.9770
0.9760
0.9870
0.9823

0.9801
0.9701
0.9787
0.9752

[21] CNN (ResNet-101) DRIVE (40) 0.951 0.793 0.974 0.9732

[22] Custom CNN 5-class (IDRiD)
5-class (EyePACS)

91.3%
89.1%

—
—

—
—

—
—

[23] CNN (ResNet50) Messidor (1200)
IDRiD (516)

92.6%
65.1%

92%
—

—
—

0.963
—

[24] CNN HRF(45) and
DRIVE(40) 93.94% 0.934

[25] CNN (improved LeNet
and U-net) DIARETDB1 (89) 48.71% 0.4823

[26] Ensemble learning 2-class (Private
custom dataset) 88.21% 85.57% 90.85% 0.946

[27] CNN
DRIVE(40)
STARE(20)
CHASE(28)

95.82%
96.72%
96.88%

79.96%
79.63%
80.03%

98.13%
98.63%
98.80%

98.30%
98.75%
98.94%

1.2. Research Gap

Patients at higher risk in the proliferating group should be addressed for prompt
remedy and diagnosis, which demands the diagnostic technique to be highly precise and
appropriate, in short, serves as an urgent call for a proficient and self-contained feasible
approach for retinopathy identification, thus providing reliable results. Thus, we have
seen pre-trained CNNs and other deep learning techniques being used to classify multiple
diseases in the past. While taking this view into account, a furnished dataset and deep
transfer learning are required for the improvement of classification accuracy. Otherwise,
the dataset comprising low-resolution DR images mentioned in previous sections, where
research has taken on pre-trained and traditional approaches, may lead to erroneous
classification followed by misleading accuracy. While considering the feasibility in the
case of DR detection following deep learning-based analysis, both the original-colored and
segmented images had been used for diagnosis earlier by researchers. Nonetheless, which
approach is clinically efficient remains equivocally a matter of doubt. In short, it indicates
that a mechanism for assessing the classification performance characteristics of modern
deep learning approaches on relevant datasets should be enriched.

1.3. Seleciton of the Original Dataset and Derivation of the Segmented One for Our Study

In terms of DR classification, the size and quality of the obtained dataset vastly
determine the classification accuracy, that is, a higher accuracy requires a large amount of
training data using a deep learning algorithm. Thus, considering the quality assurance,
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the dataset should be gained from reliable sources with accurate tags. Here, in Table 1,
we mention some of the datasets widely used for DR detection, including following the
Kaggle Diabetic Retinopathy dataset [28,29], DiaretDB1 dataset [30], HRF (High Resolution
Fundus Image database) [31], and the Messidor and Messidor-2 datasets [32].

One of the two datasets involved in this research is the HRF database [31] which
is used to train our transfer learning model for segmentation; it comprises three sets of
fundus images, including 15 images of healthy patients, 15 images of DR patients, and
lastly, the same number of images of patients with glaucoma. Each image from three
sections has binary gold standard vessel segmentation images of its own. A group of
professionals from the field of retinal image analysis as well as the clinicians from the
cooperated ophthalmology clinics contributed to generating these data. In addition, the
masks illustrating the field of view (FOV) are provided for particular datasets. The plane
resolution of HRF is 3504 × 2336, which is relatively high compared with other available
datasets in this field, asserting it as the more worthy one for our segmentation purpose.

As a part of our study, another dataset we used is the APTOS Blindness Dataset
provided by Kaggle [30] and generated by Aravind Eye Hospital located in India, whose
original-colored and segmented blood vessels had been used to meet our research objectives.
The goal was to derive the solutions from other ophthalmologists through the 4th Asia
Pacific Tele-Ophthalmology Society (APTOS) Symposium. A large dataset of retinal images
was generated using fundus photography, more precisely a photograph of the rear of the
eye. The images were rated in the range 0–4 inclusive, where different ratings correlate to
different stages of DR, except 0, which is to be assumed indicative of no symptoms of DR.
One of the major reasons for choosing this one among multiple options, as illustrated in
Table 1, is because of its greater size. It is the third-largest dataset, consisting of 5590 images,
where the DR grading followed the ICDRDSS protocol and contained appropriate class
distribution of images into each of the relative grades according to their severity levels.
Figure 1 represents two of the original-colored images along with their segmented one to
signify the dataset quality of this study.
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2. Proposed Methodology
2.1. Dataset Preprocessing and Enhancement

At the outset, the HRF dataset went through data augmentation. The U-Net network
used this dataset as input for an initial transfer learning phase. Data augmentation uses
certain techniques to artificially elevate the size of the data, meaning an overall quantita-
tive augmentation. Deep learning models require ample training data, and a perennial
problem is the shortage of training data, which is certainly the case in the medical image
processing field. Techniques of augmenting data include position augmentation, such as
scaling, flipping, cropping, padding, translation, affine transformation, rotation, and color
augmentation, including changing contrast, saturation, and brightness, to make the images
consistent in case of intensity and size that will contribute to CNN for precise classification.

In this preview, we implemented horizontal flipping, vertical flipping, and rotation to
elevate our data. The point to note is that only training data went through augmentation.
We initially had 45 total images. There was an 80:20 bifurcation of the data such that 36 of
the images from that initial pool went through the augmenting procedures. This is intended
to be training data. A fourfold increase in training data was achieved, meaning we now
had an expanded pool of images which bodes well for the training of our model. This will
essentially help the model generalize better. The latter portion of that split was used for
validating the model. All images were converted to a size of 224 × 224 to be used for input
on the convolutional network. Figure 2 shows the proposed methodology.
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For the APTOS dataset, the data had to be run through a filtering process where
we separated it into three portions: the training set, the validation set, and the test set.
Initially, we had 3662 images of training data. Seventy percent of those images, that is,
2563 images, were used for the actual training of the model. The remaining 30 percent
of the leftover images were bifurcated, meaning that from the 1099 images that were left
untouched, 549 images were designated as one group and the other 550 images as another
group. The former is used for validation, while the latter is used for testing. All the images
were changed to a size of 224 × 224 before operation. Here, Ben Graham’s preprocessing
was coupled with auto-cropping, which upgraded our training performance [33]. The
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images were scaled to a certain radius, and the local average color was subtracted. The
need for this arose due to a lack of lighting in a section of the images. One workaround
was to convert the images to greyscale, but the aforementioned preprocessing method was
selected instead. Cropping is used to shave off the uninformative areas of images. Data
augmentation techniques, specifically horizontal flipping and vertical flipping, were used
for artificially enriching the data and ultimately boosting performance.

2.2. CNN Architectures and our Suggested Workflow

In recent years, deep neural networks based on CNN models have been vastly engaged
to address the disease classification challenges; they are assisted by computer vision since
CNN has appeared to be applied in the field of deep learning, computer vision, and
medical image processing with collective success and progression. Some of the related
works corresponding to renowned authors depict the range of work that has been carried
out. In medical image processing, CNNs run the gamut from performing pneumonia
detection using chest x-rays [34] to brain tumor detection using MRI scans [35]. The U-Net
architecture has been extensively used for segmentation [36], for instance, for prostate zone
segmentation [37].

The Inception v3 architecture has achieved performances near the level of humans,
where tasks such as colorectal cancer lymph node metastasis classification [38] and skin
cancer classification have fared well [39]. Under the umbrella of the DenseNet architecture,
studies have been carried out on image classification [40], COVID-19 diagnosis [41], as well
as many other studies.

Hence, we deliberately chose CNN models to handle the DR classification more
precisely. Our proposed framework comprises two phases, including segmentation and
classification. In the case of segmentation purposes, CNN-based segmentation was chosen
over other image segmentation techniques. To be more precise, U-Net CNN architectures
were engaged for DR severity classification in our study, which were later carried out
to transfer learning, as discussed in Section 3. Another phase denoting classification
refers to the employment of several CNN-based architectures following Inception v3 and
DenseNet-121, which have boosted the chances for robust classification of DR severity.

Since the APTOS original dataset had no previous instance of being segmented, there
is a prerequisite for this flow of work to segment the dataset. To meet our research goal,
the U-Net model has been trained on the HRF dataset, which is later passed through a
transfer learning phase and then applied on the APTOS Blindness dataset to derive the
instance segmented dataset from the original one. Then, the pre-trained models (Inception
v3 and DenseNet-121) performed classification tasks on the original-colored images of the
APTOS Blindness dataset as well as on instance segmented blood vessels image dataset
as mentioned in Figure 2. Finally, the robustness of CNN architecture’s classification
performances on our original and instance segmented dataset were evaluated for the
precise diagnosis of DR patients.

3. Pre-Trained CNN Architectures and Experimental Setups
3.1. Segmentation

The U-Net convolutional network is used for our segmentation phase. There is a
multitude of image segmentation techniques: region-based image segmentation, edge-
based segmentation, clustering-based image segmentation, and, of course, convolutional
neural network (CNN)-based image segmentation [42]. CNN-based segmentation is on
the cutting edge of this field of research. Extrapolating various regions in an image and
demarcating those regions into different classes is image segmentation. In simple terms, an
image is broken down for segmentation into multiple regions. The intention behind this
is to make images more ‘palatable’, meaning representing images in a format suitable for
analysis by machines. We segmented the images of the APTOS dataset using a U-Net CNN
architecture later to be worked on by other CNNs for DR severity classification.
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3.1.1. U-Net

U-Net is a breakthrough architecture in medical image processing and is a successor to
the sliding-window approach [43]. The sliding-window approach by [44] had downsides,
as there was redundancy due to overlapping patches and a lack of cost-effectiveness [36].
U-Net architecture does more with less, as it is trained with fewer training images but
provides comparatively more accurate segmentation. Fully convoluted networks (FCN)
do not contain any dense layers, but this network extends FCNs that won the ISBI 2015
challenge [45].

3.1.2. Transfer Learning with U-Net

The U-net has gone through a transfer learning phase. Taking inspiration from hu-
mankind, transfer learning refers to the phenomenon of transferring knowledge across
different tasks. The chances of transfer of learning increase the more related the newer task
is to the older one. In transfer learning, weights and features from earlier trained modules
can be used for another task. Low-level features, including edges, intensity, and shapes,
can be transferred across tasks denoting a transfer of knowledge. The U-Net model was
trained on the HRF dataset, which had been augmented beforehand. After the training
phase, the model was saved, and later the U-Net model was used on the APTOS Blindness
dataset, resulting in an instance segmented version of the original images as the output.

3.2. Classification

CNNs are adept at reducing the number of parameters without losing the quality of
the model. An image goes through an analysis where a multitude of image features are
scrutinized, and the outputs are demarcated into separate categories. The convolutional
networks used for classification purposes are Inception v3 and DenseNet-121.

To overcome the challenges of computational expense, over-fitting, and gradient
updates, the Inception framework provides multiple sizes of the kernel on the same
level, opting to go wider rather than deeper following a heavily engineered route; the
latest Inception v3 is well-received, achieving good accuracy on the ImageNet dataset.
Inception v3 is 48 layers deep. Modifications from earlier models include factorizing larger
convolutions into smaller ones, and asymmetric convolutions following a 5× 5 convolution
are replaced by two 3 × 3 convolutions to reduce parameters.

DenseNet is a breed of CNN characterized by dense connections between layers,
thus being preferred since deeper networks are more adept at better generalizing [46],
as the depth allows the network to learn far more complex functions. The deeper the
network, the more chance for input information to vanish, which is dubbed the vanishing
gradient problem. Resolving this issue entails moving away from the quintessential CNN
architecture and installing dense layers requiring fewer parameters [47], and each feature
is passed through layer by layer, being concatenated at each stage. Bottleneck layers are
embedded in the architecture. DenseNet-121 has a total of 120 convolutions with 4 AvgPool.
To elucidate further, it has 1 7 × 7 convolution layer, 58 3 × 3 convolution layers, a total of
61 1 × 1 convolution layers, the aforementioned 4 AvgPool, and 1 fully connected layer.
However, here instead of AvgPool, global average pooling was used.

3.3. Original and Segmented Image Classification

One segment of the workflow entailed using the pre-trained DenseNet-121 and Incep-
tion v3 on the original-colored APTOS dataset images. The intention was to classify the
data as per the categorization scheme of DR mentioned before. Both pre-trained models
were used on the original images and segmented versions of those of the colored images.
Before that, the U-Net was trained previously on the HRF dataset, and then that trained
model was applied on the original-colored images to derive the segmented versions of
itself, where the accuracy achieved was extremely high, approximately 99.02%. This higher
accuracy, thus, validates the significance and feasibility of our segmentation process more
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precisely. Moreover, the data were categorized according to the aforementioned stages
of DR.

The following applies to both workflows mentioned above for the DenseNet-121
and Inception v3. Both models were warmed up, using a total of 10 epochs from weight
initialization, and a total of 20 epochs were used for training. Table 2 summarizes the
training parameters of InceptionV3 and DenseNet-121.

Table 2. Inception v3 and DenseNet-121 training parameter information.

Attribute DenseNet-121 Inception v3

Optimizer SGD SGD
Base Learning Rate 1 × 10−4 1× 10−4

Momentum 0.9 0.9
Learning Decay Rate 1 × 10−6 1× 10−6

Train Batch Size 32 32
Trainable Parameters 7,217,541 22,294,181

Non-trainable Parameters 83,648 34,452
Total Parameters 7,301,189 22,328,613

Stochastic gradient descent (SGD) was used for optimization. Gradient descent is
continued iteratively to determine the optimal values of parameters, initiating from a
starting value which is intended to enumerate the minimal possibility of a given cost
function. Three types of gradient descent are used: batch, mini-batch, and stochastic
gradient descent. Among these three types, the stochastic gradient descent is best suited
in terms of vast datasets, as quintessential optimization techniques of gradient descent
following batch gradient descent are intended to pursue the entire dataset as a batch.
However, this strategy does not fare well on a typical technique like this, as it would
take the entire dataset and run it on each iteration, thus incurring a heavy expense. The
drawback is that this tends to be noisier, but training time is a priority. Thus, global average
pooling was used. The layer input and the pool size are identical, and the average pool
is taken. The input feature map is partitioned into smaller patches, where by applying
max operation, the maximum of each patch was computed. In addition, the global average
pooling layer lessens the intermediate dimensionality.

To introduce non-linearity into the network, the non-differentiable rectified linear unit
(ReLU) function was implemented. ReLU is an activation function related to a particular
input, where certain outputs are activated with non-zero values while others with zero
values are turned off. The softmax activation function produces values in the range (0–1)
and so is suitable for the output layer. The softmax output layer was reduced to five
probability points corresponding to the five levels of DR severity given in Equation (1).

So f tmax(y = j | θi) =
eθi

∑k
j=0 eθki

where

θ = w0 f0 + w1 f1 + . . . . + wk fk =
k

∑
i=0

wi fi = WT F

Each input value is normalized into a vector of values. These values belong to a
probability distribution. Here, θ is a one-hot encoded matrix which is a representation of
categorical variables as binary vectors. This function predicts whether a set of features f
are a class of j. Ultimately, the output is the ratio of the exponential of the input parameter
and the sum of parameters of all existing values. A variable learning rate was used. The
learning rate is a tuning parameter that determines the step size at each iteration. It dictates
the level of change a model should go through in response to the predicted error when the
weights are updated. Whenever the outputs stagnate for a given number of training epochs
(i.e., hit a plateau), the learning rate is manipulated. Categorical cross-entropy was used
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as the loss function. Cross-entropy, in general terms, is a continuous and differentiable
function that provides feedback necessary for steady incremental improvements in the
model. This loss function, as given in Equation (2), is used when an example can only
belong to one class out of the possible classes available, which is appropriate for our task
at hand.

Loss = −
output size

∑
i=1

yi × log yi

Here, yi = ith scalar value for the output of the model, and yi = target value and
denotes the probability that event i occurs. In our work, the cross-entropy loss between
labels and predictions were calculated. In particular, we opted for this loss function, as we
had more than two label classes.

4. Experimental Results and Performance Matrices

To reiterate the main aspects of our study, this is essentially a comparative study on
original-colored images versus segmented images for DR severity levels detection.

4.1. Training and Validation Performance

From Figure 3, it can be seen that training accuracies were greater than validation
accuracies for both the models applied on original and segmented blood vessels images.
In contrast, the reverse was observed for loss since validation losses exceeded training
losses. For both Inception v3 and DenseNet-121, the maximum validation accuracy and the
minimum validation loss were attained while using the original images. A conspicuous
trend was observed when comparing equivalent portions of the original and segmented
results, which showed a preference for the original images over the segmented blood
vessels images, as they offered an advantage to the classification performance.
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4.2. Test Performance

Table 3 represents four performance metrics for each model applied on both original-
colored and segmented images for gauging test performance. Looking at each class, the
maximum values for all metrics achieved for both models occurred in the case of original-
colored images compared with the segmented ones. For instance, the maximum values
of precision, recall, and F1-score were found to be 0.97 each for Inception v3, whereas
the maximum values of those three performance metrics were found to be 0.89, 0.93, and
0.91, respectively, for DenseNet121 for the No DR stage. Both were acquired in terms of
original-colored images; these seemed to outperform the model’s performance metrics
when applied to the segmented images since the maximum values of precision, recall, and
F1-score, in this case, were 0.89, 0.93, and 0.91 for Inception v3 and 0.84, 0.96, and 0.9 for the
DenseNet-121 model, respectively. This underlying pattern of better performances using
original-colored images rather than segmented images was carried over to each class of
severity levels.

In the same vein as Table 3, the data of the table were visualized in Figure 4, illustrating
the same pattern of better metrics for both models on original images compared with those
from segmented images.
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The original images continued to follow the underlying pattern of better performance
over segmented images regarding accuracy metrics. As shown in Figure 5, original im-
ages outscored the segmented images, attaining accuracies of 80% and 83%, respectively,
compared with 72% and 69%, respectively, on segmented image classification. Regarding
the context, the mean performance in terms of segmented images was between 0.6 and
0.7, which was outperformed, as previously, by that of the original image, which was 0.8.
The values for Table 3 are pictorially depicted in Figure 6. Regarding the two dotted lines
in the three tables, one represents the values from the original images, while the other
represents the values from the segmented ones. Vertical and horizontal axes represent the
actual values of the metrics and the severity levels, respectively. For the three charts, the
blue bar remains relatively more elevated than the orange bar, and for every point, this
difference stayed constant, implying better outcomes found for original images.
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Table 3. Test performance for original and segmented blood vessels.

Original Segmented

Inception v3 DenseNet-121 Inception v3 DenseNet-121

STAGE Precision Recall/
Sensitivity/TPR F1-Score Accuracy Precision Recall/

Sensitivity/TPR F1-Score Accuracy Precision Recall/
Sensitivity/TPR F1-Score Accuracy Precision Recall/

Sensitivity/TPR F1-Score Accuracy

No DR 0.97 0.97 0.97

0.8

0.96 0.98 0.97

0.83

0.89 0.93 0.91

0.72

0.84 0.96 0.9

0.69

Mild 0.49 0.52 0.5 0.63 0.56 0.59 0.38 0.46 0.41 0.35 0.23 0.28

Moderate 0.73 0.78 0.76 0.76 0.82 0.79 0.64 0.72 0.68 0.62 0.64 0.63

Severe 0.24 0.4 0.3 0.35 0.53 0.42 0.17 0.13 0.15 0.09 0.2 0.12

Proliferative
DR 0.77 0.43 0.55 0.78 0.5 0.61 0.59 0.18 0.27 0.58 0.12 0.21
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4.3. Comparison of Original and Segmented Datasets

Three different performance metrics, i.e., the F1-score, precision, and recall/sensitivity/
TPR, were tabulated and are shown in Table 4. Values were found for all three metrics for
the original images and segmented blood vessels with respect to all the five severity levels.
The same underlying pattern of better performances using original images was found for
all of the metrics, such as precision for original and segmented blood vessels for detecting
No DR, which was 0.965 and 0.865, respectively. Likewise, the precision for Proliferative
DR was 0.775 and 0.585, respectively, for the two models. For recall/sensitivity/TPR, the
values for original and segmented blood vessels for detecting No DR were 0.975 and 0.945
and for detecting Proliferative DR, they were 0.465 and 0.15, respectively.

Table 4. F1 Score, Precision, and Recall/Sensitivity/TPR for original and segmented blood vessels for
DR severity levels.

Performance Metric Type No DR Mild Moderate Severe Proliferative DR

F1-Score
Original 0.97 0.545 0.775 0.36 0.58

Segmented 0.905 0.345 0.655 0.135 0.24

Precision
Original 0.965 0.56 0.745 0.295 0.775

Segmented 0.865 0.365 0.63 0.13 0.585

Recall/Sensitivity/TPR
Original 0.975 0.54 0.8 0.465 0.465

Segmented 0.945 0.345 0.68 0.165 0.15
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5. Discussion

Firstly, our preference for engaging deep learning models, including Inception v3
and DenseNet-121, is proven significant because of their evident aptitude in diagnosing
medical images for disease identification. In terms of medical image diagnosis, Inception
v3 provides the ability to adopt both global and local features from an image using different
sized filters of convolution layers and pooling operations. In contrast, the dense connectivity
pattern of DenseNet-121 ensures efficient retrieval and extraction of better features, leading
to an improved outcome. The Resnet model is not included here because of its slightly
poorer results compared with the other two included in this study. The performance
metrics from the outcome show that the precision, recall, and F1-score obtained after
the classification of original-colored images provides better performance than that for
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segmented blood vessels, for both state-of-the-art deep learning models. This indicates
that the segmentation does not add much value to the diagnosis of diabetic retinopathy.
The reason behind the lower performance using the segmented blood vessels can be
explained in two ways. First, when we use the segmented blood vessels, the retinal blood
vessels are extracted, while the colored image is converted to greyscale images, and the
region outside the retinal blood vessel is filtered out. As a result of down-sampling in the
segmentation process, some information (pixel values) from the retinal blood vessels is lost
due to segmentation [48]. In addition, the region outside the vessel can contain important
information (such as drusen and other biomarkers) which are essential biomarkers in a
glaucoma diagnosis. Again, the loss of retinal lesions can be considered as a significant
drawback in the case of using segmented images for diagnosis of DR.

Second, a certain type of disease shows different characteristics in retinal vascular
structure [49]. If the changes in retinal vascular tissue in diabetic retinopathy are not as
predominant as optic nerve disease, glaucoma, etc., then the segmented image will not add
much utility to the diagnostic performance [50]. Furthermore, the confounding issue and
overlap with other disease biomarkers in the retinal blood vessel will significantly impact
the diagnostic performance.

Third, some studies have shown promise in using segmented drusen for the diagnosis
of diabetic retinopathy [51]. Given that this study focuses only on retinal blood vessels
and original images, segmented drusen are beyond the scope of the study. However,
future research can be performed comparing the performance for original image and
segmented images.

Lastly, the segmented blood vessels used in this study are the generated images
from a trained model, which is trained on another dataset. The model trained with other
images could have less ability to extract the retinal blood vessels from images of another
dataset. This is likely due to different image acquisition devices and the quality of the
data acquisition. The main finding from this study is that the original-colored images are
better than the segmented blood vessels in the deep learning-based diagnosis of diabetic
retinopathy. These findings support some of the previous studies, which used original
fundus images for the classification purpose using deep learning. However, some of the
studies claimed higher performance in classification using segmented blood vessels. The
probable reason could be the segmentation model trained on a portion of their dataset (after
manual annotation). Another reason could be that they used the original images in the
segmentation without performing any under-sampling, which results in less information
to lose. Therefore, using the high-resolution images could help to obtain high-resolution
segmented blood vessels, which further helps achieve higher diagnostic performance since
the analysis of the segmented image provides less resolution and precision compared
with the analysis of original image. This finding can largely supplement the automated
screening and real-time diagnosis of DR in clinical practices.

This study has some limitations which are worth mentioning. First, the image seg-
mentation model was based on transfer learning, i.e., the original model was trained on a
different dataset, and the images used in this study were used as a test dataset. Second, the
study focuses only on disease classification or diagnosis. However, temporal analysis is
required to track the disease progression, and the utility of the two approaches (original
and segmented) also needs to be investigated. Future research could be performed on
this aspect.

6. Conclusions

Diabetic retinopathy is one of the major retinal diseases impacting the human eye
as well as causing blindness. Thus, early diagnosis is crucial, but manual diagnosis and
limited human capability can lead to misdiagnosis. Therefore, obtaining a deep learning-
based automated diagnosis of the disease could assist in feasible detection for treatment.
In the case of deep learning-based analysis, it is still equivocal and unclear to choose
between original and segmented blood vessels for diagnosis. In this study, a comparative
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analysis was conducted involving two different deep learning algorithms in two different
approaches: colored images and segmented blood vessels. From the findings of this study,
the segmented blood vessels were shown not to add much utility to the deep learning-
based analysis. Hence, for diagnostic purposes, using the original images could help
lessen the time and cognitive efforts of manual annotation and segmentation. As for future
research, it is suggested to use temporal data for observing the contribution of the two
different approaches in disease detection and progression as well as to derive a lesion-based
classification for the precise understanding of DR severity level.
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